반응형

머리카락 10만 분의 1m의 미세한 크기도 분별할 수 있는 초고분해능 광학영상장치가 개발돼 바이러스와 암세포 같은 생체바이오 물질을 보다 명확히 분석할 수 있게 되었습니다.
 
현재 일반적으로 사용되는 전반사 형광현미경은 수 백 나노미터 크기까지 분별할 수 있는 회절한계를 가지고 있습니다.

이 문제를 해결하기 위하여 전 세계 연구팀들은 수십에서 수 나노미터 크기까지 분별할 수 있는 광학영상 장치 개발에 노력 중입니다.

■ 연세대 김동현 교수팀은 '나노미터 단위의 국소적 샘플링(NLS)' 방식으로 기존 분해능의 한계를 극복할 수 있는 새로운 선택적 형광영상법을 개발했습니다.

연구팀은 금속 나노구조칩 표면에 작고 강한 전자기파 핫스팟을 만들어 지나가는 생체분자의 영상 정보를 복원하는 방법으로 기존의 문제점인 회절한계를 극복했습니다.

특히 기존에는 고가의 특수 장비 없이는 세포와 단백질 상호작용 현상을 영상화하기 힘들었는데, 이번 연구는 일반 현미경에 자체 제작한 금속 나노구조칩을 접합하는 것만으로도 쉽고 간편하게 세포와 단백질 상호작용 현상 등을 관찰하고 영상화할 수 있습니다.

이 영상법으로 암세포와 같은 특정 세포와 세포 내에서 움직이는 기질, 또는 단분자 영상화도 가능할 전망입니다.

연구결과는  나노와 마이크로 과학분야의 권위 있는 학술지인 '스몰(Small)'지에 표지논문으로 3월 26일자에 게재되었습니다.
(논문명 : Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules)

나노홀 어레이 구조를 이용하여 나노미터 크기의 핫스팟을 형성한다. 마이크로튜뷸 분자는 표면에 고정된 모터 단백질인 키네신 상에서 움직이는데, 핫스팟으로 마이크로튜뷸 분자를 샘플링하는 방법으로 나노미터급 초고분해능의 분자영상을 구현하였다.

<연 구 개 요>

생체 바이오 물질의 관찰을 통한 기질 특성 연구는 예전부터 의·공학 분야에서 매우 활발하게 진행되었다.
특정 단백질, 바이러스 또는 암세포 등의 생체 바이오 물질을 이미징하고자 할 때, 기존의 전반사 기반 형광 현미경(Total Internal Reflection Fluorescence Microscopy) 같은 경우 회절 한계(diffraction limit) 로 인한 분해능(resolution) 한계 때문에, 구체적이고 정확한 분석이 어렵다.
최근에는 수십에서 수 나노미터(nano-meter)의 분해능을 얻을 수 있지만, 이는 상당히 고가의 특수 영상장비의 구비를 통해서만 가능하였다.
 
수 백 나노미터 사이즈 단위의 주기적 원형 패턴(pattern)으로 이뤄진 금속 나노홀 구조(metallic nano-hole structure)칩을 Electron-beam lithography 방식으로 제작한 후, 일반적으로 사용되는 전반사 형광 현미경 시스템에 접목시키면, 나노홀 표면 근접장 분포(near-field distribution)의 변형과 함께, 매우 강하게 국소화(localization)된 필드(field) 영역, 이른바 핫스팟(hot spot)이 생성된다. 나노구조(nanostructure)가 주기적으로 패턴되었기 때문에 핫스팟도 주기적 형태로 얻을 수 있으며, 이를 이용한 선택적 형광 영상법, 이른바 '나노미터 단위의 국소적 샘플링(NLS)' 방식을 통해 수 십 나노미터 크기의 분해능을 갖는 이미지를 얻는데 성공하였다.

이번 연구에 사용된 바이오 물질은 모터 단백질(motor proteins) 중 하나인 키네신(kinesin)과 2차원 평면상에서 특정 속도를 가지고 자유롭게 이동하는 마이크로튜불(microtubules)로서, 국내에서는 이러한 바이오 물질을 이용한 초고분해능 광학 영상법에 대한 연구의 전례가 많지 않았다는 점에서 큰 의의를 갖는다.

