반응형

분자전자소자(molecular electronics)는 분자 크기가 수 나노미터 미만으로 매우 작고 자기조립공정이 가능하여, 고집적이면서도 저렴한 전자소자를 만들 수 있어 세계적으로 활발히 연구되고 있습니다.

그러나 지금까지 알려진 분자전자소자는 대부분 실리콘 등 딱딱한 기판 위에서 만들기 때문에 자유자재로 휘어질 수  없었습니다.

반면 기존의 휘어지는 유기전자소자(organic electronics)는 두께가 수 마이크로로 상대적으로 두꺼운 것이 단점이었습니다.

서울대 이탁희 교수팀이 자기조립단분자막을 이용해 극심하게 휘어져도 기능과 성능이 모두 안정한 초박막 분자전자소자를 제작했습니다.

이번 연구는 나노크기의 매우 얇은 단일 분자를 이용해 자유자재로 휘어질 수 있는 유연한 분자전자소자를 개발할 수 있는 가능성을 제시한 것입니다.

이에 따라 향후 휴대용 기기 뿐만 아니라 다양한 전자소자에서 매우 가볍고 쉽게 휘어질 수 있는 초소형 전자소자가 개발될 전망입니다.

연구팀은 박막 두께가 1~2나노미터인 자기조립단분자막을 휘어지는 플라스틱 기판 위에 전자소자로 제작하는데 성공했습니다.

특히 이 교수팀의 나노 크기의 휘어지는 유기전자소자는 반복적인 휨 현상이나 다양하게 휘어진 환경에서도 전기적 전도 특성이 안정적으로 제어됐습니다.

또 점차적으로 휘거나, 매우 심하게 혹은 다양한 형상의 휨 환경에서도 안정적이고, 1000회 이상의 반복적인 휨 테스트에서도 고유의 상태를 유지했습니다.

이탁희 교수는 지난 2009년에도 단일 분자 한 개가 트랜지스터 소자로 작동될 수 있음을 세계 최고 권위지 '네이처'에 발표하였는데, 이번 연구는 이러한 분자소자가 플렉시블한 환경에서도 정상적으로 구동될 수 있음을 검증한 연구결과입니다.

이번 연구는 이탁희 교수가 주도하고, 박성준 박사과정생(광주과기원), 왕건욱 연구원, 윤명한 교수(광주과기원) 등이 참여했습니다.

연구결과는 'Nature Nanotechnology ' 7월 4일자에 게재되었습니다.
(논문명 : Flexible molecular-scale electronic devices)

<연 구 개 요>

Flexible molecular-scale electronic devices
Sungjun Park, Gunuk Wang, Byungjin Cho, Yonghun Kim, Sunghoon Song, Yongsung Ji, Myung-Han Yoon, and Takhee Lee
(Nature Nanotechnology, 2012. 7. 4. 출판)

1. 배경

분자전자소자(molecular electronics) 분야는, 단일 분자를 이용하거나, 소자의 중심 역할을 하는 활성층이 단 분자 단위로 만들어진 분자박막을 이용한 전자소자에 대한 연구 분야이다.
분자전자소자가 폴리머(polymer) 물질을 기본으로 하는 유기전자소자(organic electronics)와의 차별 점은 분자전자소자의 경우는 단일 분자 단위를 갖는 방향으로 전기장이 가해지므로 분자 내의 분자 궤도에 영향을 주어 분자의 특성을 변화시키고 이를 이용한 소자의 구동이 가능하다는 점이다.
그리고 분자를 이용할 경우, 그 크기와 기능면에서 대량 공정과 소자의 집적화의 부분에서 기존의 반도체 소자에 비해 유리한 장점이 있다.
현재까지 분자전자소자 연구는, 단단한 기판 위(예를 들어, 실리콘 기판)에서의 제작 공정을 거쳐, 전기적 신호의 분석을 통해 물성에 대한 이해와  이론을 바탕으로 다양한 소자로의 적용에 대한 연구가 진행되어 왔다.
하지만, 본 연구진은 이러한 전통적인 연구 관점에서 벗어나, 유기 물질의 유연한 물리적 특성을 이용하여, 2 nm 정도의 두께를 가지는 초박막 단분자박막을 이용한 분자전자소자를 제작하였다.
그리고 제작된 분자전자소자의 다양한 구부러진 상태에서의 전하수송 특성 및 그 메커니즘을 규명하였으며, 나아가 유연전자소자(flexible electronics) 연구 분야에 무한한 접목 가능성과 연구적 가치의 중요성을 제시하였다.

2. 연구결과

유연한 분자전자소자의 모식도

그림 a. 실험에 사용된 유연한 분자전자소자 개략도 (아래부터 위 순서로, 플라스틱 기판, 하부 전극 (Au/Ti), 감광제 (photo-resistor), 전도성 고분자, 상부 전극 (Au))
그림 b. 실제 실험에 사용된 유연한 분자전자소자 사진 (총 512 개의 소자가 있음)

그림 1(a) 는 유연한 분자전자소자 개략도를 보여준다. 소자의 제작공정은 아래의 표 1처럼 유연한 분자전자소자 제작 공정에 설명되어 있다. 총 512개의 소자가 가로 3 cm × 세로 3 cm 크기의 플렉시블 기판에 만들어 졌으며 그림 1(b)에 실제 소자 사진이 포함되어 있다.

유연한 분자소자의 휨 상태에서의 전하수송 특성

그림 a. 소자가 인장(tensile)응력을 받았을 때의 이미지
그림 b. 점차적인 인장응력을 받았을 때의 전류 값을 도시하였음
       (0.6 V~1.0 V 범위에서 의 각 포인트 전류 값을 도시)
그림 c. 5 mm 의 인장응력의 휨 반경 상태에서의 저온 측정 데이터
그림 d. 소자가 압축(compressive)응력을 받았을 때의 이미지
그림 e. 점차적인 압축응력을 받았을 때의 전류 값을 도시하였음.
       다시 회복 시, 전류 값의 변화가 없음이 보임.
       (0.6 V~1.0 V 범위에서 의 각 포인트 전류 값을 도시)
그림 f. 5 mm 의 압축 응력의 휨 반경 상태에서의 저온 측정 데이터

그림 2는 분자 소자의 bending test에 대한 데이터이다.
분자 소자가 인장 또는 압축 응력을 받았을 때의 전기적 신호를, 분석을 통하여 소자의 휨 환경에서의 안정성을 규명 하였다.
구부러진 상태에서 온도 변화에 따른 전기 신호를 분석함으로써, 분자의 전자 전달 경로(tunnelling)가 구부러진 상태에서도 유지됨을 알 수 있다.

다양한 휨 상태에서의 분자 소자의 안정성

그림 a. 이쑤시개에 걸쳐져 있는 상태에서의 소자 특성 (-0.8 V 와 0.8 V의 구간 측정)
그림 b. 소자를 특정 각도에 따라 꼬았을 때의 전류 값에 대한 데이터
그림 c. 유리막대 위 나선형으로 감겨진 분자 소자의 실제 이미지

그림 3으로부터, 매우 극심한 환경이나 다양한 휨 환경에서의 소자 안정성을 확인 할 수 있다.
그림 3(a)에서 볼 수 있듯이 아주 작은 이쑤시개에 감겨진 상태에서도 약 10,000 초(약 2시간 30분) 동안 소자의 성능 저하는 볼 수 없었으며, 그림 3(b)에서 한 축을 돌리거나(각도 > 35°), 혹은 그림 3(c)에서처럼 유리 막대에 사선 형으로 감겨져 있는 상태에서도 소자의 성능은 꾸준한 견고함을 보여 주었다.

 

 용  어  설  명

분자전자소자 (Molecular electronics)
분자전자소자는 분자 크기의 다양한 기능성 소재를 전자소자의 핵심적인 구성요소로 사용한다는 개념으로, 주로 분자소자의 제작과 전하수송 특성을 연구하는 과학기술분야이다. 분자 고유의 크기가 보통 수 나노미터(nm) 이하로 매우 작고, 자기 조립에 의한 상향식 공정이 가능하여, 고집적 저비용의 전자소자를 제조할 수 있다. 이러한 장점으로 인해 기존의 실리콘 반도체 소자들이 가지는 집적도의 한계를 보완할 수 있어 미래 핵심기술로 평가 받고 있으며, 세계 일류 대학들과 연구기관들이 이 분야에 대해 활발히 연구하고 있다.

자기조립단분자 박막 (Self-assembled monolayer)
자유로운 계(system) 내에서 용액 내 분자가 촉매 혹은 이동을 위한 특정 에너지의 주입이 없이, 자발적으로 상호작용을 통해 다른 물질과 접합이 되는 현상을 의미한다. 접합 하는 과정에 있어서, 용액 내에 있던 비방향성으로 움직이는 분자들은 짧은 범위의 반경 내에서 정렬을 일으키며 접합을 하며, 위 과정에서 자유에너지가 낮아지고, 평형 상태로 존재 하게 된다.

그림 a. 용액 내 존재하는 분자들의 박막 금속 위에서 자가 조립되는 원리 개략도그림 b. 금속 전극 사이에 자기조립된 단분자 박막 모식도.

 

<원문보기>

Flexible molecular-scale electronic devices(요약)

Flexible molecular-scale electronic devices(원문)

<이탁희 교수>

1. 인적사항

 ○ 소 속 : 서울대학교 물리천문학부(물리학)

2. 학력
  ○ 1992 :  서울대학교 물리학 학사
  ○ 1994 :  서울대학교 물리학 석사
  ○ 2000 :  미국 퍼듀대학교 물리학 박사

3. 경력사항
○ 2000년 ~ 2004년 : 미국 예일대학교 박사후연구원
○ 2004년 ~ 2011년 :  광주과학기술원 신소재공학과 조교수/부교수/교수
○ 2011년 ~현재 : 서울대학교 물리천문학부(물리학전공) 부교수
○ 2007년 ~ 2012년 6월 : 교과부?연구재단 중견연구자(도약연구) 연구책임자
○ 2012년 5월 ~ 현재 : 교과부?연구재단 리더연구자(창의적연구) 연구책임자

4. 주요연구업적
○ 연구 분야 :
- 분자전자소자
- 유기물 기반 메모리 소자
- 반도체 나노와이어 기반 전자소자 및 그래핀 전극 기반 광전자 소자

○ 주요 연구업적 :
1.  Hyunwook Song et al. "Observation of Molecular Orbital Gating", Nature 462, 1039-1043 (2009) (issue of December 24, 2009).
2.  Gunuk Wang et al. "New approach for molecular electronic junctions with multi-layer graphene electrode", Advanced Materials, 23, 755 (2011). Cover Picture Article.
3.  Sangchul Lee et al. "Enhanced Charge Injection in Pentacene Field Effect Transistors with Graphene Electrodes ", Advanced Materials, 23, 100 (2011).
4.  Yongsung Ji et al. "Stable switching characteristics of organic non-volatile memory on a bent flexible substrate", Advanced Materials, 22, 3071 (2010). Cover Picture Article.
5.  Byungjin Cho et al. "Rewritable Switching of One Diode?One Resistor Nonvolatile Organic Memory Devices", Advanced Materials, 22, 1228 (2010). Cover Picture Article.
6.  Sunghoon Song et al. "Three-dimensional integration of organic resistive memory devices", Advanced Materials, 22, 5048-5052 (2010). Cover Picture Article.
7.  Gunho Jo et al. "Hybrid Complementary Logic Circuits of One-Dimensional Nanomaterials with Adjustment of Operation Voltage", Advanced Materials, 21, 2156 (2009). Cover Picture Article
8.  Gunuk Wang et al. "Enhancement of field emission transport by molecular tilt configuration in metal-molecule-metal junction", J. Am. Chem. Soc. 131, 5980 (2009).
9.  Woong-Ki Hong et al. "Tunable Electronic Transport Characteristics of Surface Architecture-Controlled ZnO Nanowire Field Effect Transistors", Nano Lett. 8, 950 (2008) and about 140 more papers.

* Detailed publication list can be found at http://mnelab.com

<박성준 박사과정생>

1. 인적사항

 ○ 소 속 : 광주과학기술원 신소재공학과

2. 학력
 ○ 2010년 : 아주대학교 신소재공학 학사
 ○ 2011년 : 광주과학기술원 신소재공학과 석사
 ○ 2011년 ~ 현재 : 광주과학기술원 신소재공학과 박사과정
   
3. 주요발표논문 (Selected journal articles)    
1. Sungjun Park, Gunuk Wang, Byungjin Cho, Yonghun Kim, Sunghoon Song, Yongsung Ji, Myung-Han Yoon & Takhee Lee, "Flexible molecular-scale electronic devices", Nature Nanotechnology (2012)
2. Jun-seok Yeo, Jin-Mun Yun, Dong-Yu Kim, Sungjun Park, Seok-Soon Kim, Myung-Han Yoon, Tae-Wook Kim, and Seok-In Na, "Significant Vertical Phase Separation in Solvent-Vapor-Annealed Poly(3,4-ethylenedioxythiop hene):Poly(styrene sulfonate) Composite Films Leading to Better Conductivity and Work Function for High-Performance Indium Tin Oxide-Free Optoelectronics" ACS Appl. Mater. Interfaces (2012) Online publised.
3. Gunuk Wang, Seok-In Na, Tae-Wook Kim, Yonghun Kim, Sungjun Park, and Takhee Lee, "Effect of PEDOT:PSS-molecule interface on the charge transport characteristics of the large-area molecular electronic junctions", Organic Electronics 13, 771  (2012).

 

반응형
반응형

p53 유전자는 세포의 이상증식을 억제하고 암세포 사멸을 촉진하는 유전자로, 항암 유전자라고도 불립니다.

현재까지 가장 강력한 암 억제 유전자로 알려진 p53을 타깃으로 암 치료제를 개발하려는 노력이 계속되고 있지만, 임상실험에서는 기대와 달리 효과가 거의 없었고, 또 부작용 등의 문제점이 나타났습니다.

이것은 p53을 조절하는 원리를 정확히 이해하지 못했기 때문으로, 최근 과학자들은 p53의 조절원리와 상호작용을 정확히 규명하기 위한 연구를 진행 중입니다.

PIMT의 발현에 따른 폐암 및 유방암 환자의 생존율을 보여 준다. PIMT의 발현이 많을 경우 생존율이 낮음을 알 수 있다.


성균관대 한정환 교수팀이 노화된 단백질을 회복시키는 효소로만 알려진 핌트(PIMT)가 암을 억제하는 역할을 하는 유전자(p53)의 기능을 억제해 암을 유발하거나 촉진한다는 사실을 밝혀냈습니다.

연구팀은 메칠화 효소인 핌트가 강력한 암 억제 기능을 지닌 p53을 감소시켜, 궁극적으로 암 발생을 촉진한다는 새로운 원리를 규명했습니다.

연구팀은 핌트의 발현이 증가한 여러 종류의 악성 암세포에서 p53이 감소되었음을 확인하였는데, 특히 핌트가 지나치게 발현된 암환자의 생존률이 그렇지 않은 환자에 비해 약 20% 낮다는 사실을 밝혀냈습니다.
 
특히 핌트가 p53을 메칠화시키고, 이를 통해 p53의 기능을 억제하여 암을 일으키는 암 유발 효소임이 처음으로 밝혀졌습니다.

이는 핌트가 p53을 메칠화시키고, 이 메칠화는 p53의 유비퀴틴화를 촉진함으로써, 결국 p53의 양을 감소시켜 암을 유발한다는 것입니다.


PIMT를 억제시켰을 경우 암 억제 단백질인 p53이 증가하며(좌측), 암세포의 성장이 억제됨(우측)을 보여준다.


PIMT 효소에 의하여 암 억제 단백질인 p53의 특정 잔기에 메칠화가 일어남을 의미한다.

연구팀은 핌트가 p53의 기능을 억제해 결국 암을 촉진한다는 이번 연구결과가 인간의 암세포에만 특이적으로 적용되는 원리라는 것도 확인했습니다.


PIMT에 의하여 암 억제 단백질과 p53의 결합이 조절됨을 의미하며(좌측), 이를 통하여 p53의 안정성이 영향 받음을 나타낸다(우측).

p53의 특정 잔기의 카복실 메칠화가 p53 단백질의 안정성에 핵심적인 역할을 함을 보여준다.



이번 연구는 한정환 교수가 주도하고, 이재철 박사와 하신원 학생이 참여했습니다.

