반응형

비소는 화학적으로는 금속과 비금속의 성질을 가지면서 준 중금속으로 분류되며, 다양한 화합물의 형태로 환경 중에 분포하는 주요 환경오염물질 중 하나입니다. 

비소는 맹독성 발암물질로 채광 및 제련, 화석연료 연소, 농약의 제조 및 사용, 목재 처리 등 다양한 경로를 통해 토양에 유입돼 인류와 생태계에 대한 직접적인 위해뿐만 아니라 2차적으로 지하수, 지표수, 농작물 오염을 유발하고 있습니다.

얼마전 나사는 독극물인 비소를 먹고 사는 슈퍼박테리아의 존재를 공개해 큰 반향을 불러일으키기도 했습니다.

비소의 유해성은 이온 상태나 화합물의 형태에 따라 다른데, 3가 비소 화합물이 5가 비소 화합물보다 더 유해하고, 무기비소 화합물이 유기비소 화합물보다 더 유해합니다.

무기비소 화합물은 비교적 이동이 자유롭기 때문에 식품이나 음용수에 오염되는 경우도 있습니다.

비소 및 비소화합물은 인간과 동물에서 발암성이 있는 것으로 알려지고 있어 국제암연구소(IARC)에서는 이를 인체 발암물질(group1)로 분류하고 있습니다. 

사람이 비소에 노출되는 주요 경로는 호흡기와 소화기계입니다.

일반적으로 금속 제련업, 살충제 제조업, 목재 운반 및 가공업 등 비소 화합물을 취급하는 사업장 근로자의 경우 호흡기를 통해 비소 화합물에 노출될 수 있습니다.

그러나 일반인들은 비소에 오염된 물이나토양에서 재배된 농작물 및 어패류 등의 섭취를 통해서 노출되고 있는데요.

연구 결과 무기비소에 노출된 사람들은 피부암 등 암 발생이 증가하는 것으로 나타나고 있습니다.

한국지질자원연구원 지구환경연구본부 김재곤 박사 연구팀은 비소오염 토양을 복원하는 기술인 ‘비소오염토양 세척복원기술’을 개발했습니다.

연구진은 오염된 토양을 환원제와 산을 함유한 세척액과 반응시키면 토양이 약산성을 띄면서 환원환경을 조성해 비소를 토양입자로부터 용출시키는 원리를 적용했습니다.

또 토양 세척 후 황산염과 비소를 함유한 세척액으로 인한 재오염을 막기 위해 산화제, 칼슘염, 응집제 등을 이용해 유해물질을 제거, 2차 오염을 방지하고 재활용 할 수 있도록 한 것도 특징입니다.

이 기술은 토양 1톤 당 처리비용이 15만 원 미만으로, 기존의 동전기추출, 열처리, 오염정화식재 등 기존의 복원법보다 경제적일 뿐 아니라 효율성도 훨씬 우수합니다.
 
지질연구원은 국내 현장에서 실증시험을 거친 후 기술 상용화 한다고 합니다.

반응형
반응형

슈퍼박테리아의 항생제 내성을 유발하는 세포막 단백질을 국내 연구진이 밝혀냈습니다.

이에 따라 슈퍼박테리아 ‘아시니토박터 바우마니(Acinetobacter baumannii)’를 제거할 수 있는 새로운 치료제 개발의 기반이 확보됐습니다.

‘아시니토박터 바우마니’는 대표적인 병원성 감염균의 하나로, 면역체계가 약해진 환자나 중증 화상환자를 사망에 이르게 하는 주요 사망 원인균입니다.

아시니토박터 바우마니



특히 ‘아시니토박터 바우마니’는 최근 관련 연구자 사이에서 항생제 내성이 급격히 증가한 것으로 보고됨에 따라 기존 세균감염 치료에 사용하는 모든 항생제로도 치료하지 못하는 슈퍼박테리아 중 하나로 급부상하는 중입니다.