김동현 교수 연구팀은 나노홀 표면에서 형성되는 핫스팟 커널(kernel)을 이용하여 카메라를 통해 얻어진 마이크로튜불 이미지를 초고분해능 영상으로 복원해냈다. 이 같은 방법의 개발은 전 세계적 관심사인 세포 내 단백질의 동적 움직임 및 기질 분석, 세포와 다른 분자 간, 박테리아 또는 바이러스 간의 상호 작용에 대한 영상화 가능성을 제시한다.
 
2010년에도 이 연구팀은 불규칙적으로 제작된 나노섬(nano-island) 구조칩을 이용한 초고분해능 광학 영상 시스템 개발에 대한 연구를 진행하였으며, 당시의 연구 결과는 핫스팟을 이용한 바이오 물질의 영상화 방법으로써 기존 전반사 형광 현미경이 갖는 회절 한계를 극복할 수 있다는 연구 결과를 이미 입증한 바 있다.  


  용  어  설  명

전반사 형광 현미경(Total internal reflection fluorescence microscopy) :
빛이 전반사 조건으로 입사될 때, 매질 사이 경계면으로부터 100 nm ~ 200 nm 내에 그 크기가 지수 함수적으로 감소하며 존재하는 필드 영역을 '소실파(Evanescent wave)'라고 한다.
전반사 형광 현미경이란, 이러한 소실파가 존재하는 영역을 이용하여 형광 시료로 염색된 물질을 관찰하고 영상을 얻을 수 있는 현미경 장치이다.

회절 한계(diffraction limit) :
관찰하고자 하는 두 물체간의 간격이 현미경에서 사용하는 광원의 반파장 크기 이하에 해당되면, 현미경의 광학 렌즈를 통해서 우리는 두 물체가 서로 다른 것임을 구분할 수 없으며, 하나의 물체로 인식할 수밖에 없게 되는데, 이를 광학적 회절 한계(diffraction limit)라 일컫는다.

분해능(resolution) :
분해능(resolution) 또는 해상도란 서로 떨어져 있는 두 물체를 구별할 수 있는 최소 거리를 의미하며, 광학적 회절 한계로 인해 분해능에도 한계가 존재하게 된다. 하지만, 전 세계적으로 이러한 분해능 한계를 극복하고 더 작고 미세한 것을 보기 위한 연구가 현재도 활발하게 이뤄지고 있다.

Small 誌 :
재료, 화학, 공학 등의 융합 영역의 학문분야에서 나노기술 관련 논문들을 출판하는 세계적으로 권위 있는 학술지이다. 특히 피인용지수(Impact Factor)가 2010년 기준 7.336이다.
전 과학 분야에서 상위 5% 이내에 랭크되는 학술지로, 융합(Multidisciplinary) 분야에서 8.8%(13위/147개) 이내에 든다.


<김동현 교수>

1. 인적사항

 ○ 소 속 : 연세대학교 전기전자공학부

2. 학력
  1988 - 1993    서울대학교 전자공학과 학사
  1993 - 1995    서울대학교 전자공학과 석사
  1995 - 2001    Massachusetts Institute of Technology 전기공학부 박사
 
3. 경력사항
  2001 - 2002 미국 Corning Inc. Sr. Research Scientist
  2003 - 2004 미국 코넬대학 박사후연구원
  2004 - 현재 연세대학교 전기전자공학부 교수
  2011 - 현재 연세대학교 의료기기기술연구소 센터장

<김규정 박사>

1. 인적사항

 ○ 소 속 : Max-Planck-Institute for the Science of Light
           Erlangen, Germany

2. 학력
  2001 - 2006    연세대학교 전기전자공학부 학사
  2006 - 2012    연세대학교 나노메디컬협동과정 박사
                  
3. 경력사항
  2009 - 2011        OSA-연세대학교 학생챕터 회장
  2007.11 - 2007.12     미국 코넬대학교 방문연구원
  2009. 3 - 2009. 4     일본 가쿠슈인대학교 방문연구원
  2011. 6 - 2011. 7  독일 막스플랑크 연구소 방문연구원
  2012 - 현재        독일 막스플랑크 연구소 박사후연구원