연구결과는 네이처(Nature)의 자매지인 'Nature Communications' 6월 27일자에 게재되었습니다.
(논문명 : Protein L-Isoaspartyl Methyltransferase regulates p53 Activity)

<연 구 개 요>

암은 국내에서 사망률 1위의 질환이며 세계적으로 그 치료를 위한 많은 연구가 진행되고 있다.
현재까지 알려진 가장 강력한 암 억제인자인 p53을 타깃으로 암 치료제를 개발하려는 노력이 있었으나 이를 대상으로 실시한 임상 실험에서는 기대와는 달리 미미한 효과와 부작용 같은 문제점들이 대두되었다.
최근에는 이러한 문제점들이 p53을 조절하는 기전에 대한 이해 부족에서 기인하는 것으로 여겨지고 있다. 따라서 이러한 문제점을 해결하기 위해 p53의 조절 기전 및 상호작용에 대한 연구의 필요성이 부각되고 있으며, 그에 대한 연구가 활발하게 진행 중 이다.
○ 본 연구에서는 p53의 단백질 양이 카르복실 메칠화 효소인 PIMT (Protein L-Isoaspartyl Methyltransferase)에 의하여 감소되는 현상을 확인하였다. 또한 PIMT에 의하여 p53의 기능 역시 현저하게 억제됨을 확인하였으며 PIMT가 과발현하고 있는 암환자의 생존률이 감소함을 관찰하였다.

○ 본 연구진은 일련의 실험을 통하여 PIMT에 의하여 p53이 카르복실 메칠화 됨을 확인하였으며 이러한 현상이 p53의 기능 조절에 연관됨을 밝혀내었다.


○ p53 단백질 양을 조절하는 인자인 HDM2는 p53과 결합하여 p53을 degradation 시키는 것으로 알려져 있다. 본 연구진은 PIMT가 p53의 카르복실 메칠화를 통하여 p53과 HDM2의 결함을 촉진시키고 결과적으로 p53을 감소시키는 것을 확인하였다.


○ 본 연구진은 이와 같은 결과를 통해 PIMT가 p53의 기능을 억제하여 암을 유발시키는 암 유발 단백질임을 최초로 규명하였다.


○ 현재, 암을 치료하기 위한 새로운 암 치료제 개발이 전 세계적으로 진행되고 있다. 특히 가장 강력한 암 억제 인자인 p53을 타깃으로 하는 암 치료제 개발을 위해서는 p53의 조절 기전에 대한 이해가 선행되어야할 과제로 남아 있다. 본 연구 결과는 PIMT에 의한 p53의 새로운 조절 기전을 제시하였으며 이는 p53을 대상으로 하는 암 치료제 개발 및 암 조절 기전연구의 중요한 기초자료로 활용될 수 있을 것으로 기대한다.



 용  어  설  명

카르복실 메칠화 (carboxyl methylation)
메칠화란 단백질의 전사 후 변형(post-translational modification)의 일종으로 특정 단백질의 특정 아미노산 잔기에 메칠기(CH3-)가 결합하는 현상을 의미함.
카르복실 메칠화는 아미노산의 카르복실 잔기(CHOO-)에 일어나는 메칠화로 일반적으로 많이 알려져 있는 lysine, arginine 메칠화에 비하여 그 연구가 미미 하였다. 본 연구에서는 이러한 카르복실 메칠화의 세포내 의미를 찾고 그 조절 기전을 분석하였다.

유비퀴틴화(ubiquitination) 
특정 단백질에 유비퀴틴(76개 아미노산으로 구성된 단백질로, 다른 단백질과 결합해 분해를 촉진함) 단백질이 결합하는 현상

Nature Communication
세계  최고 권위 Nature 자매지 중 최초의 online 저널로, multidisciplinary 분야에서 권위 있는 과학전문지

 

<한정환 교수>

1. 인적사항
 ○ 소 속 : 성균관대학교 약학대학                 
               

2. 학력
  1978 - 1982  성균관대학교 약학대학 약학학사   
  1982 - 1984  성균관대학교 약학대학 약학석사  
  1987 - 1991  독일, Ruhr University Bochum, 이학박사
  
3. 경력사항
  1992 - 1992 독일, Ruhr University Bochum, Post-doc
  1992 - 1995 스위스, Friedrich Miescher Institute, Post-doc 
  1996 - 2006 성균관대학교 약학대학, 부교수
  1997 - 2006 경기의약연구센터, 연구기획간사
  2006 - 현재 성균관대학교 약학대학 교수
  2007 - 현재 성균관대학교 생명의약협동과정 책임교수
  2010 - 현재  교육과학기술부?한국연구재단 선도연구센터 (MRC, 에피지놈 제어 연구센터) 센터장

4. 전문 분야 정보
- 대한약학회 국제 협력위원장
- 암정복추진기획단 추진위원
- 대한약학회 국제 협력 위원장
- 중앙약사심의위원회 심의위원
  - 응용약물학회, 편집위원 
  - Archives of Pharmacal Research, 편집위원
- 한국분자생물학회 회원
- 저서: 리핀코드의 그림으로 보는 생화학, 약품생화학총정리 등

5. 주요 논문 업적
 - 1990년대 후반기부터 약 20년 동안 에피지놈 분야에서 활동하여 국제학술지(190편), 국내외학술회의(134여회) 발표를 하였음. 아래는 한정환 교수의 최근 주요 대표 논문업적 6편

1. Protein L-Isoaspartyl Methyltransferase regulates p53 Activity. Nat. Commun. Accepted (2012)
2. Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proc Natl Acad Sci U S A. 108(1):85-90 (2011)
3. Depletion of embryonic stem cell signature by histone deacetylase inhibitor in NCCIT cells: involvement of Nanog suppression. Cancer Res. 69(14):5716-25 (2009)
4. Reversine increases the plasticity of lineage-committed cells toward neuroectodermal lineage. J Biol Chem. 284(5):2891-901 (2009)
5. Histone deacetylase inhibitor apicidin downregulates DNA methyl-transferase 1 expression and induces repressive histone modifications via recruitment of corepressor complex to promoter region in human cervix cancer cells. Oncogene. 27(10):1376-86 (2008)
6. Histone chaperones regulate histone exchange during transcription. EMBO J. 26(21):4467-74 (2007)

 

반응형
반응형

차세대 에너지 생산기술 중 무한한 태양 빛을 이용한 태양전지는 소재나 사용목적, 효율 등에 따라 기술이 세분화됩니다.

그 중 식물의 광합성 원리를 이용한 염료감응형 태양전지는 현재 상용화된 실리콘이나 고분자 전지에 비해 만들기 쉽고, 경제적이며, 투명하게도 만들 수 있어 건물의 유리창 등에 직접 활용할 수 있는 차세대 고효율 전지로 각광 받고 있습니다. 

염료감응형 태양전지는 요오드를 포함하는 액체 전해질을 주로 사용하는데, 액체 전해질은 고온에서 팽창하여 새거나 안정성이 낮아 전극을 부식시키는 등 심각한 문제를 유발하기 때문에 고체 전해질로 대체하기 위한 연구가 진행 중입니다.

■ 연세대 김은경, 김종학 교수팀이 나노패턴기술을 이용해 더 많은 햇빛을 흡수해 전기를 만드는 태양전지를 개발했습니다. 

이번 연구는 나노패터닝이 광학적 특성을 변화시켜 빛의 반사를 통해 새어나가는 빛까지도 흡수하여 상당히 많은 양의 빛을 수확할 수 있다는 사실을 밝혀낸 것이 특징입니다.

연구팀은 나노미터 크기의 미세한 구멍을 메울 수 있는 전도성 고분자와 나노패터닝 기술을 이용해 안정하면서도 효율이 높은 전도성 고분자 기반의 염료감응형 태양전지를 개발했습니다.

이번 성과는 염료감응형 태양전지에 처음으로 나노패턴을 도입하여 빛 수확기술(Light Harvesting)을 활용했다는 점이 특징입니다.

빛 수확기술은  태양 빛을 흡수하여 전기로 바꿀 때 일정한 면적에서 더 많은 빛을 손실 없이 흡수해 전기를 생산하는 태양전지의 핵심 기술로, 실리콘 태양전지와 고분자 태양전지에서 이미 개발되어 효과가 입증되었습니다.

그러나 연료감응형 태양전지에서는 나노입자를 광전극으로 사용하고 이를 패터닝해야 하기 때문에 어려움이 많았습니다.

전도성 고분자와 고분자 전해질은 전도도가 높고, 기존의 염료감응형 태양전지의 액체전해질 단점을 극복할 수 있는 장점이 있지만, 대부분의 고분자는 크기가 크기 때문에 햇빛이 태양전지의 무기나노입자 사이의 구멍으로 침투할 수 없어 효율이 높은 태양전지 개발에 어려움이 있었습니다.   

특히 연구팀은 무기나노입자를 직접 나노크기로 작게 패터닝하여 광전극을 만들고, 흡수되지 못해 투과되는 빛까지도 반사시켜 빛을 수확하여 광전변환효율을 극대화시켰습니다.

PDMS 탄성체 스탬프를 이용한 나노패터닝 프로세스 및 대면적 광전극. (왼쪽 세 개의 그림) 나노 스탬프를 이용하여 패터닝을 하여 좋은 빛 반사특성을 갖는 광전극 제조. 여러 개의 나노스탬프를 이용하여 대면적의 광전극(400 cm2)을 만든 실제 사진. 여러 개의 스탬프나 큰 면적의 스탬프를 이용하여 더 넓은 면적의 광전극과 태양전지 모듈을 만들 수 있는 가능성을 제시하였다.


■ 연구팀의 기술은 기존 태양전지를 만드는 과정에서 1~2단계의 간단한 추가공정으로 나노패턴을 제작할 수 있기 때문에, 고가의 패턴장비와 노광장비가 필요한 공정에 비해 매우 간단해졌습니다.

또 스탬프의 크기와 개수를 조절하여 원하는 면적만큼 넓게 만들 수 있기 때문에 대면적화가 가능하고, 패턴스탬프를 여러 번 재사용해도 전혀 문제없어 경제적이며, 대량생산도 가능합니다.

아울러 마이크로미터에서 수백 나노미터까지 다양한 크기의 패턴과 다양한 모양의 패터닝이 가능하고, 이 기술을 빛 수확능력이 탁월한 광전극을 이용해 다양한 태양전지와 소자에도 활용할 수 있습니다. 

연구팀이 개발한 빛 수확용 광전극은 기존의 전도성 고분자 기반의 염료감응형 태양전지의 전류생산량을 40% 증대시키는 효과를 보이고 있습니다.

또 기존에 발표된 전도성 고분자 기반의 태양전지는 2~3%의 낮은 효율을 보이는 반면 이 기술을 적용하고 전도성 고분자 고체 전해질을 이용하면 7.03%의 높은 광전효율을 나타내고 있습니다.

연구팀은 이번 연구에 앞서 지난해 처음으로 열에 의해 중합되는 전도성 고분자 단량체를 나노크기의 구멍에 넣은 후, 그 속에서 직접 전도성 고분자를 키워 그것을 전해질로 이용해 효율이 높은 전도성 고분자 기반의 염료감응형 태양전지를 개발한바 있습니다.(Advanced Materials 지, 23, 1641-1646, 2011, 인용지수: 13.877) 

이번 연구는 연세대 김은경, 김종학 교수가 주도하고, 김정훈 박사, 고종관, 김병관 박사과정생이 참여했습니다.

연구결과는 '앙게반테 케미(Angewandte Chemie International Ed., IF=13.455)'지 7월 9일 온라인판에 속표지논문으로 게재되고, 'Hot Paper'로 선정되었습니다.     
(논문명 : Nanopatterning of Mesoporous Inorganic Oxide Films for Efficient Light Harvesting of Dye-Sensitized Solar Cells)

나노패턴이 형성된 광전극이 들어오는 빛을 흡수하여 전기로 변환시키고, 흡수되지 못하고 투과되는 빛을 반사시켜 다시 전기에너지로 바꾸는 그림 (왼쪽아래). 20 나노미터 크기의 티타늄 산화물을 300 나노미터 크기의 패턴으로 만든 주사전자현미경 사진 (돋보기 안). 결함 없이 대면적 패턴이 가능함을 보여주는 주사전자현미경 사진 (둥근 바탕화면). 전도도가 높은 전도성 고분자를 의미하는 그림 (화학구조)

 

<연 구 개 요>

Nanopatterning of Mesoporous Inorganic Oxide Films for Efficient Light   Harvesting of Dye-Sensitized Solar Cells
Jeonghun Kim†, Jong Kwan Koh†, Byeonggwan Kim, Jong Hak Kim*, Eunkyoung Kim* 
(Angewandte Chemie International Edition, 51, 28, 6864-6869 (2012) 7월 9일 출판)

○ 전도성 고분자와 태양전지

전도성 고분자는 전기를 흐르게 하는 기능성 고분자로서 전기로 색이 변하는 디스플레이부터 높은 전도도를 이용한 전극제조, 정공 전달 특성을 통한 LED, 태양전지 등 다양한 응용분야에 사용되고 있는 스마트 재료이다.
화학적 구조 변화를 통하여 다양한 특성을 제어할 수 있으며, 연구가 활발히 진행되고 있다.
미래 에너지 생산 기술가운데, 무한한 태양 빛을 이용하는 태양전지는 자연으로부터 많은 에너지를 얻을 수 있는 기술로서, 다양한 소재, 사용 목적, 효율에 따라 많은 기술로 세분화 되며, 상용화 및 저가화를 위해 많은 기술 개발이 활발히 이루어지고 있다.
이중, 염료감응형 태양전지는 실리콘, 고분자 태양전지에 비해 제조가 쉽고, 단가가 낮으며 상대적으로 높은 효율을 갖기 때문에 미래 태양전지중의 하나로 각광받고 있다.
염료감응형 태양전지는 요오드(I2)를 포함하는 액체전해질을 주로 사용하는데, 이 액체전해질은 고온에서의 팽창으로 인한 누출 및 낮은 안정성을 갖고, 전극의 부식과 같은 심각한 문제를 유발하기 때문에, 이를 고체전해질로 대체하기위한 기술이 활발히 진행되고 있다.
본 연구진은 열에 의해 중합이 되는 높은 전도도를 갖는 전도성 고분자를 정공전달물질로 이용하여 고체태양전지를 개발하였으며, 높은 성능을 보여주었다.
본 논문에서도 전도도가 높은 전도성 고분자를 이용하여 고체전해질로 사용하였으며, 높은 효율을 보여주었다.     

○ 빛 수확기술

최근 들어 세계적으로 태양전지 개발은 동일 면적에서 더 많은 빛을 손실 없이 흡수하여더 많은 전기를 생산해 낼 수 있는 기술개발에 많은 연구가 진행되고 있다.
빛 수확기술에는 나노와이어, 나노튜브, 광결정과 같은 나노구조를 이용하거나 반사필름의 부착, 산란을 일으키는 전해질 등, 빛을 효과적으로 이용하려는 시도가 활발히 이루어지고 있다.  
나노 패턴을 이용한 빛 수확기술은 실리콘 태양전지, 고분자 태양전지에서 이미 개발되어 효과를 증명하였지만, 태양전지의 큰 주축인 염료감응형 태양전지에서는 나노입자를 광전극으로 사용하고 이를 패터닝 해야 하기 때문에 어려움이 있었다. 

(그림 1) 나노패턴이 형성된 광전극 제조 방법. (a) 나노스탬프의 전자현미경 사진 및 실제 사진 (b) TiO2 계면 코팅 (c) 산성 TiO2 페이스트를 이용한 TiO2 층 제조. (d) 중성 TiO2 페이스트를 코팅. (e-g) 나노스탬프를 이용한 패터닝 공정.