‘아시니토박터 바우마니’는 다른 균으로부터 각종 유전자를 획득해, 치료제로 많이 사용되는 카바페넴 등의 항생제에 대해 내성을 가진다고 합니다.
또 이 외에도 여러 세포막 단백질의 발현과 조절을 통해 병원성 및 항생제 내성을 가지고 있는 것으로 알려지고 있는데요.

박테리아의 항생제 내성에 대해 인간은 보다 강력한 항생제를 개발하는 것으로 대처함에 따라 결국 어떠한 항생제로도 치료하지 못하는 슈퍼박테리아의 출현으로 이어진 것입니다.

한국기초과학지원연구원 생명과학연구부 김승일 박사팀과 경북대 의대 이제철 박사 연구팀은 새로운 슈퍼박테리아로 급부상중인 ‘아시니토박터 바우마니’의 항생제 내성을 일으키는 세포막 단백질을 발굴하고 그 기능을 규명했습니다.

한국기초과학지원연구원생명과학연구부 김승일 박사

경북대 의대 이제철 교수














이에 따라 현재 발표된 대부분의 항생제로도 치료가 불가능한 것으로 알려진 ‘아시니토박터 바우마니’의 치료제를 개발할 수 있는 토대를 마련했는데요.

연구팀은 국내 주요 병원 입원 환자로부터 항생제 내성이 있는 ‘아시니토박터 바우마니’를 추출 한 뒤, 이 균의 세포벽과 세포막에 존재하는 다양한 막단백질의 특성을 단백질체학 기법을 통해 분석했습니다.

단백질체 분석법을 통해 발굴된 세포막 단백질



이번 연구결과는 슈퍼박테리아의 항생제 내성기전의 규명과 슈퍼박테리아를 제거할 수 있는 새로운 치료제 개발에 유용하게 사용될 수 있을 것으로 기대받고 있습니다.

반응형
반응형

KINS(한국원자력안전기술원)이 12월 1일 창립 20주년을 맞았습니다.

KINS는 지난 1982년 원자력연구원 부설기관인 원자력안전센터로 출범, 1990년 2월 독립하면서  국내 유일의 원자력안전규제 전문기관으로 발돋움했습니다.


KINS는 
이번 20주년 기념식에서는 국제적인 원전의 수출 경쟁 구도 심화로 최근 부각되고 있는 ‘원자력 안전’의 중요성을 재인식하고, 이에 따른 KINS의 전략적 역할 강화를 위해 마련된 'KINS의 뉴비전 2020 글로벌 원자력안전의 중심’을 선포했습니다..

‘KINS 2020 NEW 비전’은 KINS가 지난 20년 동안의 경험과 성과를 토대로 오는 2020년에 우리나라를 '글로벌 원자력안전의 중심'으로 만들겠다는 다짐을 비전으로 나타낸 것입니다.

반응형
반응형
대덕특구에서 거리는 제법 떨어졌지만, 대덕특구 사람들이 즐겨찾는 김치찌개 집이 있습니다.

읍내동 이가촌 입니다.

여러번을 갔지만 김치찌개만 먹은 것 같습니다. 



처음 느껴던 김치찌개 맛은 '좀 짜다' 입니다.


지금은 익숙해져서인지 잘 모르겠습니다.

밑반찬도 잘나오는 편입니다.



무엇보다도 이 집의 특징은 김과 새우젓, 간장입니다.


이런 설명이 붙어있습니다.


실제 만들어본 쌈


푸짐한 라면사리



대덕특구 사람들은 물론 공단 사람들도 찾는 곳이어서 점심시간마다 식당도 주차장도 붐빕니다.



반응형
반응형

곡물과 이물질을 분리하는 곡물 선별기에 쓰일 수 있는 에너지 절약형 압전식 공압 밸브가 국내 최초로 개발됐습니다.