4. 수상실적
  2008.  하이서울 서울시 장학생
  2008.  OSA Biomedical Optics Topical Meeting, 최우수발표상
  2009.  SPIE Optical Science and Engineering 장학금 수상
  2009.   대학 Intellectual Property-Ocean 공모전 자유부문 대상 수상
  2010.   연세대학교 대학원 최우수 논문상 수상
  2011.   SPIE Optical and Photonics 장학금 수상

 

반응형
반응형

라스단백질(Ras Protein)은 세포성장신호를 조절하는 중요 단백질로, 약 30%의 암 환자에서 돌연변이가 발생하는 것으로 알려지고 있습니다.

수 많은 거대 다국적 제약회사들은 지난 20년간 엄청난 투자를 통해 라스를 제어할 수 있는 항암제를 개발하고 있습니다.

라스가 암을 유발하려면 세포막으로 이동해야 한다는 점에 착안하여, 라스의 이동을 막아 활성을 억제하는 항암제를 개발하고자 시도하였지만, 임상실험에서 효과가 적고 부작용이 발생해 대부분 실패하였습니다.

최근 일부 항체 항암제들이 돌연변이 라스로 인한 암환자에게 효과가 없다는 사실이 밝혀짐에 따라, 라스를 제어하는 항암제 개발의 필요성은 더욱 절실해진 상황입니다.

이처럼 항암제 개발에 가장 큰 걸림돌로 알려진 라스단백질을 제어할 수 있는 새로운 원리가 규명됐습니다.

연세대 최강열 교수팀은 돌연변이가 발생해 기존 항암제로도 치료되지 않는 '라스'라는 암발생 인자를 제어할 수 있는 새로운 원리를 밝혀냈습니다.

최강열 교수팀은 라스단백질에 인산이 붙어 분해됨으로써 라스의 활성도 제어할 수 있음을 명확히 규명해 신개념 라스제어 항암제 개발의 단초를 열었습니다.

최 교수팀은 세포의 성장조절 신호전달체계인 윈트신호 전달계를 저해시키는 인자인 인산화 효소(GSK3beta)가 윈트신호를 억제하여 라스를 인산화시키고, 인산화된 라스에 단백질 복합체(베타티알시피-E3라이게이스)가 결합하여 유비퀴틴화를 촉진시킴으로써 라스가 프로테아좀(세포내 단백질 분해장소)으로 이동해 분해되어 없어져 암 유발이 억제된다는 사실을 밝혀냈습니다.

향후 이 원리를 활용해 라스를 분해하여 인체에 흡수가 잘 되는 저분자 항암제를 개발할 수 있을 것으로 기대받고 있습니다.

이번 연구는 최강열 교수가 주도하고 윤종복, 김호근 교수 및 정우정, 윤주용 박사과정생이 참여했습니다.

연구결과는 사이언스지의 자매지인 세포신호전달분야 '사이언스 시그널링(Science Signaling)'에 4월 10일자로 게재되었습니다.
(논문명: Ras Stabilization Through Aberrant Activation of Wnt/beta-catenin Signaling Promotes Intestinal Tumorigenesis)


<연 구 개 요>

Ras Stabilization Through Aberrant Activation of Wnt/beta-catenin Signaling Promotes Intestinal Tumorigenesis Jeong, W.J. et al. (Science Signaling - 2012. 4.10)

라스(Ras)는 21 킬로달톤(KDa) 크기의 작은 지(G)-단백질들의 그룹에 속하며, 포유동물에서 K-, N-, H-Ras의 세 종류가 대표적인 것들로 알려져 있다. 라스가 처음으로 밝혀진 이후 30년의 세월이 지났지만, 라스는 여전히 암과 관련하여 가장 중요한 연구개발 대상으로 남아있다.
라스는 세포성장을 조절하는 중요한 단백질로 아랫단계인 어크(ERK) 및 PI3 kinase-Akt 신호전달계들을 한꺼번에 조절할 수 있는 신호전달의 스위치적인 역할을 수행한다. 정상적인 상황에서는 윗 단계로부터 유입되는 상피세포성장인자(EGF)와 같은 세포성장신호에 여부에 따라 GDP 혹은 GTP가 결합함으로 인해 불활성화 혹은 활성화 상태로 전환되며 신호전달을 조절한다(그림 1).