본 연구에서는 PDMS 탄성체 패턴 스탬프를 이용하여 기존의 광전극 위에 간단한 방법으로 무기산화물 나노입자의 패턴을 효과적으로 제조하였다.
[그림 1] 기존의 광전극 제조에 사용되는 나노입자 코팅액은 입자간의 밀집도를 높이기 위하여 산성 물질이 들어있다. 산성을 띄는 물질은 PDMS 탄성체의 표면을 -OH 작용기로 바꾸게 되고, 이 작용기는 TiO2 나노입자 표면에 존재하는 -OH와 반응하여 결합을 하게 되는데, 패터닝 공정에서 건조 후 나노스탬프를 떼어 내는 공정에서 소수성 성질을 갖는 PDMS가 뜯기어 TiO2 표면에 남게 된다.
이는 광전극 패턴 공정 후 친수성 염료용액을 이용하여 염료를 흡착할 때 친수성 용액이 소수성 TiO2 표면을 통해 들어갈 수 가 없고 염료가 흡착되지 않아 태양전지를 제조할 수 없게 된다.
[그림 2d-e] 반면에 중성을 띄는 TiO2 코팅액은 PDMS 표면과 반응하지 않아 PDMS 잔류물 없이 떼어진다. 따라서 염료가 효과적으로 흡착되게 된다.
[그림 2b-c] 이 후에 전도성 고분자를 투입시켜 중합한 후[그림2 f-h] 최종적으로 요오드가 들어가 있지 않은 고체상 염료감응태양전지를 제조한다.[그림 2a] 

(그림 2) (a) 제조된 태양전지 구조. (b-c) 중성 페이스트로 만든 TiO2 광전극의 염료흡착실험. (d-e) 산성 페이스트로 만든 TiO2 광전극의 염료흡착. (f-h) 광전극의 나노구멍에 전도성 고분자 투입. (i) 대면적 전극 위에 나노패턴 생성 후 바로 찍은 사진. (j) 고온에서 열처리 한 후 만든 광전극. (k-l) 염료가 흡착된 빛 반사특성을 가지는 대면적 광전극.

○ 나노 패턴 및 광학적 성질

본 논문에서는 주기가 600nm 이고 패턴 사이즈가 300nm 인 나노패턴 형성을 목표로 하였으며, 최적 패턴사이즈를 빛 반사 성능을 수식으로 부터 시뮬레이션을 통해 확인하였다.

(그림 3) (a) 산성페이스트로 만든 광전극 표면 전자현미경 사진. (b-c) 산성페이스트로 만들어진 광전극위에 중성 페이스트를 이용하여 만든 나노패턴 단면 및 표면 전자현미경 사진. (d-e) 그림 b-c의 확대 전자현미경 사진. (f) 나노스탬프를 재사용하여 만든 나노패턴 전자현미경 사진. (g-h) 나노스탬프의 원자현미경 사진. (i-j) 나노패턴이 형성된 광전극의 표면 원자현미경 사진.

그림 3과 같이 전자현미경과 원자 현미경을 이용하여 나노스탬프와 패턴이 형성된 나노입자를 확인하였다.
고온에서 열처리 중에 유기물이 타면서 패턴 사이즈가 원래 사이즈에서 조금 줄긴 하였지만, 주기는 600nm로 유지하고 있음을 확인하였으며, 결함 없이 나노 선 패턴이 성공적으로 형성되었음을 확인하였다.
본 연구진은 마이크로부터 수백 나노 크기의 패턴까지 다양한 크기의 패턴과 다양한 모양의 패터닝이 가능하다는 것을 실험을 통해 밝혔다.
또한 사용한 스탬프는 계속 재사용할 수 있다는 것을 확인하였으며[그림 3f], 이를 통해 대량생산 공정에도 적용 가능함을 보여주었다.

(그림 4) (a) 빛의 반사를 이용한 빛 수확기술의 모식도. (b) 나노패턴이 있는 전극과 없는 전극의 반사율 측정. (c) 제조된 염료감응태양전지의 단면 전자현미경 사진. (d) 전도성 고분자의 효과적인 침투를 확인하기 위한 염료감응태양전지의 단면 SEM-EDS 사진 (원소분석). (e) 제조된 태양전지의 전압-전류 그래프. (f) 제조된 태양전지의 양자효율 측정 그래프.


그림 4a는 광전극의 투명한 성질 때문에 광전극에서 모두 흡수되어 사용되지 못하고 나가는 빛이 나노패턴에서 반사되어 다시 광전극으로 들어와 흡수되어 빛이 수확되는 "빛 수확 (light harvesting)" 현상을 보여준다.
그림 4b에서 보는 바와 같이 나노패턴이 형성된 광전극은 가시광선 전 영역에서 기존의 광전극 보다 2배 가까운 빛 반사특성을 보여 기존의 염료감응형 태양전지가 모든 빛을 다 사용하지 못하고 투과시켜 버려지는 빛을 수확할 수 있다는 것을 확인하였다. 또한 전도성 고분자가 메조포러스 기공에 효과적으로 침투된다는 것을 SEM-EDS를 통해 확인할 수 있었다.[그림 4c-d]

○ 태양전지의 효율 및 다양한 응용가능성

패턴이 형성된 태양전지는 패턴이 없는 태양전지보다 전류밀도가 40% 증가하였으며, 전체적으로 태양전지 광전변환효율은 33% 증가하였다.
[그림 4e-f] 나노패턴만을 이용하여 이정도의 효과는 보고된 바는 없다는 사실에서 효과적인 기술임이 입증되었다. 

이 기술은 나노입자를 효과적으로 마이크로사이즈로부터 나노사이즈까지 이르는 패터닝 공정을 제시한 것으로써, 다양한 염료, 전해질, 무기 나노입자, 재료를 사용하는 염료감응형 태양전지뿐만 아니라 하이브리드 태양전지 및 다양한 광전소자에도 응용될 수 있으며, 패턴의 사이즈와 개수를 늘려 대면적화가 가능하고 나노스탬프를 계속적으로 사용될 수 있기 때문에 대량생산 및 모듈화가 가능한 나노패터닝 공정을 제시했다는 점에서 큰 의의가 있다.

 

 용  어  설  명

염료감응형 태양전지 (Dye-Sensitized Solar Cell, DSSC)
염료(색소)를 이용하여 태양 빛을 전기로 바꾸는 태양전지

전도성 고분자 (Conductive Polymer)
전기를 흐를 수 있게 하는 고분자이며, 공액구조 길이와 단분자 구조에 따라 광전특성이 제어되는 가볍고 유연한 전자 소재임. 디스플레이, 투명전극, 태양전지, 발광소자 등에 두루 사용되고 있는 핵심 기능성 고분자.

광전변환 효율 
빛을 전기로 바꾸는 효율로, 높을수록 더 많은 전기를 생산할 수 있음

전도성 고분자 
전기를 흐를 수 있게 하는 고분자로서, 태양전지 개발에 핵심이 되는 기능성 고분자

패터닝(patterning)
일정한 크기와 형태를 갖도록 만드는 작업

빛 수확기술(Light Harvesting)
태양 빛을 흡수하여 전기로 바꿀 때 일정한 면적에서 더 많은 빛을 손실 없이 흡수하고 이용하여 더 많은 전기를 생산하는 태양전지의 효율 증대를 위한 핵심기술

중합(polymerization)
단량체 화학반응으로 2개 이상 결합하여 분자량이 큰 화합물을 생성하는 반응 

단량체(monomer)
고분자화합물을 구성하는 단위가 되는 분자량이 작은 물질

Angewandte Chemie International Ed. 
응용화학 연구 분야에서 최고의 권위를 인정받고 있는 대표과학전문지 ,전 과학 분야에서 상위 1.1% 이내에 랭크되는 학술지로, 융합(Multidisciplinary) 분야에서 4.6%(7위/152개) 이내에 든다. (피인용지수: 13.455)

Advanced Materials 
재료과학 연구분야에서 최고의 권위를 인정받는 학술지로, 화학 (Chemistry)과 융합(Multidisciplinary)분야에서 3.9%(6위/152개) 이내 재료과학(Materials Science)과 융합(Multidisciplinary)분야 2.6%(6위/231개)안에 든다. (피인용지수: 13.877) 

Advanced Functional Materials
재료과학 연구분야에서 최고의 권위를 인정받는 학술지로, 화학 (Chemistry)과 융합(Multidisciplinary)분야에서 6.5%(10위/152개) 이내  재료과학(Materials Science)과 융합(Multidisciplinary) 분야 4.3%(10위/231개)안에 든다. (피인용지수: 10.179)

 
<광전극 제조 프로세스 동영상>

1. 동영상 #1: 나노스탬프를 이용한 나노패터닝
링크:http://web.yonsei.ac.kr/eunkim/Supplementary.htm 
다운로드:http://webhard.yonsei.ac.kr/pub.php?get=YXZ0aTYrWVlQV3FBRlJ5WHd2VWtXQT09.avi

2. 동영상 #2: 결함 없는 탈착공정
링크 :http://web.yonsei.ac.kr/eunkim/Supplementary.htm
다운로드:http://webhard.yonsei.ac.kr/pub.php?get=eWQ5clM2YUlsTzVrTUhjT0JSTXgxdz09.avi

3. 동영상 #3: 나노패턴이 형성된 대면적 광전극
링크:http://web.yonsei.ac.kr/eunkim/Supplementary.htm
다운로드:http://webhard.yonsei.ac.kr/pub.php?get=S3NuMlBVN21weDlLb0FPSUEvOUVEdz09.avi

 

<김은경 교수>

1. 인적사항

 ○ 소 속 : 연세대학교 화공생명공학과                   
 ○ home-page: http://web.yonsei.ac.kr/eunkim    http://web.yonsei.ac.kr/APCPI

2. 학력
 ○ 1978 - 1982  연세대학교 화학과 학사    
 ○ 1982 - 1984  서울대학교 화학과 석사   
 ○ 1985 - 1990  미국 University of Houston, 화학과 박사

3. 경력사항
 ○ 1990 - 1992  University of Houston, 화학과, Visiting Assistant Professor
 ○ 1992 - 2004  한국화학연구원, 화학소재부, 책임연구원
 ○ 2004 - 현재  연세대학교 화공생명공학과 교수   
 ○ 2004 - 현재  Adjunct Principal Research Scientist, KRICT
 ○ 2006, 2007, 2009  Invited Professor, Ecole Normale Superieure de Cachan,   Paris-6 Univ., Rennes Univ., France 
 ○ 2006 - 2010 나노기술을 이용한 바이오 융합사업 혁신클러스터, 센터장
 ○ 2007 - 현재  ERC (패턴집적형 능동폴리머 소재연구센터) 센터장 
 ○ 2012 Invited Professor, Ecole Normale Superieure de Lyon, France

4. 전문 분야 정보
 ○ 교육과학기술부?한국연구재단 선도연구센터(ERC) 센터장 (2007 - 현재)
 ○ 나노기술을 이용한 바이오 융합산업 혁신 클러스터, 센터장, (2006 - 2011)
 ○ SCI 논문 136편 및 특허 100 건 이상

5. 수상 경력
 ○ 2001 제1회 올해의 여성 과학기술자상, 과학기술부 
 ○ 2006 일본화상학회 회장특상
 ○ 2009 제4회 아모레퍼시픽(AMOREPACIFIC) 여성과학자상 대상 외 다수 

6. 주요 논문업적
- 유기합성을 기반으로 한 공액구조의 기능성고분자 합성 및 응용에 대한 연구를 지향하며, 특히 전도성고분자, 형광고분자를 이용한 디스플레이, 센서, 태양전지, 줄기세포 연구 등의 다양한 응용분야에 폭넓은 연구를 진행하고 있으며, 패터닝 공정을 이용한 광전기적 특성을 제어하는 연구를 활발히 진행하고 있다. Angewandte ChemieInt. Ed., Advanced Materials, Advanced Functional Materials, ACS nano, Chemical Communications, Journal of Materials Chemistry, Macromolecules의 최상급 저널을 포함하여 136편 이상의 SCI 논문을 발표. 국내외 특허 출원 및 등록 100여건 이상.

<김종학 교수>

1. 인적사항
 ○ 소 속 : 연세대학교 화공생명공학과             
 ○ home-page: http://web.yonsei.ac.kr/EML

2. 학력
 ○ 1998   연세대학교 화학공학과 공학사 
 ○ 2000   연세대학교 화학공학과 공학석사
 ○ 2003   연세대학교 화학공학과 공학박사
 ○ 2005   MIT 재료공학과 박사후 연구원 

3. 경력사항 
 ○ 연세대학교 화학공학과 공학사 (1998)
 ○ 연세대학교 화학공학과 공학석사 (2000)
 ○ 연세대학교 화학공학과 공학박사 (2003)   
 ○ MIT 재료공학과 박사후 연구원 (2005)
 ○ 연세대학교 화공생명공학과 조교수, 부교수 (2005-현재)

4. 전문 분야 정보
 ○ 2006 - 현재: 한국 막학회 학술이사, 편집이사, 기획이사
 ○ 2007 - 현재: 한국 화학공학회 NICE지 편집위원
 ○ 2011 - 현재: 한국 광과학회 이사
 ○ 2012 - 현재: 한국 청정기술학회 이사
 ○ 2007년 연세대 우수강의 교수상 
 ○ 2009년, 2011년 연세대 우수업적 교수상 
 ○ 2011년 한국막학회 논문상 수상

 5. 주요 논문업적
- 신에너지 전기화학 소재 분야와 (태양전지, 연료전지, 리튬전지 등), 기능성 고분자, 유무기 나노소재, 나노 복합체, 고분자 전해질, 나노입자 그리고 나노 분리막 분야의 연구를 지향하며, Angewandte ChemieInt. Ed., Advanced Materials, Advanced Functional Materials, Chemical Communications, Journal of Materials Chemistry, Journal of Physical Chemistry, Macromolecules, Journal of Membrane Science 등 총 160여 편 게재. 국내외 특허 출원 및 등록 50여건. 

 

반응형
반응형

■ 대장균은 생명현상을 이해하기 위한 대표적인 모델로, 산업적으로도 매우 중요한 미생물입니다.

대장균 연구를 통해 의약용 단백질 등 다양한 유용 재조합단백질 생산과 석유화학을 이용해 만든 각종 화학물질을 대체하는 친환경 바이오화학제품을 개발합니다.

또 바이오에탄올 등 저탄소 신재생연료를 생산할 수 있기 때문에 대장균을 '작은 세포공장(cell factory)'이라 부르기도 합니다.

■ 최근 석유자원의 고갈과 석유화학제품의 대규모 사용에 따른 지구 환경오염 및 온난화의 문제가 심각해지면서  친환경 녹색기술 개발은 그 어느 때보다 중요합니다.

에너지원으로 이용되는 식물과 미생물 등 바이오매스를 활용해 바이오에너지와 바이오화학제품을 생산하는 고효율 맞춤형 미생물 바이오공장을 개발하기 위해서는 생체 네트워크에 대한 시스템 수준의 이해가 선행되어야 합니다.

지금까지는 대장균을 비롯한 세포공장의 유전자 정보는 물론 대사와 생리 및 기능에 대한 종합적인 정보가 부족해 무작위로 하나씩 맞춰보는 단순 시행착오 방식(trial and error)으로 연구개발이 진행됐습니다.

그러나 만일 모든 오믹스 정보를 확보한다면 산업미생물의 생체 네트워크를 이해할 수 있을 뿐만 아니라 맞춤형 유전체 설계가 가능해 각종 유용단백질, 바이오화학제품과 바이오에너지 생산에  가장 적합하고 효율적인 미생물을 개발할 수 있게 됩니다.

■ 연세대 김지현 교수, 한국생명공학연구원 윤성호 박사, KAIST 이상엽 교수 공동 연구팀이 '대장균'의 생명현상과 관련된 중요한 생체 정보, 즉 오믹스(Omics)를 규명했습니다.

오믹스 특정 세포 속에 들어 있는 생리현상과 관련된 대사에 대해 전사체와 단백질체, 형질체 등 대량의 정보를 통합적으로 분석하여 생명현상을 밝히는 학문입니다.

연구팀은 가장 많이 활용되는 대장균 B와 K-12의 각종 오믹스 정보를 확보하고, 인실리코 분석 및 검증 등 컴퓨터 모델링을 이용해 시스템 수준에서 대장균의 대사 네트워크를 재구성하고 대장균 2종을 비교 분석하는데 성공했습니다.

대장균 B 균주에 대해 유전자 암호가 mRNA로 전사되고 이로부터 단백질이 만들어져 여러 대사회로를 통해 형질로 나타나는 전 과정의 다중 생체 정보를 확보하고, 시스템 수준에서 통합적으로 분석하여 컴퓨터 시뮬레이션을 통해 생체 네트워크를 재구성하여 확인한 것은 이번이 처음입니다.