이번에 개발된 기술은 향후 대형 에너지 플랜트 분야의 파이로트 라인에도 적용될 전망입니다. 

한국기계연구원 그린환경에너지기계연구본부의 윤소남 박사팀이 경원훼라이트공업㈜와 한국과학기술연구원 등과 공동으로 곡물 선별기의 공기분출기(이젝터)에 쓰이는 압전밸브를 개발한 것인데요.

색채 선별기 구조 및 작동도. 이번에 개발된 밸브는 곡물 선별기의 공기총(이젝터)으로 사용된다.


기존 곡물 선별기에는 솔레노이드(전자석) 방식의 밸브가 사용돼 코일에 전류를 흘러 보내면 100% 전기의 힘으로 곡물을 튕겨내면서 이물질을 걸러냈습니다.

그런데 이번에 기계연구원이 개발한 압전밸브는 훨씬 적은 전력으로도 공기 압력을 만들어 이물질이 튕겨내기 때문에 소비전력을 기존보다 30% 가량 줄일 수 있습니다.

공기 이젝터에 의해 이물질이 제거되는 모습


또 기존 솔레노이드 방식의 밸브는 1000만 회 가동시 15% 가량 성능이 저하된 반면 새로 개발된 압전밸브는 같은 조건에서 성능 저하율이 5%에 그쳤습니다.

아울러 박막 세라믹과 고탄성 판재를 사용해 내구성이 약했던 압전밸브의 단점을 극복해 국내 최초로 2000만 회 이상의 시험 운전을 달성하기도 했습니다.

개발된 압전밸브


현재 곡물 선별기의 세계 시장 규모는 450억 원 규모로, 이 가운데 국내 시장 점유율은 40%입니다.

기계연구원은 이번 개발을 통해 관련 세계시장의 한국 점유율이 60% 이상으로 높아질 것으로 관측하고 있습니다.

새로 개발된 곡물 선별기용 압전밸브의 내구성을 실험 중인 기계연구원 윤소남 박사


반응형
반응형

교육과학기술부와 한국연구재단은 2010년 ‘올해의 여성과학기술자상’에 한국표준과학연구원 신용현(49세) 책임연구원과 세종대 김성은(43세) 교수, 경희대학교 김지영(61) 교수 등 3명을 선정했습니다.

신용현 표준연 책임연구원

김성은 세종대 교수

김지영 경희대 교수



표준연 신 책임연구원은 진공기술 분야 국내 일인자로, 지난 25년 간 진공연구에 매진해 국내 진공연구 수준을 세계적 최고로 끌어 올렸고, 특히 반도체 제조와 나노기술, 우주항공 산업에 두루 활용되는 진공과 미세 누출 측정을 위한 표준 기술을 개발했습니다.


또 이에 대한 기술데이터를 산학연에 보급해 국내 생산 기술력 향상과 장비 부품 국산화에 크게 기여했습니다.

세종대 김 교수는 세계 최초로 우리 은하와 이웃하는 마젤란 은하 전체의 원자가스 분포를 고해상도로 관측하고, 성간물질의 특성과 별 생성 연구에 크게 이바지해 우리나라 과학기술의 위상을 높였습니다.

경희대 김 교수는 차세대 인재 교육과 우리나라 여성과학기술인의 위상을 제고하는데 중추적인 역할을 담당한 점을 인정받았습니다.


반응형
반응형

일반적으로 섬유는 의류 제조에만 사용된다고 생각하기 쉽습니다.

그러나 최근 첨단기능의 신섬유들이 수처리 분야나 공기정화 분야, 바이오 산업분야, 첨단 의료 분야 등에서 기존 소재의 대체품으로 각광을 받으면서  섬유산업이 소재산업의 중심으로 부상하고 있습니다.

신섬유 가운데 대표적인 것으로는 탄소섬유와 나노섬유 등이 있습니다.