 

그림 1. 라스는 GDP가 결합된 불활성화 상태로 존재하다가 윗 단계에서 EGF와 같은 세포 성장 신호를 받게 되면 GDP가 GTP로 치환되어 Ras-GTP 형태가 되어 활성화된다.  활성화된 Ras-GTP는 가수분해작용에 의해 Ras-GTP 형태로 돌아와 불활성화 되며 이 같은 구조변경을 통하여 세포성장 조절에 중요한 스위치적인 역할을 한다.

라스가 세포성장 신호를 전달하는 기능을 수행하기 위해서는 세포막에 존재해야만 하는데, 파네실트란스퍼라제(Farnesyltransferase)라는 효소가 파네실화시켜서 라스를 기능을 수행하는 세포막으로 옮겨지도록 한다

 

그림 2. 라스 단백질이 기능을 수행하기 위해서는, 세포질에서 만들어진 이후 세포막으로 이동해야 하는데, 이를 위해서는 파네실트란스퍼라제(Farnesyltransferase)같은 효소에 의해 파네실화(그림에서 갈색 선들)가 일어나야만 세포막을 존재할 수 있게 되며, 이때 GTP가 결합한 형태의 활성화된 라스가 아랫단계로 신호를 전달한다.

라스유전자에 돌연변이가 일어난 암환자들에서는 라스가 항상 GTP가 붙는 비정상적으로 활성화되어있는 형태로 만들어지며, 이 경우 GDP가 붙은 불활성화 상태로 돌아가지 못해 아랫단계로 항상 세포성장 신호를 보내는 결과가 되어 암 발생에 기여한다.  
  
이번 최강열 교수 연구진의 연구는 윈트(Wnt)라는 또 다른 세포성장 신호전달계를 통해 라스단백질이 분해될 수 있음을 밝혔으며, 이 때문에 돌연변이에 의해 GTP가 붙은 활성화형태의 라스가 만들어진다 해도, 분해되어 없어지기 때문에 암이 생기지 않음을 밝혔다.
이 연구는 수많은 연구자들이 지금까지 연구해온 라스라는 중요 단백질이 단백질분해수준에서 조절될 수 있음을 보여준 최초의 연구라는데 중요성이 있다고 하겠다.
더욱이 이 같은 조절이 사람과 동물의 암 발생에 중요한 역할을 수행한다는 것을 환자샘플과 모델동물을 이용해 확인했다. 새로운 라스분해 원리를 요약하면, 윈트신호전달이 낮게 유지되는 상황에서 (예로서 윈트신호전달계의 신호억제 인자들인 Apc 혹은 Axin가 과발현 등으로 기능을 잘 수행할 경우) GSK3b라는 인산화효소가 활성상태가 되어 트레오닌(Thr)-144, 와 Thr-148 번을 인산화 시킨다. 
이같이 인산화된 라스는 베타티알시피(b-TrCP)-E3-ligase 라는 단백질 분해에 관련되는 물질복합체가 결합할 수 있고, 이를 통해 라스는 유비퀴틴화 되어 26S 프로테아좀에 시스템에 의해 분해된다. 

 

그림 3.  (+) 혹은 (-) Wnt 신호에 따른 라스 단백질의 분해 조절 메커니즘

그림 4. 라스 단백질이 윈트신호전달계를 저해하는 효소인 GSK3b에 의해 트레오닌-144(Thr-144)와 Thr-148 번의 아미노산 잔기들에 인산화 됨을 직접적인 인산화 실험을 통해 입증함.  라스의 인산화는 LC-MS/MS 분석방법으로 밝혔다.

그림 5. 라스가 인산화 되는 아미노산들인 Thr-144 와 Thr-148에 돌연변이를 유도한 돌연변이형 라스들을 이용해, 이들 아미노산 잔기들의 인산화가 유비퀴틴화를 통한 라스 분해에 중요함을 보여주는 데이터임.