연구결과  대장균 B 균주가 K-12에 비해 아미노산 생합성 능력이 뛰어나고 단백질분해효소가 적으며 편모가 없어, 인슐린, 섬유소분해효소(cellulase)와 같은 외래 재조합 단백질을 생산하는데 매우 적합한 특성을 가지고 있다는 사실을 밝혀냈습니다.

또한 대장균 B 균주는 단백질 분비 시스템을 2개나 보유하고 있고, 단백질 분비에 유리한 세포벽과 세포외막을 구성하고 있어 생산된 단백질을 세포 밖으로 배출하는데 유리하다는 것을 확인했습니다.

반면 K-12 균주는 고온에 노출되면 이에 대응하는 유전자를 더 많이 발현하고, 몇 가지 스트레스 조건에 덜 민감했습니다.

연구팀은 이번 연구에 활용된 대장균 B와 K-12의 유전자들이 어떻게 상호작용하는지를 분석하는 마이크로어레이 DNA칩을 제작해 국내외 연구자들에게 무상으로 제공했습니다.

이번 연구로 바이오의약, 바이오화학, 바이오에너지 등 친환경 녹색 바이오산업을 위한 기술 개발에 청신호가 켜질 전망입니다.

연구팀은 앞서 지난 2009년 다중 오믹스 정보를 이용한 시스템 수준의 분석 연구를 통해 대장균 유전체 지도 정보와 유전체 진화 양상을 국제 학술지에 게재한 바 있습니다.

이번 연구결과는  'Genome Biology(IF = 9.036)'에 온라인으로(6월 29일) 게시되었습니다.
(논문명 : Comparative multi-omics systems analysis of Escherichia coli strains B and K-12)

대장균 B와 K-12 균주의 전사체, 단백체 및 형질체 비교

대장균 B와 K-12 균주의 각종 오믹스 정보를 시스템 수준에서 통합적으로 분석하였으며 그 결과, B 균주가 우수한 아미노산 생합성 능력과 적은 수의 단백질분해효소, 그리고 편모 부재 등 재조합 단백질을 생산하는데 적합한 특성을 가지고 있다는 것과 단백질을 세포 밖으로 분비하는 시스템을 2개나 보유하고 있고 단백질 분비에 유리한 세포벽과 세포외막 구성을 가지고 있다는 것을 밝힘. 이에 비해 K-12 균주는 고온에 노출되었을 때 이에 대응하는 유전자를 더 많이 발현하고 몇몇 스트레스 조건에 덜 민감하였음

 

<연 구  개 요>

Comparative multi-omics systems analysis of Escherichia coli strains B and K-12
Sung Ho Yoon, Mee-Jung Han, Haeyoung Jeong, Choong Hoon Lee, Xiao-Xia Xia, Dae-Hee Lee, Ji Hoon Shim, Sang Yup Lee, Tae Kwang Oh and Jihyun F Kim*
*Corresponding author: Jihyun F. Kim jfk1@yonsei.ac.kr
http://genomebiology.com/2012/13/5/R37

1. 연구 배경
대장균(Escherichia coli)은 가장 집중적으로 연구된 모델 미생물의 하나로서 과학적 연구뿐만 아니라 산업적 응용을 위해 널리 사용되고 있다. 가장 많이 사용되는 대장균은 K-12와 B로서 유전적, 생화학적 연구와 더불어 바이러스(박테리오파지), 제한효소, 돌연변이, 진화 연구에 활용되어왔다.
김지현 박사 연구팀에서는 지난 2009년 장기 실험진화(experimental evolution) 모델인 REL606 균주와 재조합 단백질, 바이오연료, 바이오소재 등을 대량 생산하는데 쓰이는 세포공장(cell factory)인 BL21(DE3)의 유전체 서열을 해독하여 'Journal of Molecular Biology'에 표지논문으로 발표하였고, 장기 실험진화에서의 유전체 진화 양상을 규명하여 'Nature'지에 아티클 논문으로 게재하였다.
유전형(genotype)과 표현형(phenotype)의 관계를 밝히는 것은 생명체를 시스템 수준에서 이해하는데 필수적이다. 하지만 유전체 서열 비교만으로는 유전형과 표현형 사이의 관계에 대해 제한적인 정보밖에 제공할 수 없다. 연구팀은 이 논문을 통해 컴퓨터 모델링 기법과 접목한 다중 오믹스 데이터의 비교 분석이 유전체 서열 정보가 해독된 생명체의 형질적 특징을 파악하는 새로운 접근 방식임을 전거하였다.

2. 연구 결과
본 연구에서는 대장균(E. coli) B와 K-12 균주의 차이점을 알아내기 위해 유전체(genome), 전사체(transcriptome), 단백체(proteome), 형질체(phenome)와 같은 시스템 전체 수준에서 여러 측면으로 측정한 지표들의 총체적인 정보를 종합하여 분석한 결과를 정리하였다. 또한 대장균 B 균주의 대사 네트워크(metabolic network)를 유전체 수준에서 재구성하였고, K-12 균주와 비교할 때 B 균주에 특징적인 형질들의 유전적 근거를 in solico complementation test를 통해 동정하였다.
이 시스템 분석(systems analysis)을 통해 밝혀낸 K-12 균주와의 차이점은 B 균주가 우수한 아미노산 생합성 능력과 적은 수의 단백질분해효소, 그리고 편모 부재 등 재조합 단백질을 생산하는데 적합한 특성을 가지고 있다는 것과 단백질 분비 시스템을 두 개나 보유하고 있고 단백질 분비에 유리한 세포벽과 세포외막 구성을 가지고 있는 등 생산된 단백질을 세포 밖으로 배출하는데 유리하다는 것이다. 이에 반해 K-12 균주는 고온에 노출되었을 때 이에 대응하는 유전자를 더 많이 발현하고 몇몇 스트레스 조건에 덜 민감하였다.

3. 연구 결론
초고속 대용량 분석 기술의 발전에도 불구하고, 성격이 다른 여러 오믹스 데이터 세트에서 의미 있는 생물학적 지식을 도출하는 것은 여전히 풀기 힘든 과제이다. 이 연구에서는 다중 오믹스 정보를 통합하고 총체적으로 분석하여 대장균 B와 K-12 균주 사이의 세포 대사와 생리상의 차이점을 밝혔다.
이러한 통합적 시스템 분석 방식은 고해상도의 시스템 전체 수준 정보 및 분석 능력과 더불어 대장균 B와 K-12와 같이 매우 유사한 균주가 어떻게 뚜렷이 구별되는 형질을 보여주는지에 대한 통찰을 가능케 한다. 따라서 생명체의 생리와 대사에 대한 체계적인 이해는 이들의 배양 조건과 재조합 균주를 디자인하는데 필수적이다. 

유전체, 전사체, 단백체 정보를 통합 분석하여 도출한 B 균주의 형질

4. 기타사항
□ 연세대는 생명현상을 본질적으로 이해하기 위해서는 분자생물학, 생화학, 생명공학 등이 함께 어우러지고 나아가 NT, IT, MT 등과 융합된 시스템생물학 연구와 교육이 필요하다는 인식 아래 21세기 생명과학 시대를 주도할 우수한 인재를 양성하기 위해 지난 2008년 이과대학 생물학과와 생화학과 그리고 공과대학 생명공학과를 통합하여 생명과학기술과 의생명 분야가 융합된 생명시스템대학(http://bio.yonsei.ac.kr/)을 설립하였다.
□ 우리나라 생명공학의 메카로도 불리는 생명연(http://www.kribb.re.kr/)은 국내 유일의 바이오전문 정부출연 연구기관으로서 생명현상의 이해와 더불어 보건의료, 농업생명, 바이오소재, 환경에너지 분야의 연구개발을 통해 국민보건 향상 및 바이오산업 발전에 기여하고 있다. 또한 생명연은 국내 최고의 유전체 및 생물정보 연구 전문기관으로서 BT와 IT, NT, CT 등 융합기술 연구개발에도 선도적인 역할을 수행하고 있다.
□ 연구팀 홈페이지
 ○ 미생물유전체정보기지(Genome Encyclopedia of Microbes; GEM) https://www.gem.re.kr
 ○ 시스템생명공학연구그룹(Systems Biotechnology Research Group; SyBiRG) http:// sybirg.kribb.re.kr

 


 용  어  설  명

오믹스(omics)
세포 또는 개체 내에서 발현되는 RNA, 단백질 등 생명현상과 관련된 중요한 물질에 대하여 대사체, 단백체 등 개개의 성격이 아닌 각 통합적으로 분석하여 생명현상을 밝히기 위한 학문
 * 대사체 : 생체 내 특정한 대사작용에 의하여 생성되는 대사물질 전체
 * 단백체 : 세포 또는 개체 내에서 발현되는 단백질의 총합

인실리코(in silico)
컴퓨터 모의실험 혹은 가상실험을 이용하여 생명현상을 연구하거나 설계하는 기술. 미생물의 경우 사이버 생명체인 가상세포 실험을 통하여 연구실에서 수행하는 실험과 동일한 결과를 얻을 수 있음

바이오리파이너리(biorefinery)
식물, 미생물 등 태양에너지를 받는 생명체로부터 생물공학적, 화학적 기술을 이용하여 석유기반제품을 대체할 수 있는 바이오 기반의 화학제품, 바이오연료 등의 물질을 생산하는 기술

시스템생물학(systems biology) 및 합성생물학(synthetic biology)
세포, 조직, 신호전달체계 등 생물학적 시스템들 간의 관계 및 상호 작용을 연구하고 이러한 정보의 통합을 통하여 생물학적 시스템의 작용을 이해하고자 하는 학문 분야를 일컬어 시스템생물학이라고 하며, 기존에 자연 상태에서 존재하는 생물학적 시스템을 새로운 생물학적 시스템을 통하여 설계?제작하거나 인공생명체를 만드는 특정 목적으로 재설계하기 위하여 사용되는 과학기술을 합성생물학이라고 함

mRNA(messenger RNA)
DNA의 유전정보를 리보솜에 전달하는 RNA

 

<논문 원문 보기> 



<김지현 교수> 

1. 인적사항
 ○ 성 명 : 김지현 (45세) 
 ○ 소 속 : 연세대학교 생명시스템대학 시스템생물학과

2. 학력
 ○ 1985~1989  서울대학교 농생물학과 식물병리학전공 학사
 ○ 1989~1991  서울대학교 농생물학과 식물병리학전공 석사
 ○ 1993~1997  Mol. Plant Pathol. Program, Cornell Univ. 박사

3. 주요경력
 ○ 1992~1997  농촌진흥청 경제작물과 농업연구사
 ○ 1993~1996  교육부 국비유학 장학생 (1991 선발)
 ○ 1997~2000  Postdoc. Assoc., Dept. Plant Pathol., Cornell Univ.
 ○ 2000~2012  한국생명공학연구원(KRIBB) 선임연구원, 책임연구원, 센터장
 ○ 2004~2012  과학기술연합대학원대학교(UST) 부교수(겸임), 교수(겸임)
 ○ 2012~현재  연세대학교 생명시스템대학 시스템생물학과 부교수

4. 수상경력 및 주요업적
 ○ UST 2011 우수연구지도상, 2009 우수강의상; 2009 한국생물정보시스템생물학회 온빛상
 ○ 2011 교과부장관상; 2010 KRIBB상 대상; 2009 기초기술연구회 다빈치상 등
 ○ Nature 아티클 논문, Faculty of 1000에서 FFa 19(최상위인 Exceptional)로 평가; 포항공대 생물학연구정보센터 "한국을 빛내는 사람들" 상위피인용논문 선정
 ○ 연구 및 리뷰 논문 70여 편; 국내외 특허 및 프로그램 등록 30여 건 등

<윤성호 박사>

1. 인적사항

 ○ 성 명 : 윤성호 (40세) 
 ○ 소 속 : 한국생명공학연구원  바이오합성연구센터

2. 학력
 ○ 1996  KAIST 화학공학과 학사
 ○ 1998  KAIST 화학공학과 석사
 ○ 2002  KAIST 생명화학공학과 박사

3. 주요경력
 ○ 2003~현재  한국생명공학연구원(KRIBB) 선임연구원
 ○ 2006~2010  과학기술연합대학원대학교(UST) 강사
 ○ 2009~2011  Institute for Systems Biology 박사후연구원 (동기간 KRIBB 무급휴직)

4. 주요업적
Yoon SH, Han MJ, Jeong H, Lee CH, Xia XX, Lee DH, Shim JH, Lee SY, Oh TK, Kim JF. 2012. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol. 13:R37.
Yoon SH, Reiss DJ, Bare JC, Tenenbaum D, Pan M, Slagel J, Moritz RL, Lim S, Hackett M, Menon AL, Adams MW, Barnebey A, Yannone SM, Leigh JA, Baliga NS. 2011. Parallel evolution of transcriptome architecture during genome reorganization. Genome Res. 21:1892-1904.
Hong JW, Kim JF, Oh TK, Yoon SH. 2011. Microfluidic system for biological, chemical, and biochemical assessments. United States Patent 7,906,074.
Barrick JE, Yu D-S, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF. 2009. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243-1247.
Nam D, Yoon SH, Kim JF. 2007. Ensemble learning of genetic networks from time-series expression data. Bioinformatics 23:3225-3231.
Yoon SH, Park YK, Lee S, Choi D, Oh TK, Hur C-G, Kim JF. 2007. Towards pathogenomics: a web-based resource for pathogenicity islands. Nucleic Acids Res. 35:D395-D400.
Yoon SH, Hur C-G, Kang HY, Kim YH, Oh TK, Kim JF. 2005. A computational approach for identifying pathogenicity islands in prokaryotic genomes. BMC Bioinformatics 6:184.

 



 


반응형
반응형

대칭이 깨진 금속 나노구조는 투명망토나 군사적으로 중요한 스텔스 기능에 꼭 필요한 메타물질의 소재가 되고 , 우수한 광학특성을 이용한 질병의 조기진단과 빛을 이용한 암세포 치료 등 의학 분야에서도 활용될 수 있는 중요한 물질입니다.

3차원의 대칭이 깨진 금속 나노입자는 입자 주변의 근접한 장을 강화하거나 빛의 산란효과와 같은 광학적 성질을 지녀 대칭적 나노입자가 가질 수 없는 유용한 광학적 성질을 지니는 것으로 알려져 있습니다.

특히 이 특별한 광학적 성질은 바이오의학 분야뿐만 아니라 메타물질의 소재로 활용될 수 있어 응용가치가 무궁무진합니다.

용액 내에서 금속 나노입자를 합성할 때 필연적으로 대칭점이 생기는 것을 보여주는 모식도. 왼쪽 작은 핵이 합성과정에 생성이 되고 그 후에 어떤 모양으로 분화하든지 초기의 작은 핵이 전체구조의 대칭점으로 작용하게 된다.

그런데 지금까지 대칭이 깨진 금속 나노구조를 합성하기 위한 방법은 평평한 기판 위에서 복잡한 식각공정을 거치는 등 매우 제한적이었습니다.

또한 만들어진 입자 혹은 나노구조의 수가 매우 적어 실용화할 수 없기 때문에 기본적인 광학특성 등을 연구하는 데에만 주로 사용되었습니다.

따라서 2차원 식각공정과 같이 평면 위에서 입자를 만들면 얻을 수 있는 입자의 수가 적기 때문에 입자를 대량생산하기 위해서는 반드시 3차원 용액 속에서 합성해야 합니다.

그러나 용액에서 합성해도 합성할 때 생겨나는 작은 핵이 최종 나노입자의 대칭점으로 작용해 대칭점이 없는 비대칭 금속 나노구조를 자연적으로 만들 수 없는 문제점이 발생하게 됩니다.

서강대 강태욱 교수팀이 유럽 전통요리인 '퐁듀(fondue)'를 먹는 방법에서 착안해 용액 속에서 대칭이 깨진 비대칭 금속 나노입자를 대량 합성하는데 성공했습니다.

이번 연구는 질병의 진단이나 치료 등 의학 분야나 몸을 가릴 수 있는 투명망토, 상대방의 레이더와 적외선 탐지기에 맞서는 군사적 스텔스 기술 등에 활용될 수 있어 응용성이 매우 큽니다.

강 교수팀은 먼저 용액 속에서 혼성 나노입자를 합성한 후, 금만 선택적으로 과성장시켜 대칭이 깨진 금속 나노입자를 대량 합성하는데 성공했습니다.

수용액 상에서 비대칭 금 나노입자 합성의 모식도. 금 나노입자에 폴리스타이렌나노입자를 붙인 후에 금을 다시 성장시키는 방법임.