○ 탄소섬유

탄소섬유의 예를 보면 최근 자동차의 연비향상이 세계적인 이슈로 부각되면서 도요타와 벤츠는 일본의 토레이와, BMW는 미쯔비시레이온과 함께 자동차의 차체를 강판에서 탄소섬유로 대체하기 위해 납품을 논의하고 있습니다.

만약, 차체 대부분을 탄소섬유로 대체할 경우 차체의 중량이 가벼워지기 때문에 차량의 연비가 현저하게 개선되기 때문입니다.

하지만 강판 대비 탄소섬유의 단가가 비싸기 때문에 일부 고급차종에서 부분적으로만 사용되고 있습니다.

기존 탄소섬유의 단가가 높은 이유는 제조공정이 복잡하고 열에너지 및 시간이 많이 소모되기 때문입니다.

그러나 기존 탄소섬유 단가는 철에 비해 20배 가까이 비쌉니다.

○ 나노섬유

나노 섬유도 그렇습니다.

나노 섬유는 반도체, 광학, 디스플레이, 센서 등의 전기전자 분야 / 필터, 분리막, 촉매, 복합재, 단열재 등의 기계화학 분야 / 배터리, 축전기, 연료전지, 태양전지 등의 에너지 분야 / 인공피부, 혈관, 약물전달, 임플란트, 세균검출 등의 의약생명 분야 / 초경량 구조, 보강재 등의 자동차 분야 / 고급 의류, 흡착제, 친환경 섬유 등의 전통섬유 분야 및 국방, 항공우주 등에 사용됩니다.

현재 나노섬유는 라면처럼 구불구불한 단사(短絲)형태 또는 부직포처럼 조각난 웹(web) 형태로 제조됩니다.

이렇게 제조된 나노섬유는 제품에 따른 성형이 쉽지 않아 응용분야가 제한되는 단점이 있습니다.

○ 한국화학연구원, 섬유소재 신기술 개발

이런 가운데 한국화학연구원 이재락 박사 연구팀이 30년 동안 개발한 '나노 마이크로급 장섬유 제조 및 가공기술'의 상용화가 곧 실현될 전망이어서 관심이 집중되고 있습니다.

화학(연) “나노/마이크로급 장섬유 제조 및 가공기술”의 국제특허 PCT WO2005/123995 : Filament Bundle Type Nano-fiber and Manufacturing Method Thereof의 대표도면


이 기술은 다양한 직경의 섬유를 무한히 길게 방사할 수 있는 기술로, 기본적으로 나노섬유로 활용될 수 있고, 후처리 공정을 통해 탄소섬유 또는 기능성 섬유로도 쉽게 가공할 수 있습니다.

 화학연구원의 ‘섬유소재 신기술’의 제조 및 시스템 기술을 적용해 대량생산하면서도 기존 탄소섬유의 절반 이하 가격으로 생산이 가능할 것으로 예상되고 있습니다.

제조된 탄소 나노섬유 FE-SEM 사진


또한 기존 탄소섬유의 적용이 어려웠던 분야에 ‘섬유소재 신기술’의 새로운 복합층 구조재 성형 기술을 접목하면 충격강도, 재활용성 및 공간 활용성(자동차 차체 공간에 배터리를 수납하는 등)이 증대될 수 있기 때문에 강판의 대체소재로서 탄소섬유가 부각될 것입니다.

○ 기능성 섬유

기능성 섬유는 탄성, 내열, 건조, 보온, 발열, 방수, 방진, 전자파 차폐, 생분해, 자외선 차단, 전기전도, 인간친화적 등 다양한 기능을 섬유와 결합시킨 것입니다.

기능성 섬유를 제조하는 방법은 새로운 원료(전구체)를 개발하거나, 원사를 특수코팅 또는 화학처리하는 방법, 여러 원사를 복합하여 사용하는 방법 등이 있습니다.
      