암을 유발할 수 있는 형태(GTP결합)의 활성화된 라스의 경우, APC의 돌연변이같은 비정상적인 윈트신호에 의해 분해되지 않고 축적되면, 비정상적인 세포성장을 유도하여 암이 유발될 수 있다.
보통의 경우에는 돌연변이가 일어난 형태의 라스가 많이 만들어 진다고 하더라고 분해되어 암 발생을 유도하지 않으나, APC의 돌연변이에 의해서, 윈트신호가 활성화된 경우에는, 돌연변이가 일어난 GTP-Ras가 분해되지 않고 많이 축적되게 되어 아랫단계에 비정상적으로 세포성장 신호를 보내어 암을 발생시킴을 암환자와 동물모델을 통해 확인되었다.

 

그림. 6. APC의 돌연변이에 의해 윈트 신호전달계가 활성화됨에 따라 라스가 증가된 마우스에서 암이 발생된 경우를 보여주는 데이터임. ApcMin/+과 Apc1638N 두 종류의 APC가 돌연변이된 마우스를 사용했으며, 라스의 활성화가 아랫단계의 ERK와 전사인자인 ATF까지 활성화시킴을 보여주고 있다. 이 경우 APC의 돌연변이에 의해 윈트신호전달계가 활성화 되었을 때 라스의 분해를 예측하게 하는 인산화형태의 라스(p-Ras)는 반대로 줄어듦을 보여줌으로써, 라스의 인산화 억제 때문에 라스 단백질의 양이 증가됨을 암시하고 있다.

이 같은 동물수준에서의 윈트신호에 의한 라스안정성 조절이 사람의 암 발생에서도 중요함을 사람의 대장암샘플을 이용하여 확인하였다.

이 경우 사람의 APC가 유전적으로 돌연변이가 일어난 FAP (familial type adenomatos polyposis coli) 환자샘플을 이용하여, 라스의 인산화 및 양적 상태를 윈트신호전달계 활성화 상황과 비교하여 보여주었다.

그림 7. APC가 돌연변이가 있는 가족력을 가진 환자(FAP; familial type adenomatos polyposis coli-사진 좌측아래)의 대장암 조직에서 윈트 신호전달계 활성화 마커인 베타카테닌(b-catenin)과 라스가 동시에 증가되나 인산화가 일어난 라스는 반대로 감소함을 보여주는 결과다. 오른쪽 그림은 다양한 암 진행 상태에서 베타카테닌과 라스가 비례적으로 증가하나, p-Ras는 감소함을 보여 준다.


-오늘날 라스를 타깃으로 하는 항암제 개발의 한계점- 

대장암을 비롯한 대부분의 암에서는 활성화 형태의 라스돌연변이가 매우 높은 비율로 발견되고 있으며(대장암에서는 30-50%, 췌장암에서는 90%), 이 같은 돌연변이는 결합된 GTP가 가수분해 될 수 없는 활성화형태로서 지속적으로 세포성장신호를 보내기 때문에 암이 발생하는데 기여한다.
라스가 암 발생, 특히 진행에 가장 중요한 원인인 것이 잘 밝혀진 이유로 해서, 활성화된 라스를 제어하는 항암제 개발은 라스와 암과 관련성이 발견된 이후, 수많은 암연구자들은 물론 제약회사에서 크게 관심을 가져왔다.
대표적인 라스 제어 항암제 개발방법으로 시도된 것은 뉴클레오타이드 유사물질을 이용하여, 활성화된 GTP-Ras에서 라스를 떼어내려는 시도를 하였으나, GTP-Ras간의 결합력이 워낙 강해 GTP의 결합을 못하게 하는 유사물질 개발은 대부분이 실패했다.
또한 라스에 결합하여 그 활성을 억제하는 저분자화합물을 개발하려는 시도도 라스단백질의 구조상 저분자 화합물이 달라붙을 수 있는 공간이 마땅하지 않아 (그림 8) 이에 대한 연구개발도 대부분 실패로 끝났다. 

 

그림 8. 라스는 GTP(붉은색)가 높은 친화력을 가지고 달라붙어있고, 또한 구조적으로 저분자 화합물이 붙기 힘든 구조를 취하고 있다.