강 교수팀은 퐁듀가 한쪽 면에 치즈 등을 묻혀서 먹는 방식인 점에 착안하여, 먼저 용액 속에서 금과 폴리스타이렌 나노입자를 각각 하나씩 한 쌍으로 붙여 혼성 나노입자를 합성한 후, 금만 과성장시킨 용액을 찍어서 금속 나노입자의 대칭을 깨뜨렸습니다.

특히 강 교수팀이 개발한 합성법은 금 이온의 양과 환원제의 종류 및 나노입자의 크기 등을 조절하여 간단하게 다양한 형태의 비대칭 금속 나노입자를 자유자재로 합성할 수 있습니다.

또 다른 조합의 금속 나노입자, 예를들어 금과 실리카, 은과 산화철, 금과 산화철 등에도 적용하여 각종 다기능 금속 나노입자를 만들 수 있고, 용액 속에서 합성하기 때문에 대량생산할 수도 있습니다.

이번 연구성과는 지금까지 과학자들이 풀지 못했던 비대칭 금속 나노입자 대량 합성에 성공한 것으로, 향후 몸을 가릴 수 있는 투명망토나 군사적으로 중요한 스텔스 기능을 갖는 물질에 응용하거나, 질병 진단과 치료에도 적극 활용될 전망입니다.

금(까만색)-폴리스타일렌 혼성 나노입자에 금 용액을 이용하여 금 입자를 성장시키면 조건에 따라 다양한 종류의 비대칭 금 나노입자를 만들 수 있다. 가운데 그림은 ‘퐁듀’처럼 혼성입자를 한쪽면만 금을 묻혀 비대칭입자를 만든다는 모식도임.

이번 연구결과는 나노과학 및 기술 분야의 권위 있는 학술지인 'Nano Letters'지(IF=12.219)에 온라인(4월 16일)에 게재되었습니다.
(논문명 : Three-dimensional Reduced-symmetry of Colloidal Plasmonic Nanoparticles)


 

 <연 구 개 요>

3차원 적으로 대칭성이 깨진 금속나노입자는 미시적으로는 입자 주변의 근접 장 (near-field)의 강화 효과나 거시적으로 빛의 산란효과와 같은 광학적 성질 측면에서 대칭적 나노입자가 가질 수 없는 유용한 광학적 성질을 지닌다고 알려져 있다.
특히 이 모양의 특별한 광학적 성질은 바이오의학 분야와 아울러 메타물질 (metamaterial)과 같은 분야 큰 응용가능성을 지니고 있다.   
기존에는 이러한 비대칭 모양의 금속나노입자를 합성하기위해서 평면 기판위에 구형태의 나노 입자 위에, 금속 증착시키는 방법을 이용하거나 속이 빈 금속 나노구체를 물리적으로 ion milling과 같은 기술을 이용하여 식각함으로써 만들 수 있다고 알려져 있다.
하지만 이러한 방법을 이용하여 비대칭 나노입자를 합성할 시에는 공정이 복잡 할 뿐 만 아니라 입자의 대량생산이 어려우며, 또한 합성된 나노입자를 바이오의학 분야에서 생체 내 투여물질로 사용할 수 없다는 한계점이 있었다.
반면, 이러한 평면 위에서 합성하는 방법의 단점을 극복할 수 있는 대안으로 용액 상에서 합성하는 방법을 들 수 있다. 하지만 비록 용액 상에서 다양한 모양의 나노입자를 합성하는 법이 많이 연구되어왔지만 용액 상에서 금속나노입자의 합성은 금속 결정의 seed를 성장시킴으로써 원하는 모양의 금속 나노입자를 합성하는 방법에 기반 하기 때문에 현재까지는 대칭적 나노입자만 합성되어왔다. 
이러한 기존의 한계를 극복하고 강태욱 교수 연구팀 주도 하의 공동연구팀은 유럽 음식인 '퐁듀(fondue)'에 착안하여 용액 상에서 금과, 폴리스타이렌 (Poly-styrene) 나노 입자가 하나 씩 한 쌍을 이루는 혼성 나노입자를 합성 한 후, 금만 선택적으로 성장시킴으로써 용액 상에서도 비대칭 금 나노입자를 합성하는데 성공하였다.

합성 시에 첨가하는 금 이온의 양과 환원제의 종류, 그리고 폴리스타이렌 나노입자의 크기를 조절함으로써 다양한 형태의 비대칭 금속 나노입자를 합성할 수 있었다. 
이번 연구팀이 제안한 합성 방법은 기존에 있던 다른 합성 방법보다 간편할 뿐 만 아니라 입자의 용액 상에서 합성이 이루어지기 때문에 비대칭 금속 나노 입자를 대량생산할 수 있고, 이를 통해 군사적으로 중요한 스텔스기능이 필요한 분야나 질병진단 및 치료 등의 바이오의학 분야에도 활발하게 응용될 것으로 기대된다.  


 용  어  설  명


메타물질(Metamaterials)
기존의 소재가 갖고 있는 전자기 특성과 달리 유전율, 투자율, 도전율이 음(-)의 값을 갖는 소재로 기존의 소재로는 불가능했던 주파수 독립적인 파장, 위상, 굴절률 제어가 가능한 차세대 소재로 정보통신기기, 전자제품 등의 초소형화, 고성능화 등의 차세대 원천기술의 구현이 가능한 소재

메타물질(metamaterials) :
기존의 소재로는 불가능한 특징을 지닌 차세대 소재로, 정보통신기기, 전자제품 등의 초소형화, 고성능화 등 차세대 원천기술 구현이 가능한 소재

폴리스타이렌 (Poly-styrene)
열가소성 플라스틱의 하나로 가볍고, 맛과 냄새가 없다. 생활용품·장난감·전기절연체·라디오와 텔레비전 케이스, 포장재에 사용한다.

식각공정(에칭, etching) :
접촉되는 부분을 화학적으로 녹여 제거하는 공정으로, 에칭 후에는 표면이 비교적 깨끗해짐

Nano Letters 誌
재료, 화학, 공학 등의 융합 영역의 학문분야에서 나노기술 관련 논문들을 출판하는 세계적으로 권위 있는 학술지. 피인용 지수(Impact Factor)가 2011년 기준 12.219로, 전 과학 분야에서 상위 5% 이내에 랭크되는 학술지이며, 2001년 1월부터 발간되었다.

<강태욱 교수>

1. 인적사항
 ○ 소 속 : 서강대학교 화공생명공학부
 
2. 학력
  1994 - 2001    서울대학교 화학공학과 학사
  2001 - 2006    서울대학교 화학공학과 박사
  
3. 경력사항
  2006 - 2008    University of California at Berkeley 박사후연구원
  2008 - 현재    서강대학교 화공생명공학부 부교수


그림 2. 수용액 상에서 비대칭 금 나노입자 합성의 모식도. 금 나노입자에 폴리스타이렌나노입자를 붙인 후에 금을 다시 성장시키는 방법임.
그림 1. 용액 내에서 금속 나노입자를 합성할 때 필연적으로 대칭점이 생기는 것을 보여주는 모식도. 왼쪽 작은 핵이 합성과정에 생성이 되고 그 후에 어떤 모양으로 분화하든지 초기의 작은 핵이 전체구조의 대칭점으로 작용하게 된다.


그림 3. 본 연구의 주요 연구 결과 그림.

[그림 설명] 금(까만색)-폴리스타일렌 혼성 나노입자에 금 용액을 이용하여 금 입자를 성장시키면 조건에 따라 다양한 종류의 비대칭 금 나노입자를 만들 수 있다. 가운데 그림은 '퐁듀'처럼 혼성입자를 한쪽면만 금을 묻혀 비대칭입자를 만든다는 모식도임.


[사진 설명] 강태욱 교수 연구팀의 이치원 석사과정생(왼쪽)과 신용희 석사과정생(오른쪽)이 비대칭 금속나노입자를 합성하고 있다.

반응형
반응형

대장암은 세계적으로 가장 많이 발병하는 암 중 하나로, 우리나라도 대장암 발병률이 세계 4위, 아시아 1위로 매우 높습니다.

대장암의 주요 사망원인은 암세포의 간 전이로, 대장암 환자 10명 중 2~7명에서 간전이가 발생합니다.

암이 간으로 전이되면 수술이나 화학적 항암요법 등의 치료가 매우 제한적이고, 치료되었다 해도 재발되기 쉽기 때문에 대장암 환자의 간 전이를 근본적으로 억제하는 것은 매우 시급한 사항입니다.

지금까지는 암 표지인자 중 하나인 암태아성항원(CEA)이 과도하게 발현되면 대장암 세포의 간전이를 촉진하는 것으로 알려졌습니다.

그러나 CEA가 어떻게 간전이에 관여하는지 그 원리는 명확히 규명되지 못했고, CEA를 표적으로 한 효과적인 간전이 억제제도 없는 상황입니다.

- CEA 표적 핵산 앱타머에 의한 대장암의 간전이 억제화 기전 -

대장암 세포로부터 발현되는 CEA는 Kupffer 세포 표면의 CEA 수용체인 hnRNP M4와 결합하여 여러 싸이토카인의 분비를 유도, 간조직 내 혈관내피세포에 염증반응을 유발하고 다양한 세포접합 단백질 발현을 증가시켜 암전이 과정이 촉진된다. 또한 CEA는 대장암 세포 표면의 DR5와 직접적으로 결합함으로써, 대장암 세포의 anoikis 과정을 저해하여 혈액 상에 돌아다니는 대장암 세포의 생존률을 증가, 암세포가 전이화 될 수 있는 세포로의 전환을 유도한다.
 본 연구로부터 개발한 핵산 앱타머는 CEA의 'PELPK' 부위와 결합하여 CEA의 기능을 blocking 함으로써 CEA에 의한 암전이 과정의 개시단계를 저해하고, 암세포의 전이화되는 환경을 원천적으로 봉쇄함으로써 효과적으로 암전이를 억제한다. 

단국대 이성욱 교수팀이 대장암 환자의 주요 사망원인인 암세포의 간 전이를 효과적으로 해결할 수 있는 새로운 물질 '핵산 앱타머'를 개발했습니다.

핵산 앱타머는 새로운 개념의 생고분자 물질로, 항체와 같이 표적분자에 높은 친화력과 특이성을 갖고 결합할 수 있는 단선으로 구성된 핵산입니다.

이성욱 교수팀은 CEA의 특정부위(N 말단 부위의 PELPK 아미노산 서열)가 대장암의 간 전이에 중요한 역할을 하는 것에 주목하고 이 부위에 특이적으로 결합하는 핵산 앱타머(aptamer)를 개발, 쥐 실험을 통해 대장암 세포가 간으로 전이되는 첫 단계에서 효과적으로 억제할 수 있음을 규명했습니다.

또 이 앱타머가 대장암 세포의 생존력에 관여하는 CEA와 세포사멸 수용체간의 결합을 방해하여 효과적으로 대장암세포의 사멸을 유도한다는 사실을 밝혔습니다.

개발된 앱타머는 CEA 단백질뿐만 아니라 CEA 발현 대장암 세포표면에 특이하게 결합하는 것을 확인함으로써, 앱타머를 활용해 대장암 세포의 간전이를 진단 추적하며 동시에 치료할 수 있는 가능성도 제시했습니다.

이 교수팀이 발굴한 핵산 앱타머는 저분자 화학약품과 같이 화학적으로 균일하게 대량 합성할 수 있고, 여러 목적에 맞게 변형할 수 있으며, 염증유발이나 독성도 거의 없습니다.

특히 암조직에 쉽게 침투하여 기존 의약품의 한계를 극복할 수 있는 새로운 차세대 의약제제로 평가 받고 있습니다. 

이번 연구성과는 CEA의 특정부위가 대장암의 간전이를 촉진하는 주요인자임을 규명하고, 이 CEA 특정부위를 표적으로 하는 핵산앱타머 개발을 통해 대장암 세포가 간으로 전이되는 과정을 원천봉쇄하여 이에 따른 사망률을 낮출 수 있는 계기가 될 전망입니다.

이번 연구는 단국대 이성욱 교수가 주도하고, 이영주 박사, 한승렬 박사과정생, 김남연 연구원과  아산병원 이수한 박사, 동아의대 정진숙 교수 등이 참여했습니다.

연구결과는 소화기학 분야의 권위 있는 학술지인 '소화기병학(Gastroenterology)'지 7월 1일자에 게재되었습니다.
(논문명: An RNA aptamer that binds carcinoembryonic antigen inhibits hepatic metastasis of colon cancer cells in mice)

<연 구 개 요>

An RNA aptamer that binds carcinoembryonic antigen inhibits hepatic metastasis of colon cancer cells in mice
Lee, Y.J., Han, S.R., Kim, N.Y., Lee, S.H., Jeong, J.S., and Lee, S.W. 
(Gastroenterology 2012; 143: 155-165 - 2012. 7. 1 출판)

○ 암태아성 항원과 대장암의 간전이
 암태아성 항원 (Carcinoembryonic antigen, CEA, CEACAM5, 또는 CD66e)은 약 180-200 kD의 분자량을 가진 당단백질로서 GPI를 통해 세포 표면에 부착되거나 또는 phospho-inositol 특이적인 phospholipases C/D에 의해 탈착되어 세포 밖으로 분비된다. 대장암세포에서의 CEA 과발현은 암세포간의 이동, 세포접합 및 침윤과정과 간으로의 암전이 촉진과 연관되어 있다.
 특히 CEA의 N 말단 부위의 N과 A1 도메인 사이에 존재하는 'PELPK' 아미노산 서열이 간조직에 존재하는 macrophage인 Kupffer 세포 표면에 존재하는 수용체인 hnRNP M4에 인식된 후 Kupffer cell을 활성화함으로써, IL-1, IL-6, IL-10 및 TNF-a 등 여러 cytokine의 분비를 유발, 염증반응을 유도한다. 또한 간조직 내 혈관내피세포 (hepatic sinusoidal endothelial cell) 표면에 E-selectin, VCAM-1 및 ICAM-1 등의 여러 세포 접합단백질들의 발현을 유도함으로써 간전이의 환경이 조성될 것으로 제시되고 있다. 이러한 세포 접합물질과 CEA를 과발현하는 대장암세포 간의 접합 후 암세포는 내피세포를 투과하여 간조직 내로 침윤과정을 수행할 것이다.

대장암의 간 전이과정 모식도. CEA의 붉은 색 부위가 ‘PELPK' 서열이다


또한 활성화된 Kupffer cell로부터의 cytokine은 iNOS를 방해하여 toxic한 NO와 ROS 생성을 저해함으로써 간조직에 포착된 암세포의 생존률을 높여준다. 즉 CEA와 hnRNP M4 간의 결합을 통한 kupffer cell의 활성화가 CEA의 간전이에서의 주요 기능이라 할 수 있다.
 정상 세포는 조직으로부터 이탈되는 경우 'anoikis'라는 세포사멸 과정을 겪는다. 그러나 대장암 세포 표면에 CEA가 과발현시에는 anoikis가 억제되어 암세포가 원조직으로부터 이탈이 되어도 살아남으로써 간 등의 타 조직으로의 이동이 가능한 세포로 전환되는데, 이는 CEA의 'PELPK' 서열이 TRAIL 수용체인 death receptor 5 (DR5)와 직접적인 결합을 통해 TRAIL 신호전달 체계를 방해함으로써 유발될 것으로 예상되고 있다.

○ 암태아성 항원의 'PELPK' 특이적 핵산 앱타머 발굴
 CEA에 대한 항체 연구는 이미 많은 그룹에서 진행되었으나 CEA의 'PELPK' 부위를 특이적으로 인식하는 리간드의 발굴은 되어 있지 않으며, 이에 상기 부위가 과연 간전이 유도의 주요인자인지 개체 수준에서의 검증연구는 되어 있지 않았다. 본 연구에서는 처음으로 CEA의 'PELPK' 부위만을 특이적으로 표적하는 리간드를 개발함으로써, 상기 부위가 간전이의 주요 인자임을 밝혀내고자 하였으며 더불어 간전이를 효과적으로 저해할 수 있는 제제를 개발하고자 하였다.
  CEA 항체의 경우 암조직으로의 침윤도가 좋지 않으며, 특히 고친화도의 항체의 경우는 오히려 생체 내의 혈관을 따라 떠돌아다니는 항원에 의해 빠르게 clear 되기에 치료제/진단제로서 한계점을 갖고 있다. 본 연구에서는 이를 극복하기 위하여, 화학적 대량합성 및 유도체 개발이 용이하며 암조직 내로의 침윤성이 뛰어나 차세대 항암제로서의 잠재력이 큰 핵산 앱타머(aptamer)를 발굴하였다.