‘섬유소재 신기술’은 대부분의 액상 전구체를 다양한 형태로 방사할 수 있으며, 원사의 직경제어가 용이해 다양한 후처리 공정과 특수코팅이나 화학처리 자동화 공정 등에 유리합니다.

즉, 기존의 케불라(방탄섬유), 고어텍스(방수섬유)보다 뛰어난 성능의 다양한 기능성 섬유를 우리나라 화학연구원의 ‘섬유소재 신기술’로 제조할 수 있는 것입니다.


간접 전기방사 장비 및 제조된 나노급 장섬유 SEM 사진


‘섬유소재 신기술’은 다양한 액체 전구물질(precursor)을 노즐로 방사하여 나노부터 마이크로미터 직경의 섬유를 생산 및 가공할 수 있는 기술입니다.

화학연구원은 이에 대해 현재 특허기술의 상용화를 완료하고, 파트너 기업이 선정 되는대로 공장설비 및 시제품 생산에 착수할 계획입니다.

‘섬유소재 신기술’은  무한히 긴 섬유를 다양한 직경으로 손쉽게 대량생산할 수 있으며, 방사된 섬유를 일반섬유, 탄소섬유, 기능성 섬유 등 원하는 형태로 가공할 수 있어 소비자 또는 생산자의 니즈에 맞춰 시장에 탄력적으로 적응할 수 있는 확장성이 뛰어난 기술입니다.

이번에 기업 이전을 추진하는 기술은 섬유방사 관련특허 12건, 탄소섬유 관련특허 10건, 리튬배터리분야 응용특허 6건 등 총 36건의 특허가 패키지 형태로 구성되어 있어 다양한 응용분야에 적용이 가능합니다.
이를 통해 원료중합 → 방사 → 제직/편직 → 염색/가공 → 응용제품 생산에 이르는 섬유소재 생산의 모든 단계를 커버할 수 있습니다.

세계 섬유시장은 올해에만 6500억 달러 규모를 가진 거대시장이며(한국은 120억 달러 규모의 세계 6위 섬유수출국), 이 중 탄소섬유는 43억 달러, 기능성 섬유는 84억 달러를 차지하고 있습니다.
 

고분자 나노섬유 응용분야


일반섬유 시장은 성장이 둔화되었지만, 탄소 및 기능성 섬유 시장은 연평균 10% 이상의 가파른 성장세를 보이고 있으며, 때문에 섬유산업 선진국들은 신섬유 개발에 연구개발 역량을 집중하고 있습니다.

일본은 토레이, 테이진, 토호-테낙스, 미쯔비시 등을 주축으로 탄소섬유, 나노섬유 등 다양한 기능성 신섬유 개발에 주력하고 있으며, 미국은 듀폰, GE, 도날드슨 등이 첨단섬유를 개발하고 있습니다.
 
또한 유럽도 EU 소속국이 공동으로 신섬유 원천기술을 개발하고 있습니다.

우리나라도 WPM(World Premier Materials) 프로그램을 통해 세계시장 선점 10대 소재 개발 사업을 추진하고 있으며, 탄소저감형 케톤계 프리미엄 섬유, 에너지 절감/변환용 다기능성 나노복합소재 등 첨단기능형 신소재 개발에 관심과 노력을 기울이고 있습니다.

이런 가운데 한국화학연구원 화학소재연구본부 이재락 박사 연구팀은 지난 30여년 간의 연구 끝에 완성한 '나노/마이크로급 장섬유 제조 및 가공기술(섬유소재 신기술)'을 민간기업에 이전하기 위해 다음달 7일 기술설명회를 가질 예정입니다.


반응형
반응형

한국항공우주연구원이 내년 1월 11일부터 2박 3일간 전남 고흥 나로우주센터에서 학생들을 대상으로 '우주인과 떠나는 우주여행'을 개최합니다.