앞서 설명한 바와 같이 라스가 기능을 수행하기 위해서는 작용하는 장소인 세포막으로 위치 이동되는 것이 매우 중요하다. 따라서 라스가 세포막으로 이동하는데 필요한 파네실화(Fanesylation)를 억제하는 파네실트랜스퍼라제 저해제(Farnesyltransferase inhibitor; FTI)는 지난 20년간 수많은 암 연구자들과 제약회사들에 의해서 항암제 개발이 시도되었다.
하지만 이 저해제에 의해서 라스의 파네실레이션이 억제되어도 저라닐저라닐레이션(Geranylgeranylation)이라는 부수적인 지질화에 의해서 여전히 세포막으로 이동할 수 있음이 밝혀졌다.
따라서 파네실트렌스퍼라제 저해제 항암제개발에 제동이 걸렸으며, 이와 더불어 효과나 안정성 부작용 등의 문제가 밝혀짐으로써, 현재로서는 많은 연구자의 경우 라스를 직접 조절 할 수 있는 항암제 개발은 실패로 끝났다! 라고 판단하는 상황에 있다.
하지만 라스를 직접 제어하는 항암제 개발의 중요성에 대해서는 아직 모두 인정하고 있는 상황이다. 오늘날 많이 사용되기 시작했으며, 2017년까지 판매가 급증 하리라 예상되고 있는 차세대의 항암제로 알려진 상피세포성장인자수용체(EGFR) 작용하는 특이적인 상피세포성장인자 수용체 단클론항체항암제(EGFR mAb)들이 K-Ras에 돌연변이가 있는 환자에서 효과가 없음이 밝혀짐으로서 라스를 직접 제어하는 항암제 필요성은 그 어느 때 보다 더욱 절실 하다고 하겠다.

-연구 의의-

라스를 분해시키는 메커니즘을 밝힌 이번 연구결과는 돌연변이가 일어나 활성화된 라스를 가지는 암환자를 치료할 수 있는 한계극복용 라스제어 화합물 항암제를 개발하기 위한 초석이 될 전망이다.
최강열 교수 연구진은 현재 연구를 통해 라스를 분해하는 저분자화합물을 화합물라이브러리 스크리닝을 통해 발굴하였고, 종양저해 효과를 확인하였으며, 같은 대학의 한균희 교수와 공동으로, 유사화합물들을 합성하여 약효가 증진되고 안정성 있는 항암제로 개량하는 연구를 진행하고 있다.
이들 화합물항암제들은 돌연변이에 의해 활성화된 라스를 분해하는 혁신적인 항암제로 개발될 수 있을 전망이다. 이 저분자 라스분해 항암제는 파네실트란스퍼라제 항암제들의 개발이 실패로 돌아간 상황에서 직접적으로 라스를 제어하는 한계 극복형 항암제가 될 전망이다.
특히 이 화합물들은 라스에 직접 작용하기 때문에, 상피세포수용체(EGFR) 단클론항체항암제들에 효과를 보지 못하는 K-Ras 돌연변이 환자들의 치료에 적용할 수 있는 한계극복용 항암제가 될 전망이다.
마지막으로 라스의 경우 ERK 신호전달계는 물론, 라스가 조절하는 것으로 알려진 암 발생과 관련된 또 하나의 중요 신호전달계인 PI3 kinase-Akt 신호전달계를 조절하기 때문에 오늘날 항암제의 개발 방향인 이상적인 다중타겟항암제가 될 전망이다.
실제 2012년 현재 많은 연구자들이 ERK와 PK3 kinase-Akt 신호전달계를 각각의 신호전달계들을 저해하는 항암제들이 함께 처리했을 때(combinatory therapy시) 항암효과가 뛰어남이 관찰되었는데, 연구진이 개발하고 있는 라스분해 항암제의 경우는 단일 화합물로 이들 주요 신호전달계들을 동시에 제어할 수 있는 이상적인 항암제가 될 전망이다.