CEA ‘PELPK' 특이적인 앱타머 발굴 및 특성. Counter SELEX 방법 개요(A) 및 선별된 앱타머의 2차 및 3차 구조 예측도(B). 앱타머에 의한 CEA와 CEA 세포 표면 수용체인 hnRNP M4의 결합 억제 모식도(C) 및 결합 억제율(D). 앱타머를 이용한 CEA 발현세포 표면 특이적 면역염색(E).


 Counter-SELEX 기법을 활용, CEA의 'PELPK' 부위에 특이적으로 결합하는 핵산 앱타머 (pyrimidine nucleotide의 2'이 fluoro로 치환된 RNA로 구성)를 발굴하였다. 앱타머의 화학합성을 위해, 그 size를 소형화하였으며 stem-loop 형태의 구조를 갖고 있어 loop 부위가 CEA와 결합하는 부위임을 밝혔다 (그림 2B). 소형화한 앱타머는 예상과 같이 CEA와 CEA 수용체인 hnRNP M4 간의 결합을 억제하였으며 (그림 2C, 2D), CEA를 발현하는 세포 표면에 특이적으로 결합할 수 있었다.

○ 핵산 앱타머에 의한 효과적인 대장암의 간전이 억제
 발굴한 앱타머는 암세포간의 이동 (migration), 동종세포 응집 (homotypic cell aggregation) 및 암 침윤과정 (invasion) 등 간으로의 전이와 관련 있는 여러 세포 현상을 억제하였다.

앱타머에 의한 CEA+ 세포 특이적 세포 이동(migration)(A), 동종세포응집(homotypic cell aggregation) 반응(B) 및 침윤(invasion) 과정(C) 저해.


이는 곧 상기 세포 현상에 CEA의 'PELPK' 부위가 관여함을 시사한다. 주목할 점은 앱타머에 의해 CEA를 발현하는 대장암 세포의 anoikis가 효과적으로 유도되는데, 이는 앱타머가 CEA와 DR5 단백질간의 결합을 직접적으로 저해함으로써 기인한다는 것을 확인하였다.

앱타머에 의한 대장암 세포의 anoikis 유도. CEA에 의한 anoikis 저항 기전과 앱타머의 작용 기전 모식도(A) 및 앱타머에 의한 anoikis 신호전달 과정의 중간 매개체인 caspase 8의 활성 증가(B). 앱타머에 의한 세포 내(C,E) 및 실험관(D)에서의 CEA와 DR5 간의 직접적 상호작용 억제.


따라서 CEA의 'PELPK' 부위가 DR5와 직접 결합하는 부위임이 검증되었고 이러한 두 단백질 간의 결합이 CEA 발현 대장암세포의 anoikis를 방해하는 주요 인자임이 확인되었다.
 상기 연구 결과들은 발굴한 앱타머가 CEA와 hnRNP M4 및 CEA와 DR5 간의 결합을 모두 방해함으로써 CEA에 의한 간전이 개시과정을 방해하고, CEA 암세포의 세포 사멸을 유도하여 대장암의 간전이 현상을 효과적으로 억제할 수 있는 가능성을 시사한다. 이를 검증하기 위해 대장암의 간전이 동물모델(마우스)에서의 개체 실험을 수행하였다. 우선 앱타머의 약물로서의 안정성 및 생체 내의 효용성을 증대시키기 위해 앱타머의 5' 말단에 polyethylene glycol이 부착된 유도체를 합성하였고, 생동성 분석을 통해 앱타머의 생체 내 안정성이 증가됨을 확인하였다.

Polyethylene glycol을 부착한 앱타머의 생동성 분석(A) 및 간전이 동물모델에서의 앱타머에 의한 대장암 세포의 간전이 억제(B).


CEA 발현 대장암세포를 마우스의 비장 내로 투입함으로써 간으로 전이된 동물모델을 구축하였고, 이러한 동물모델에 합성한 앱타머 유도체를 투입한 결과 대조군 대비 91% 이상 대장암의 간으로의 전이가 특이적이며 효율적으로 간독성 없이 억제됨을 확인하였다 (그림 5B).
 본 연구를 통해 CEA의 'PELPK' 부위가 대장암의 간전이를 촉진하는 주요인자임을 개체 내에서 증명하였으며, 개발한 핵산 앱타머는 CEA의 'PELPK' 서열이 포함된 특정영역에 특이적으로 결합하여 대장암의 가장 큰 사망원인인 간전이 과정을 원천적으로 봉쇄함으로써, 효율적이며 특이적인 전이억제제 나아가 항암치료제로서 활용될 수 있을 것이다. 동시에 발굴된 앱타머는 혈중의 항원의 변화 및 간전이화 가능성 있는 암세포를 측정하고 추적할 수 있는 진단소자 및 CEA에 의한 암전이 과정을 이해하는 도구로서도 활용될 수 있다는 데에 큰 의미가 있다.

 

 용  어  설  명

암태아성항원(Carcinoembryonic antigen, CEA) :
약 180-200 kD의 분자량을 가진 당단백질로 대장암 수술 후 예후 판단인자로 활용되고 있음.

핵산 앱타머(aptamer) 
마치 항체와 같이 표적분자에 높은 친화력과 특이성을 갖고 결합할 수 있는 단선으로 구성된 핵산 (DNA, RNA, 변형핵산)으로, 라이브러리 스크리닝을 통하여 발굴될 수 있는 새로운 개념의 생고분자 물질이다. 다양한 표적분자에 결합할 수 있는 앱타머 발굴이 가능하고, 저분자 화학약품과 같이 화학적으로 균질의 대량 합성이 가능하고 여러 목적에 맞게 변형이 용이하며, 염증유발이나 독성이 거의 없으며, 암조직으로의 침윤성이 뛰어나 기존 의약품의 한계를 극복할 수 있는 새로운 차세대 의약제제로서 각광을 받고 있다.

암태아성항원(CEA)
약 180-200 kD의 분자량을 가진 당단백질로서 GPI (glycosyl-phosphatidylinositol)를 통해 세포 표면에 부착되거나 또는 phospho-inositol 특이적인 phospholipases C/D에 의해 탈착되어 세포 밖으로 분비된다. 암표지인자 특히 대장암 수술 후 예후 판단 인자로 활용되고 있으며, 대장암세포에서의 CEA 과발현은 암세포간의 이동, 세포접합 및 침윤과정과 간으로의 암전이 촉진과 연관되어 있다고 알려져 있다.
 
PELPK
CEA의 N 말단 부위의 N과 A1 도메인 사이에 존재하는 Proline-lutamate- eucine-Proline-Lysine 아미노산 서열을 지칭한다.

SELEX (Systematic Evolution of Ligand by EXponential enrichment)
단선의 DNA, RNA 또는 변형 nucleotide로 구성된 핵산 앱타머를 선별하는 방법으로 1990년 Colorado 대학의 Larry Gold 박사가 처음 개발하였다. 무작위의 염기서열로 구성된 핵산 라이브러리부터 표적 분자와 결합할 수 있는 핵산 서열을 선별하는 방법으로서, 초기에는 RNA 결합 단백질에 결합하는 특정 RNA 서열을 찾기 위한 방법으로 제안되었다. 그러나 앱타머가 서열에 따른 특정 3차 구조 형성에 의해 다양한 분자와 결합할 수 있다는 사실이 밝혀진 이후, 현재는 핵산과 결합하는 단백질 이외에도 자연상태에서는 핵산과 결합하지 않는 단백질, 탄수화물, 지질, 당단백질 더 나아가서는 호르몬, 펩타이드, 소분자 화합물질, 이온 등 다양한 표적에 결합할 수 있는 핵산 앱타머를 찾을 수 있다. 특히 핵산은 실험관에서 증폭될 수 있다는 특성을 이용함으로써, 단기간 내에 몇 번의 반복 cycle을 통해 우리가 원하는 특정 표적에 대한 앱타머를 실험관 내에서 발굴할 수 있다.  최근에는 정제된 표적 분자가 아닌 세포 자체 또는 생체 내의 조직 자체를 표적으로 한 핵산 앱타머 발굴, 세포 및 조직 내로 투과될 수 있는 앱타머 발굴 등 다양한 목적과 기능을 가진 앱타머 개발로 적용되고 있다.

소화기병학(Gastroenterology)지
소화기질환 및 간질환 분야의 기초부터 중개연구 및 임상 연구 관련 논문 등 관련 전 분야를 출판하며, 미국소화기학회 (American Gastroenterological Association)에서 공식 발간하는 세계적으로 권위 있는 학술지이다. 특히 피인용지수(Impact Factor)가 2010년 기준 12.032로서, 과학 분야에서 상위 1.3% 이내에 랭크되며 소화기학 및 간장학 (gastroenterology 및 hepatology) 분야의 72개 SCI 급 저널 중 1위에 랭크되는 학술지이다.
 

이성욱 교수 이력사항


1. 인적사항                          
 ○ 성 명 : 이성욱 (49세) 
 ○ 소 속 : 단국대학교 분자생물학과
 ○ 전 화 : 031-8005-3195
 ○ e-mail : SWL0208@dankook.ac.kr

2. 학력사항
  1981.3 - 1985.2   서울대학교 미생물학과 학사   
  1985.3 - 1987.2  서울대학교 미생물학과 석사  
  1989.9 - 1995.1  Cornell 대학교 박사 
    
3. 경력사항 
  1994.10 - 1997.1 Duke University Medical Center, Research Associate
  1997.3 - 현재  단국대학교 분자생물학과, 교수
  2004.3 - 2009.6 단국대학교 부설 나오센서바이오텍연구소, 소장
  2009.5 - 현재 (재)차세대융합기술원, 겸임연구원
  2011.6 - 현재 한국핵산학회, 회장
  2011.6 - 현재  Nucleic Acid Therapeutics (Official Journal of      Oligonucleotides Therapeutics Society), Editorial Board     Member
  2012.1 - 현재  Molecular Therapy-Nucleic Acids (Published by American    Society of Gene & Cell Therapy, Nature Publishing     Group), Editorial Board Member

반응형
반응형

KAIST 정희태 석좌교수가 교육과학기술부 주관 '이달의 과학기술자상' 7월 수상자로 선정됐습니다.


정 교수는 그래핀 결정면을 간편하면서도 더 넓게 관찰할 수 있는 새로운 기술을 개발해 양질의 그래핀 제조를 가능하게 한 공로를 인정받았습니다.


정 교수는 나노재료를 이용한 광전자소자 응용분야의 세계적인 석학으로, 그래핀과 나노패턴을 이용한 차세대 액정 디스플레이 등의 개발 연구를 지난 10여 년 간 수행하면서 최근 그래핀 단결정의 크기와 모양을 대면적에 걸쳐 쉽고 빠르게 시각화할 수 있는 기법을 개발했습니다.


정 교수의 연구는 그래핀을 이용한 투명전극, 플렉시블 디스플레이, 태양전지와 같은 전자소자 응용연구에 새로운 방향을 제시했다는 평가를 받고 있습니다.


이 성과는 2012년 1월 세계 최고 권위의 과학전문지 '네이처'의 자매지인 '네이처 나노테크놀러지(Nature Nanotechnology)'에 게재된 바 있습니다.


그래핀은 현존 물질 중 가장 우수한 전기적 특성이 있으면서 투명하고 기계적으로도 안정적이며, 자유자재로 휘어지는 차세대 전자소재이지만, 제조공정을 통해 넓게 제작된 그래핀은 다결정성을 지녀 단결정일때보다 상당히 낮은 전기적,기계적 특성을 보입니다.


이것은 그래핀의 상업화에 최대의 걸림돌로, 그 특성이 결정면의 크기와 경계구조에 큰 영향을 받기 때문인 것으로 알려지고 있습니다.


따라서 우수한 특성을 갖는 그래핀을 제조하기 위해서는 먼저 결정면의 영역(도메인)과 경계를 쉽고 빠르게 관찰하는 것이 필수적입니다.


정 교수는 지난 10여 년 간 유기 나노재료 및 분자제어를 통해 광학적, 전기적 성질을 이용한 소자를 개발하여 과학인용색인(SCI) 등재 국제학술지에 120편의 논문을 게재하였고, 40여개의 국내외 특허를 출원했습니다.


현재까지 발표한 정 교수의 논문들은 Science, Nature Materials, Nature Nanotechnology, Nature Asia Materials, 등 나노소재 분야의 권위 있는 학술지에 게재되어 총 피인용 횟수가 2500여 회에 달합니다.


정 교수는 창의적 연구결과와 탁월한 학술활동을 바탕으로 과학기술발전과 인재양성에 크게 기여한 점을 인정받아 2011년 KAIST 석좌교수로 임명됐고, 최근에는 Macromolecular Research 나노분야에서 편집장으로 활동하고 있습니다.

 

<정희태 교수> 

▶소속 : KAIST 생명화학공학과

● 학    력

▶1983 ∼ 1987    학사, 연세대학교, 화학공학과
▶1987 ∼ 1989    석사, KAIST, 생명화학공학과
▶1994 ∼ 1998    박사, 미국 Case Western Reserve University, 고분자공학과

● 경    력

▶1989 ∼ 1994 삼성종합기술원, 선임연구원
▶1998 ∼ 2000 미국 캘리포니아대학, 박사 후 연구원
▶2000 ∼ 현재 KAIST 생명화학공학과, 정교수
▶2003 ∼ 2005 한국생명공학연구원, 초빙교수
▶2007 ∼ 현재 KAIST 화학과, 겸임교수
▶2007 ∼ 현재  KAIST 나노연구소, 겸임교수
▶2009 ∼ 2010 미국 국가표준연구소, 방문교수
▶2010 ∼ 현재 Macromolecular Research 부편집장
▶2011 ∼ 현재 KAIST, 석좌교수

● 주요업적 : 액정의 배향성질을 이용한 그래핀 영역(도메인)의 시각화
  ◇ 최근 가장 활발히 연구하고 있는 꿈의 신소재인 그래핀은 현존하는 물질 중 최고의 전자이동도를 가지고 있는데, 제조과정에서 생기는 그래핀의 면적과 그 경계면 때문에 실제로는 낮게 나온다
  ◇ 본 연구를 통해 그래핀의 결정면을 간편하고 대면적으로 관찰할 수 있는 신기술을 세계최초로 개발하였고, 이는 그래핀의 물성을 크게 향상하고 상업화를 위한 핵심기술을 개발했다고 볼 수 있다.

 

반응형
반응형

사람의 중요한 유전자들이나 질병과 관련된 신호전달 체계가 대부분 초파리에도 그대로 보존되어 있기 때문에 초파리를 이용한 연구결과는 인간의 다양한 생명현상을 이해하는데 큰 도움을 주고 있습니다.

초파리는 성장과정도 사람과 비슷해, 사람의 발육기에 해당하는 유충기에 초파리도 급격히 성장하고, 사람이 사춘기를 지난 후 성인이 되고 성장이 멈추는 것과 같이, 초파리도 엑다이손 성호르몬의 수치가 최고조에 달할 때 성장이 멈추면서 성적인 성숙과정(번데기)에 들어갑니다.

그러나 지금까지 동물이 성적인 성숙을 통해 성체(成體)가 되는 과정과 발육기의 성장을 통해 최종적인 신체의 크기가 결정되는 과정이 서로 밀접한 관련이 있다는 사실은 잘 알려졌지만, 분자유전학적으로 어떻게 상호작용하는지는 거의 알려진 바가 없습니다.

중앙대 현서강 교수와 서울대 김빛내리 교수, 김화 박사(제1저자) 연구팀이 성호르몬이 동물의 성적인 성숙 뿐만 아니라 발육기의 성장도 조절한다는 사실을 밝혀냈습니다.

연구팀은 엑다이손이 성장에 관여하는 마이크로 RNA(miR-8)와 그 표적유전자 USH의 생성을 핵심적으로 조절하여 결국 초파리의 크기도 결정한다는 사실을 입증했습니다.

앞서 연구팀은 지난 2009년 miR-8이 표적유전자 USH를 통해 인슐린의 신호전달과 개체의 성장을 조절한다는 사실을 규명한 바 있습니다(Cell, 2009. 12).  