이번 캠프는 한국 최초 우주인 이소연 박사와 함께 우주과학을 놀이 체험할 수 있는 특별한 우주과학캠프로, 
국립고흥청소년우주체험센터에서 다양한 우주과학 강연과 우주과학 체험을  이소연 박사를 통해 직접 들고, 또 나로우주주센터를 견학할 수 있는 기회가 마련됩니다.


참가 접수는 오는 12월 1일부터 오전 9시부터 홈페이지
(www.karischool.re.kr) 를 통해 선착순 모집합니다.

아울러 항우연은 내년 1월 18일과 20일, 대전 본원에서도 '우주인과 함께하는 우주과학교실'을 개최할 예정입니다.

반응형
반응형
찬바람 쌩쌩부는 요즘 듣기만 해도 따뜻한 맛집 얘기입니다.

지난 9월 더위가 한창일 때 신성동에서 꽤나 유명한  남원골 추어탕을 갔습니다.


계절도 계절이지만 맛도 좋다고 소문나서인지
식당안엔 사람이 한 가득.
밖에도 기다리는 사람 몇몇.

먼저 튀김을 시켰습니다.



그런데 얼마 지나지 않아 더위가 점점 강도를 더해갑니다.

이미 땀이 나기 시작.



드디어 좋아하는 추어탕이 나왔습니다.
그러나 너무 더워서 온 몸에 땀이 줄줄.
몇 숫가락 뜨기도 전에 와이셔츠는 벌써 거의 다 젖었습니다.

혹시 에어컨이 고장났나 확인해보니
에어컨 풀 파워 가동 중.
용량이 딸렸기 때문입니다.

사람 열기에 음식 열기에...거기에 백프로 부족한 에어컨.

그저 빨리 나가야 겠다는 생각뿐입니다.
음식 맛은 느껴지지 않을 정도로 숨막힙니다.

다른 사람들도 부채질하랴 땀 닦으랴...

내년 여름에 갔을땐 에어컨 한 대 더 들여 있길...
  



반응형
반응형

한국생명공학연구원 국가생명연구자원정보센터(KOBIC)는 차세대 염기서열분석(NGS) 기술로 생산되는 대용량 서열 데이터로부터 유전자 발현 양을 계산할 때 정확도를 획기적으로 개선한 ‘유일매핑지역의 기대치 정규화(뉴마, NEUMA)’ 라는 새로운 분석기술을 최근 개발했습니다.

이상혁 박사



NGS 방법은 유전체 서열을 짧은 시간에 수천 만 번 읽어서 결정하는 기법으로, 생산되는 데이터의 용량이 수십 기가바이트에 달해 정보 분석이 매우 어렵습니다.

특히 NGS 기술은 생명체의 유전자 발현 양을 측정하는 전사체서열기술(RNA-Seq) 분야에 많이 활용되고 있습니다.

유전자 발현 양을 계산하는 프로그램으로 최근 미국에서 개발된 Cufflinks나 TopHat 등이 널리 사용되고 있습니다.
 
연구팀이 이번에 개발한 ‘뉴마(NEUMA)’ 분석기술은 기존의 방법에 비하여 정확도가 월등히 우수함을 실험과 모의계산을 통하여 증명했습니다.

뉴마(NEUMA)는 기존의 Cufflinks나 TopHat 방법들이 가지는 한계를 뛰어넘기 위해서 이미 알려진 RNA의 정보를 이용하여 유전자 발현 양을 측정합니다.

뉴마는 대용량으로 생산되는 NGS 데이터에서 유전자 발현 양 측정의 정확도를 획기적으로 향상시킨 최신 기술로서, 개인유전체 정보 기반의 미래의학 시대를 앞당길 핵심기술로 평가받고 있습니다.

이번 연구결과는 생명과학 분야의 저명 국제학술지인 ‘핵산리서치(Nucleic Acids Research)'의 지난 8일자 인터넷판에 게재됐습니다.


*용어설명*

반응형

+ Recent posts