 용  어  설  명

윈트(Wnt) 신호 :
암세포의 성장과 전이의 대표적인 작동경로

유비퀴틴(Ubiquitin) :
76개 아미노산으로 구성된 단백질로 매우 작고, 다른 단백질과 결합해 분해를 촉진함

Ras (라스) :
표피세포성장인자(EGFR; epidermal growth factor receptor)등으로부터 시작된 세포성장신호를 조절하는 스위치 역할을 하는 21 kDa의 작은 단백질이며(종종 small G protein family라 불리고 일반적으로는 K-, N-, H-Ras가 대표적임), GTP-와 GDP가 결합하여 활성화 불활성화 되며, Raf-MEK-ERK와 PI3 kinase-Akt 신호전달계들을 조절할 수 있다.

Farnesyl transtransferase inhibitor (파네실트란스퍼라제 억제제) : 
라스 신호전달계에서 라스가 세포막으로 이동하는데 필요한 파네실화(farnesylation)를 방해하여 라스에 의한 신호전달을 차단하여 암 발생을 저해하는 항암제로 개발되어 왔으나 제한적인 약효와 독성, 부작용 등으로 항암제로서 개발이 중단된 상황이 많다.  
 
얼비툭스/시툭시매브[Erbitux/Cetuximab) :
상피세포성장인자(EGFR; epidermal growth factor receptor)에 작용하여 EGFR의 기능을 억제하는 단클론항체항암제로, 전이성대장암을 비롯한 몇몇 암에 효과가 있는 것으로 알려져 있다. 

Adenomatos polyposis coli (APC) :
윈트신호의 저해인자로 작용하는 인자로 암이 시작되는 것을 억제하는 인자로 작용하며, 대장암 환자들에서 90%의 높은 비율로 돌연변이가 발견되며, 이 돌연변이는 암 발생에 큰 영향을 미치는 것으로 알려져 있다. 

Familial type adenomatos polyposis coli (FAP) :
가족력으로 Apc(adenomatous polyposis coli) 유전자에 이상이 생긴 암환자로, 젊은 시기인 20-30세에 발병하며 대장에 수많은 폴립이 발생된다

 

<최강열 교수>

1. 인적사항                          

 ○ 성 명 : 최강열  
 ○ 소 속 : 연세대학교 생명시스템대학 생명공학과  단백질기능제어이행연구센터(ERC) 

2. 학력사항
  1978.2 - 1985.2   연세대학교  생명공학 학사   
  1988.8 - 1993.8  퍼듀대학교  생화학/생명과학 박사 
    
3. 경력사항 
  1993.9 - 1995.2     하버드 의과대학 생화학-분자약리학 박사후연구원
  1995.2 - 2001.8    연세의대 생화학-분자생물학교실 조/부교수
  2001.8 - 2004.8   연세대학교 공과대학 생명공학과 부교수
  2004.9 - 현재  연세대학교 생명시스템대학 생명공학과 교수
  2006.3 - 2007.2  연세대 유전체 협동과정 주임교수
  2003.1 - 현재  Experimental and Molecular Medicine, Editor
  2009.1 - 현재  Journal of Biochemistry, Associate Editor
  2007.1 - 현재  The Open Chemical and
    Biomedical methods Journal, Editorial Board
  2009.1 - 현재  World Journal of Stem Cells,  Editorial Board
  2009.9-2010.7         연세대 생명공학과 학과장
  2005.3 - 2009.8  국가지정연구실(NRL) 책임자
  2009.2 - 현재  단백질기능제어이행연구센터(ERC) 센터장 

4. 주요성과 

Woo-Jeong Jeong, Juyong Yoon, Jong-Chan Park,Soung-Hoon Lee, Seung-Hoon Lee, Saluja Kaduwal Hoguen Kim, Jong-Bok Yoon,  Kang-Yell Choi. 2012. Ras Stabilization Through Aberrant Activation of Wnt/beta-Catenin Signaling Promotes Intestinal Tumorigenesis. Science Signaling. 5, 1-14.