이번 연구 결과는 그 후속 연구로, 엑다이손이 수일 간 유충기에 마이크로RNA(miR-8)의 생성을 억제하면서 동시에 USH의 생성을 향상시켜 인슐린의 신호강도의 변화를 조절하고, 결국 최종 성체의 크기를 결정한다는 것을 확인한 것입니다.

연구팀은 초파리에 있는 miR-8을 인위적으로 결핍시키거나 과다생산하면 엑다이손 효과와 상관없이 난쟁이나 거대 초파리를 만들 수 있음을 확인해 성장을 조절할 수 있는 가능성을 열었습니다.

또한 USH의 양을 인위적으로 조절해도 역시 비슷한 효과가 나온다는 것을 관찰했습니다.

그러나 miR-8이 아예 결실되면 엑다이손에 의한 인슐린 신호전달이나 개체 크기 조절 작용도 사라졌습니다.

초파리 유충에 엑다이손 (20E)을 처리 할 시 miR-8의 양이 줄어듦

인위적으로 miR-8 양을 조절하여 정상보다 작거나 큰 초파리 번데기를 만듦

여기서 주목할 점은 마이크로RNA(miR-8)와 USH 및 인슐린 신호전달 과정이 초파리와 인간에게 공통으로 존재해 중요한 기능을 한다는 것입니다.

또한 실제 포유동물도 스테로이드계 성호르몬이 마이크로RNA(miR-8)의 생성을 억제하는 것으로 알려지고 있습니다.

따라서 이번 연구결과는 '스테로이드계 성호르몬 miR-8→ USH→ 인슐린 신호전달→ 개체 크기 조절'로 이어지는 과정이 인간의 사춘기 신체성장과정 및 스테로이드 호르몬 의존적 세포증식 과정에 중요한 축으로 작용할 가능성을 제시한 것입니다.

이번 연구성과는 성호르몬에 의한 성적인 성숙과정이 어떻게 신체성장과정과 작용하는지를 분자유전학적으로 이해하는데 밑거름이 되는 것으로, 최근 6년간 18배나 급증하는 성조숙증과 같은 성장장애 치료에도 기여할 수 있을 것으로 기대됩니다.

이번 연구결과는 생명과학분야의 권위 있는 학술지인 '유전자와 발생(Genes and Development)'지 7월 4일자에 게재되었습니다.
(논문명 : Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila)

<연 구 개 요>

1. 연구배경

동물의 최종 신체크기가 어떻게 결정되는지는 여전히 생명과학분야의 수수께끼이다.
동물 성장은 비연속적인 과정으로 특정 시기에 급속한 신체성장이 일어나고 성적성숙과정에 들어가면서 성장이 멈추고 신체크기가 결정된다.
인슐린 신호전달과정은 신체성장의 중요 pathway이다.
초파리의 유충에서 번데기에 이르는 과정은 사람의 청소년기에서 성인에 이르는 과정과 유사성이 있다.
이전 초파리 연구에서 유충시기의 인슐린 신호전달과정이 적절한 유충발생 및 번데기 형성과정에 중요하다는 사실이 알려졌다.
흥미롭게도 엑다이손이라는 스테로이드 호르몬이 번데기 형성과정 뿐만 아니라 유충시기의 인슐린 신호를 저해하여 개체의 성장을 저해할 수 있다는 보고가 있었고, 이것이 결국 개체성장과 개체의 성적성숙과정이 서로 조화롭게 조절되는데 기여할 것으로 추측된다.
하지만 아직까지 엑다이손이 어떻게 인슐린 신호를 저해하여 개체의 크기를 결정 할 수 있는지는 알려져 있지 않았다.

2. 연구결과

우리는 이전 연구를 통해 초파리 마이크로RNA인 miR-8이 USH이라는 표적 유전자를 통해 인슐린 신호전달을 조절하고 개체의 크기를 결정할 수 있음을 보였다.
이번 연구에서는 이 miR-8 이 엑다이손에 의해 그 생성이 저해되고 이러한 조절 작용이 엑다이손의 개체 크기 결정에 핵심으로 작용함을 보인 것이다.

초파리 유충 발생과정에서 엑다이손 신호가 증가함에 따라 miR-8 마이크로RNA가 점진적으로 감소하고 miR-8의 표적유전자인 USH은 점진적으로 증가함을 관찰 하여 이들 유전자들이 엑다이손에 의해 조절될 수 있을 것이라는 힌트를 얻었다.
초파리 세포주 및 초파리 지방세포를 대상으로 한 실험에서 엑다이손이 엑다이손 수용체 신호전달 과정을 통해 miR-8을 전사 수준에서 억제함을 발견하였고,  더 나아가 이러한 조절 작용이 수일에 걸친 유충 발생과정에 지속적으로 일어나고 있음을 발견하였다.
또한 유전학적 조작을 통해 초파리 생체 내 miR-8의 농도를 변화시킴으로써 난쟁이 초파리나 거대 초파리를 만들 수 있음을 보였고,  miR-8을 인위적으로 과량 발현 할 시 엑다이손의 성장저해효과를 막을 수 있음을 보였다.
이는 곧 엑다이손이 miR-8의 양적 변화를 일으켜 신체의 크기를 조절한다는 사실을 증명한다. 또한 miR-8이 결실된 초파리에서는 엑다이손에 의한 인슐린 신호전달 조절이나 개체의 크기 조절 작용이 사라짐을 발견하였고, miR-8의 표적유전자인 USH의 발현을 저해하거나 과량발현 시킬 시에도 엑다이손을 통한 개체 크기 조절 작용을 막을 수 있음을 보였다.
이를 통해 miR-8과 이의 표적 유전자인 USH이 엑다이손에 의한 신체크기 조절 작용에 핵심 유전자들이라는 사실을 밝혔다.


 용  어  설  명

마이크로RNA(microRNA 혹은 miRNA)
마이크로RNA는 21~23 뉴클레오티드 정도의 아주 작은 단일가닥 RNA이다.
DNA에서 RNA로 전사된 이후 여러 단계의 프로세싱 과정을 거쳐 완성되며, 단백질로 번역되지 않고 RNA상태로 세포 내에 존재한다.
마이크로RNA는 주로 다른 유전자들의 발현을 조절하는 기능을 하는데 상보적인 메신저RNA(mRNA)에 결합하여 메신저RNA의 발현을 억제한다.
여러 종류의 마이크로RNA는 세포 내에서 다양한 메신저RNA들의 발현을 조절함으로써 생물체의 발생과 성장, 노화, 사멸 등 대부분의 생명 현상에 관여한다. 

miR-8
마이크로RNA의 한 종류로서 꼬마선충에서부터 초파리 및 사람에 이르기까지 깊게 보존되어 있다. 사람의 경우는 miR-200로 불리운다. 초파리 및 인간 세포주에서 인슐린 신호전달을 촉진시켜 개체의 성장 및 세포증식을 촉진시킨다.

USH
초파리의 유전자로 사람의 경우는 FOG2로 불리운다. miR-8 마이크로RNA의 타겟유전자로 miR-8에 의해 발현이 저해된다. 인슐린 신호전달의 핵심 단백질인 PI3K 에 직접 붙어 인슐린 신호를 저해한다.

엑다이손
초파리의 성적성숙과정을 담당하는 대표적인 스테로이드 성 호르몬. 초파리 유충 말기에 엑다이손 양이 최대치에 이르면 성장이 멈추면서 번데기 시기로 들어간다.

유전자와 발생(Genes and Development)지
분자생물학, 분자유전학, 세포생물학 및 발생학 분야를 아우르는 생명과학 분야의 세계적으로 권위 있는 학술지이다. 최근 5년간 피인용지수(Impact Factor)가 2010년 기준 13.892이다.
전 과학 분야에서 상위 1% 이내에 랭크되는 학술지로, 특히 유전학 및 발생학 분야의 Top 클래스 저널이다.

 

<현서강 교수>
                                             

1. 인적사항

 ○ 소 속 : 중앙대학교 생명과학과
 
2. 학력
 ○ 1993. 03 - 1998. 02   서울대학교 학사 (미생물학)
 ○ 1998. 03 - 2000. 02   서울대학교 석사 (생명과학)
 ○ 2000. 03 - 2006. 02    KAIST 박사 (생명과학)

3. 경력사항
 ○ 2006 - 2010  서울대학교 생명과학부, 박사 후 과정 연구원
 ○ 2010 - 현재  중앙대학교 생명과학과, 조교수

4. 전문 분야 정보
 ○ Merck 젊은 과학자 상 (2010)
 ○ POSCO 청암과학펠로 신진교수 (2010)

<김빛내리 교수>

1. 인적사항

 ○ 소 속 : 서울대학교 생명과학부

2. 학력
 ○ 1988 - 1992    서울대학교 학사
 ○ 1992 - 1994    서울대학교 석사
 ○ 1994 - 1998    英 Oxford University 박사
 
3. 경력사항
 ○ 1999 - 2001  美 University of Pennsylvania Postdoctoral Fellow
 ○ 2001 - 2004 서울대학교 연구조교수
 ○ 2004 - 2008   서울대학교 생명과학부 조교수
 ○ 2008 - 현재     서울대학교 생명과학부 부교수
 ○ 2007 - 2011  교과부 연구재단 지정 창의연구단장 (MicroRNA 연구단)
 ○ 2010- 현재 교과부 연구재단 지정 국가과학자
 
4. 전문 분야 정보
 ○ 호암상 (2009)
 ○ L'Oreal-UNESCO 세계여성생명과학자상 (2008)
 ○ 올해의 여성과학자상 (2007)
 ○ 젊은과학자상 (2007)

<김화 박사>
                                                      

1. 인적사항
 ○ 소속 : 서울대학교 생명과학부                        

2. 학력
 ○ 1998. 09 - 2002. 08      중국 청화대학 학사 졸업 (생명과학)
 ○ 2004. 03 - 2006. 02      서울대학교 석사 졸업 (생명과학)
 ○ 2007. 03 ? 2011. 02      서울대학교 박사졸업 (생명과학)

3. 전문 분야 정보
- 주요 연구논문
1. Hyun, S.*, Lee, JH.*, Jin, H.*, Nam, J., Namkoong, B., Lee, G., Chung, J., Kim, VN. (2009) Conserved microRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell (2009) (*co-first authors)
2. Jin, H.*, Suh, MR.*, Han, J., Yeom, KH., Lee, Y., Heo, I., Ha, M., Hyun, S., Kim, VN. (2009)  Mol Cell Bio 29: 5789-5799 (*co-first authors)
3. Han, J.*, Lee, Y.*, Yeom, KH., Kim, YK., Jin, H., Kim, VN. (2004) Genes Dev.  15;18(24):3016-27. (*co-first authors)


 

반응형
반응형

암세포는 정상세포와 달리 성장에 필요한 적당한 환경이 주어질 경우 무한대로 증식하는 특징이 있습니다.
 
이 때 공간이 부족해지면 암세포는 기질금속단백질가수분해효소를 분비해 주변 조직을 제거해 공간을 확장합니다.

따라서 이 효소의 미세한 농도 차이를 감지하고 특성을 분석할 수 있는 기술이 개발되면 암세포와 정상세포를 쉽게 구분하여 암을 조기에 진단할 수 있게 됩니다.

또 왕성한 세포분열이 지속되면 혈관벽이나 조직을 파괴하여 내부로 침투하는데, 이 때 혈액 등을 타고 다른 장기나 조직으로 이동하는 '암 전이'가 발생합니다.

특히 이 효소는 암 전이에도 매우 밀접한 관련이 있어, 이 효소의 특성을 분자적 수준에서 규명하는 것이 매우 필요합니다.

연세대 윤대성 교수와 권태윤 교수 팀이 암 전이와 밀접한 관련이 있는 침습성 암세포의 표지단백질 효소를 정량적으로 검사하여 암세포와 정상세포를 구분하는 기술을 개발했습니다

연구팀은 원자힘현미경(AFM)으로 침습성 암세포 표면의 효소가 반응하는 현상, 특히 특정 펩타이드 서열이 가수분해되는 현상을 실시간 관측하는 방식으로 암세포와 정상세포를 구분했습니다.

연구팀은 AFM 캔틸레버가 공진하는 특성을 이용해 암세포 표면에 있는 효소에 의해 주변 조직을 구성하는 대표적인 펩타이드 서열이 가수분해되는 현상을 실시간으로 검지해냈습니다.

이 기술은 기존의 형광표지를 이용한 검지방법들과 달리 펩타이드가 가수분해된 양의 정량화가 가능하기 때문에 효소의 활성도를 쉽게 판단하는데 매우 효과적인 것이 특징입니다.

또한 암세포와 정상세포를 구분할 수 있을 뿐만 아니라 유전자 변형에 의해 돌연변이 효소를 발현하는 세포도 진단할 수 있습니다.
 
이번에 개발된 기술은 별도의 까다로운 MEMS(미세전자제어기술) 공정 없이 상용화된 장비(AFM)를 이용했고, 실험방법도 매우 간단하며 결과를 손쉽게 확인할 수 있는 점이 큰 특징입니다.

이 같은 센싱기술로 각 암세포의 특성과 세포 간의 신호전달 경로를 규명함으로써 암을 조기에 진단할 수 있을 뿐만 아니라 맞춤형 치료도 가능할 것으로 기대되고 있습니다.

이번 연구는  연세대 윤대성 교수와 권태윤 교수가 주도하고, 엄길호 교수와 이규도 박사과정생이 참여했습니다.

이번 연구결과는 화학분야의 권위 있는 학술지인 앙게반테 케미 6월 11일자에 속표지논문으로 게재되었습니다.
(논문명 : Real-Time Quantitative Monitoring of Specific Peptide Cleavage by a Proteinase for Cancer Diagnosis)

침습성 암세포의 표면에 막단백질 형태로 분포된 표지단백질(MMP)이 세포용해(Cell Lysis) 과정을 통해 구속에서 풀려나 자유롭게 이동하게 되면(미사일로 묘사), 캔틸레버 표면(인공위성 날개로 묘사)에 고정화된 펩타이드 서열의 일부를 단백질 가수분해 작용을 통해 절단시킨다. 시간이 지남에 따라, 절단되어지는 펩타이드의 양을 실시간으로 모니터링(신호를 전달 받는 우주비행사로 묘사)하게 됨으로써, 암세포와 정상세포와의 구분 및 암세포의 활성화 정도를 쉽게 진단할 수 있다.

<연 구 개 요>

세포로 구성된 생명의 출현과 함께 시작된 암세포와의 전쟁 역사는 지구상 가장 고등한 생명체인 인간에게 맡겨진 가장 큰 숙제 중 하나이다.
이 문제는 우리 인류 자신에게도 반드시 해결해야만 하는 숙원으로, 전 세계 의학·생명 분야의 연구자들이 해결책을 찾고자 주야불사(晝夜不舍)하고 있다. 

암세포 정복을 위해서는 암세포의 자체 특성 분석 및 암세포 기능에 중요한 역할을 하는 단백질의 특성을 규명하는 일이 필수적이다.
인체 내에 암이 발병했을 때 가장 위험한 요인 중 하나는 암 전이(metastasis) 여부이다. 암 전이에 밀접한 관련이 있는 표지 단백질 중 하나로 기질금속단백질가수분해효소 (matrix metalloprotease) 는 세포의 표면에 분포하거나 혹은 세포 밖으로 분비되어, 주변 조직을 분해시켜 암세포의 자가증식을 위한 공간 확보에 기여한다.
따라서 이 효소의 검지 및 특성 분석은 암세포의 조기진단 뿐만 아니라, 암 전이에 관련된 암세포의 활성도를 파악하는데 매우 중요한 역할을 할 것이다.
 
본 연구에서는 침습성 암세포의 표면에 발현된 기질금속단백질가수분해효소를 정량적으로 검지하고, 약물 반응성 테스트를 시행하여 암세포 조기 진단 및 맞춤형 치료를 위한 새로운 패러다임을 제시한다.
구체적으로, 나노역학적 방법으로 매우 높은 민감도로 센싱이 가능한 원자힘현미경(Atomic Force Microscopy)의 마이크로 캔틸레버의 공진특성을 이용하여, 해당 효소의 작용(단백질 가수분해)에 의해 특정 펩타이드 서열이 가수분해되는 현상을 실시간으로 검지하는데 성공하였다.
기존의 형광표지를 이용한 검지방법들과는 달리, 마이크로 캔틸레버의 공진특성을 이용하게 되면 펩타이드가 가수분해된 양의 정량화가 가능하고, 이를 통해 효소의 활성도를 판단하는데 매우 효과적임을 밝혔다.
또한 실제 암세포를 대상으로 수행된 실험을 통해 정상세포와 구별이 됨뿐만 아니라, 유전자 변형에 의해 돌연변이 효소를 발현하는 세포의 경우도 진단이 가능함을 확인하였다.
이번 연구를 통해 암세포의 조기 암 진단 기술에 새로운 방법을 제시하고, 다양한 암세포간 신호전달 체계 파악 및 암세포 맞춤형 치료의 목적에 있어 혁신적인 기술이 될 것으로 기대한다.



 용  어  설  명

원자힘현미경 (atomic force microscopy)
나노크기의 탐침이 있는 마이크로 캔틸레버를 이용하여, 나노 단위의 샘플 표면을 이미징할 수 있는 장비이다. 캔틸레버를 기본으로 구성된 장비이기 때문에, 단순히 이미징 뿐만 아니라, 캔틸레버를 이용한 생체분자 센싱, 분자간 상호작용 분석 등의 연구에 매우 유용하다.

암세포 전이 (metastasis)
암세포가 일정 수준이상 성장하게 되면, 주변 조직(혈관)을 궤사시키거나 분해하여, 림프액 또는 혈액을 타고 다른 조직 및 장기로 이동하게 된다. 이는 암세포가 정상세포에 비해 주변조직을 와해시키는 능력이 뛰어남을 의미한다.

단백질 가수 분해 (proteolysis)
단백질의 펩티드 결합을 분해하여 아미노산 또는 펩티드를 생성하는 화학반응을 의미한다. 일반적으로 산, 알칼리에 의해, 생리적으로는 단백질가수분해효소에 의해 반응이 촉매된다.

기질금속단백질가수분해효소 (matrix metalloproteinase, MMP)
금속이온에 의해 활성화되는 단백질가수분해효소의 한 종류로서, 세포에서 분비되거나, 세포막에 막단백질 형태로 분포하여 주변조직을 와해시킨다. 따라서 암세포의 경우 표지단백질로 인식되어진다.

캔틸레버(Cantilever)
길이가 100μm(마이크로미터), 폭 10μm, 두께 1μm로 아주 작아 미세한 힘에 의해서도 아래위로 쉽게 휘어지도록 만들어짐

공진(resonance)
특정 진동수를 가진 물체가 같은 진동수의 힘이 외부에서 가해질 때 진폭이 커지면서 에너지가 증가하는 현상

침습(浸濕)성 암세포
스며들 듯 퍼져나가는 암세포

<윤대성 교수>(교신저자)

1. 인적사항
 ○ 소 속 : 연세대학교 의공학부
 
2. 학력
○ 1996     한국과학기술원 재료공학과 공학박사
○ 1991     연세대학교 세라믹공학과 공학사
 
3. 경력사항
- 2010.03 - 현 재 : 연세대학교 보건과학대학 의공학부 교수
- 2009.03 - 현 재 : BK21 의료공학신기술사업단 사업단장
- 2008.08 - 현 재 : 연세대학교 의료공학교육센터 센터장
- 2009.01 - 현 재 : 한국바이오칩학회 홍보이사
- 2006.04 - 2009.12 : 한국바이오칩학회 학술/교육, 기획이사
- 2003.08 - 현 재 : 산업자원부 전자부품개발사업 평가위원
- 2003.08 - 2007.02 : 한국과학기술연구원 선임연구원
- 1995.09 - 2003.08 : 삼성전자 종합기술원 책임연구원
- 1999.06 - 2000.08 : 펜실베니아 대학교 박사후 연구원

<권태윤 교수>(교신저자)

1. 인적사항
 ○ 소 속 : 연세대학교 의공학부

2. 학력 및 경력
 - 2009-현재 : 연세대학교 의공학부 연구교수
 - 2008-2009 : 매사추세츠 공과 대학 (MIT) 박사후 연구원
 - 2007-2008 : 고려대학교 기계공학과 박사후 연구원
 - 2002-2007 : 한국과학기술연구원 (KIST) 연수생
 - 2001-2007 : 연세대학교 신소재공학과 박사

<엄길호 교수>(공동 제1저자)

1. 인적사항

 ○ 소 속 : 연세대학교 의공학부

2. 학력
 ○ 2005    Univ. of Texas at Austin 응용역학 박사
 ○ 2003    Univ. of Texas at Austin 응용역학 석사
 ○ 2000    한국항공대학교 항공우주공학 학사
                  
3. 경력사항
 - 2011.12 - 현 재 : 프라운호퍼·연세대 공동연구센터, 연구교수
 - 2011.07 - 현 재 : ISRN Computational Mathematics 저널 편집위원  
 - 2008.11 - 2011.11 : 고려대학교 기계공학과 연구교수
 - 2008.03 - 2008.10 : 한국과학기술연구원(KIST) 선임연구원
 - 2005.09 - 2008.02 : 한국과학기술연구원(KIST) 연구원

<이규도 박사과정>(공동 제1저자)

1. 인적사항
 ○ 소 속 : 연세대학교 의공학부
 
2. 학력
 ○ 2008 ? 현재    연세대학교 의공학과 석·박사 통합과정
 ○ 2004 ? 2008    연세대학교 의공학과 학사

 

반응형
반응형

일반적으로 사람은 만 6세부터 나오는 영구치로 평생을 살아갑니다.

그런데 입 안에는 무수한 세균이 살고 있어 치아와 잇몸의 건강을 지키기란 쉽지 않습니다.

특히 치주염은 치아와 잇몸사이에 존재하는 다양한 세균에 대한 숙주의 염증과 면역반응의 결과로 일어나는데, 세포조직을 파괴해 치아를 잃게 만드는 주요 원인입니다.

우리나라 성인 가운데 70~80%가 치주염을 앓고 있다 합니다.

■ 서울대 최봉규 교수팀이 세포표면에 있는 당단백질(인테그린, integrin α5β1)의 새로운 기능을 규명해 치주염 발병원인과 새로운 치료법 개발 가능성을 열었습니다.

연구팀은 치주병원균인 구강나선균에 존재하는 표면단백질이 인테그린과 결합하여 염증성 사이토카인(인터루킨-1β)의 발현을 유도하고 활성화시켜, 결국 치주조직에 과도한 염증을 유발함을 밝혀냈습니다.
 
인테그린은 세포와 세포, 세포와 세포 외 기질간의 상호작용에 관여하는데, 세포의 증식이나 분화 및 이동에서 중요한 역할을 담당하며, 만성 염증과 종양의 원인에도 관여되어 있습니다.

다양한 미생물이 숙주세포에 결합하고 침투할 때 역시 직간접적으로 인테그린을 사용합니다.

또한 사이토카인은 면역반응과 염증반응을 일으키는 단백질로, 면역세포가 생산하는 분비단백질입니다.

대표적인 염증성 사이토카인인 인터루킨(IL)-1β는 숙주세포가 미생물 감염을 막기 위해 만들어집니다.

IL-1β는 먼저 비활성형(proIL-1β)으로 만들어진 후 단백분해 숙성과정을 통해 활성형으로 변해야만 세포 밖으로 분비되는데, 이 두 과정이 엄격히 분리 조절됨으로써 IL-1β의 과잉 분비가 통제됩니다.

인플라마좀은 세포질에 존재하는 복합단백질체로, IL-1β를 비활성형에서 활성형으로 전환시키는데 관여합니다.

연구팀은 구강나선균의 표면단백질이 인테그린을 이용해 인터루킨의 비활성형 발현과 인플라마좀 활성을 동시에 유발함으로써, IL-1β의 분비 통제시스템에 문제를 일으켜 치주조직에 IL-1β의 과잉분비가 일어나 과도한 염증을 유발할 수 있음을 규명했습니다.

이번 연구는 구강나선균의 표면단백질이 인테그린을 사용해 IL-1β 분비에 필요한 비활성형 발현과 인플라마좀 활성을 동시에 수행함으로써, 치주조직의 염증반응을 증폭시키고 치주염의 특징인 만성 염증 상태를 유지하는데 중요한 역할을 한다는 사실을 밝힌 것입니다.

이를 통해 이 단백질과 인테그린의 결합은 치주염 억제를 위한 새로운 표적이 될 수 있음을 알 수 있습니다.

이번 연구결과는 면역학 분야에서 세계적으로 권위 있는 학술지인 Immunity 지(IF=24.221) 5월 25일자에 게재되었습니다.
(논문명: Integrin α5β1 activates the NLRP3 inflammasome by direct interaction with a bacterial surface protein)


<연 구 개 요>

IL-1β는 병원균감염에 의해 유도되는 사이토카인으로서 면역과 염증반응을 조절하여 숙주방어에 관여한다.
IL-1β는 먼저 병원체유래의 물질에 의한 자극으로 전사수준의 발현유도에 의해 비활성형(proIL-1β)으로 생산된 후 단백분해의 숙성과정을 통해 활성형으로 전환되어야 세포 밖으로 분비되며, 이 두 과정이 엄격히 분리되어 조절 받음으로써 IL-1β가 과잉으로 분비되는 것이 통제된다.
인플라마좀은 세포질에 존재하는 복합단백질체로서 caspase-1을 활성시킴으로써 proIL-1β의 숙성에 관여하며, 대표적으로 NLRP1, NLRP3, NLRC4, AIM2 인플라마좀이 있다.

 
치주염은 성인의 대표적 구강질환으로서, 치은연하에 형성된 복합세균의 바이오필름에 의해 야기되는 숙주의 염증 및 면역반응 결과로 조직파괴를 동반하며, 치아상실의 주된 원인이 된다.
IL-1β는 치주조직의 염증반응과 치조골흡수를 야기함으로써 치주조직의 면역병리와 밀접한 관계가 있다.
다양한 Treponema 종으로 이루어진 구강나선균은 치주염 병변에서 빈번히 검출되며 치주염 중증도의 표지인자이다.
세균의 표면단백질은 숙주세포와 가장 먼저 반응함으로써 병인기전에 중요한 역할을 한다. 따라서 구강 Treponema 종에 공통으로 존재하는 표면단백질은 IL-1β의 발현과 활성에 대한 연구 대상으로 적합한 분자이며 치주염의 병인기전을 이해하는데 매우 중요하다.
본 연구팀은 선행연구에서 구강나선균에는 매독의 원인균인 Treponema pallidum의 표면단백질인 Tp92와 상동성이 매우 높은 표면단백질이 존재한다는 것을 밝혔다.

구강나선균인 Treponema denticola 표면에  존재하는 Tp92 유사단백질인 Td92가 대식세포에서 proIL-1β의 발현을 유도하고, 비활성형의 IL-1β를 활성형으로 전환시키는데 관여하는 세포수용체와 인플라마좀의 규명 및 관련 메카니즘에 대한 연구를 수행하였다.
Td92는 세포수용체인 integrin α5β1과 직접 결합하여 proIL-1β의 발현을 유도할 뿐만 아니라 NLRP3 인플라마좀을 통해 caspase-1을 활성시키고 이에 의해 proIL-1β를 활성형으로 전환시켜 세포로부터 IL-1β의 분비를 유도하였다.
Td92는 세포로부터 ATP 방출을 유도하고, 세포밖의 ATP가 P2X7 수용체를 자극하여 칼륨이온을 세포 밖으로 유출시킴으로써 NLRP3를 활성시켰다.
뿐만 아니라 Td92는 NLRP3의 발현도 증가시켰다. Td92에 의해 유도되는 proIL-1β의 발현, NLRP3 발현 및 활성에는 전사인자인 NF-κB가 결정적 역할을 하는 것을 확인하였다.

세균표면단백질인 Td92는 integrin α5β1과 결합하여 proIL-1β 발현을 유도하는 '제 1신호'와 인플라마좀을 활성시키는 '제 2신호'를 동시에 나타냄으로써 IL-1β를 과도하게 분비시키기 때문에 치주염 병인에 중요한 역할을 함으로써 치주염억제를 위한 표적분자가 될 수 있으며, 인테그린의 IL-1β 분비와 관련된 새로운 기능은 세균감염, 염증성 질환, 자가면역질환에서 그 역할과 공통기전을 찾는 연구의 기반이 될 것이다.



 용  어  설  명


인테그린(integrin α5β1)
인테그린은 α 소단위체(18종류)와  β 소단위체 (8종류)의 조합으로 구성된 이종이중체의 당단백질이며, integrin α5β1은 α5와 β1의 조합으로 이루어진 인테그린이다.

구강나선균
구강에 존재하는 나선형 모양의 세균으로서 Treponema 속(genus)으로 분류된다.

인터루킨-1β (IL-1β)
면역세포에서 분비되는 사이토카인으로서 주 기능은 선천면역에서 숙주염증반응을 매개한다.
혈관내피세포에 작용해 중성구와 단핵구의 부착인자 및 케포카인(chemokine) 생산촉진, 간에서 급성기 반응체의 합성, 발열 등의 활성을 갖는다.

인플라마좀
세포질에 존재하며 선천면역수용체, 어뎁터, caspase-1으로 이루어진 단백질복합체로서 proIL-1β를 활성형으로 전환시키는데 관여한다.

당단백질(糖蛋白質)
올리고당이 공유결합으로 결합된 단백질

 

<최봉규 교수> 

1. 인적사항 

○ 소 속 : 서울대학교 치의학대학원

2. 학력
○ 1980 : 연세대학교 생화학과 졸업 (학사)
○ 1991 : 독일 Albert-Ludwigs 대학 생물학과 미생물학전공 졸업 (석사)
○ 1994 : 독일 Albert-Ludwigs 대학 생물학과 미생물학전공 졸업 (박사)
 
3. 경력사항
○ 2000 ~ 2003 : 연세대학교 BK21 의과학사업단, 계약교수
○ 2009 ~ 2010 : University of California, San Diego, 의과대학, Visiting Scholar
○ 2003 ~ 현재 : 서울대학교 치의학대학원 구강미생물학교실, 교수

4. 주요 논문 업적
1) Jun HK, Lee SH, Lee HR, Choi BK. 2012. Integrin α5β1 activates the NLRP3 inflammasome by direct interaction with a bacterial surface protein. Immunity 36, 755-768.
2) Lee SH, Choi BK, Kim YJ. 2012. The cariogenic characters of xylitol-resistant and xylitol-sensitive Streptococcus mutans in biofilm formation with salivary bacteria. Archives of Oral Biology 57:697-703.
3) Lee HR, Jun HK, Kim HD, Lee SH, Choi BK. 2012. Fusobacterium nucleatum GroEL induces risk factors of atherosclerosis in human microvascular endothelial cells and ApoE-/- mice. Molecular Oral Microbiology 27:109-123.        
4) Kim YC, Shin JE, Lee SH, Chung WJ, Lee YS, Choi BK, Choi Y. 2011. Membrane-bound proteinase 3 and PAR2 mediate phagocytosis of non-opsonized bacteria in human neutrophils. Molecular Immunology 48:1966-1974.
5) Choi J, Lee SY, Kim K, Choi BK. 2011. Identification of immunoreactive epitopes of the Porphyromonas gingivalis heat shock protein in periodontitis and atherosclerosis. Journal of Periodontal Research 46:240-245
6) Lee HR, Rhyu IC, Kim HD, Jun HK, Min BM, Lee SH, Choi BK. 2011. In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum. Molecular Oral Microbiology 26:164-172.
7) Kim M, Jun HK, Choi BK, Cha JH, Yoo YJ. 2010. Td92, an outer membrane protein of Treponema denticola, induces osteoclastogenesis via prostaglandin E2-mediated RANKL/osteoprotegerin regulation. Journal of Periodontal Research 45:772-779.
8) Ryu JI, Oh K, Yang H, Choi BK, Ha JE, Jin BH, Kim HD, Bae KH. 2010. Health behaviors, periodontal conditions, and periodontal pathogens in spontaneous preterm birth: a case-control study in Korea. Journal of Periodontology 81:855-863.
9) Lee SH, Jun HK, Lee HR, Chung CP, Choi BK. 2010. Antibacterial and lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial peptides against periodontopathogens. International Journal of Antimicrobial Agents 35:138-145.

반응형

+ Recent posts