Byung-San Moon, Hyun Yi Kim, Mi-Yeon Kim, Dong-Hwa Yang, Jong-Min Lee, Kyung-Won Cho, Han-Sung Jung, and Kang-Yell Choi. 2011. Sur8/Shoc2 Involves Both Inhibition of Differentiation and Maintenance of Self-renewal of Neural Progenitor Cells via Modulation of ERK Signaling. Stem Cells. 29, 320-331

Ju-Yong Yoon, Kyoung-Hwa Koo, and Kang-Yell Choi. 2011. MEK1/2 Inhibitors, AS703026 and AZD6244, may be potential therapies for K-rasMutatedColorectalCancerthatisresistantto EGFR Monoclonal Antibody Therapy. Cancer Research. 71:445-453.

Dong-Hwa Yang, Ju-Young Yoon, Soung-Hoon Lee, Vitezslav Bryja, Emma R. Andersson, Ernest Arenas, Young-Guen Kwon, Kang-Yell Choi. 2009. Wnt5a is Required for Endothelial Differentiation of Embryonic Stem Cells and Vascularization via Pathways Involving Both Wnt/Beta-Catenin and PKCa. Circulation Research. 104, 372-379.

Sung-Eun Kim , Ju-Yong Yoon, Woo-Jeong Jeong, Soung-Hoo Jeon, Yoon Park, Jong-Bok Yoon ,Young Nyun Park, Hoguen Kim, and Kang-Yell Choi. 2009. H-Ras is degraded by Wnt/b-catenin signaling via b-TrCP-mediated polyubiquitination. Journal of Cell Science. 122, 842-848. (Cover paper/highlight paper)

Kang-Yell Choi., D. M. Lyons, and E. A. Elion. (1994). Ste5 thether multiple protein kinase in the MAP kinase cascade required for mating in Saccharomyces cerevisiae. Cell. 78, 499-512.

  

반응형
반응형

미래 꿈의 신소재로 각광받고 있는 그래핀은 지난 2004년 가임과 노보셀로프 교수 연구팀은 스카치테이프를 이용해 연필심(흑연)으로부터 마이크로미터 크기의 그래핀을 분리해내면서 주목받았습니다.

그래핀은 탁월한 물리적, 전기적 특성을 갖고 있어 현재 사용되는 고가의 물질들을 대체할 수 있는 '꿈의 신소재'로 부각됐습니다.

그러나 기계적인 방법으로 얻을 수 있는 그래핀의 양이 매우 적어 실제로 활용하기에는 한계가 있었습니다.

현재 그래핀 생산은 강산성이나 강한 부식성 산화제 등 독성물질을 이용해 복잡한 과정을 거쳐 생산하고 있습니다.

그래핀을 대량 생산하기 위해 가장 많이 사용되고 있는 방법은 흑연을 강산과 산화제로 처리하해 산화흑연을 만든 후, 초음파분쇄 과정을 거쳐 산화 그래핀을 얻고, 이를 다시 환원시켜 최종적으로 그래핀을 얻는 것입니다.

그러나 흑연을 산화시키기 위해서는 강산과 산화제를 사용해야 하기 때문에 환경적인 문제가 발생하고, 흑연의 산화와 초음파 분쇄 과정을 거쳐 생성된 그래핀은 완벽한 결정구조에서 나타나는 우수한 전기적·구조적 특성을 잃어버리게 됩니다.

이 특성을 복원하기 위해서는 산화된 그래핀을 발암물질이 포함된 유독성 환원제로 환원시키는 과정을 거치는데, 그럼에도 약 70%만 환원되고 30%는 산화된 상태로 남아 성능이 뛰어난 그래핀을 생산하는데 어려움이 있었습니다.

울산과기대 백종범 교수팀이 꿈의 신소재인 그래핀을 친환경적 방법으로 대량 생산할 수 있는 EFG 기술을 개발했습니다.

백 교수팀이 개발한 방법은 흑연을 드라이아이스와 함께 볼밀(ball mill) 용기에 넣고 고속으로 분쇄할 때, 분쇄된 흑연이 주위에 존재하는 이산화탄소와 반응하여 가장자리가 카르복실산으로 기능화된 흑연(EFG, edge-functionalized graphite)이 합성되고, EFG를 물과 같은 친환경용매에 분산하면 그래핀이 생성되는 매우 간단한 기술입니다.

이 기술을 이용하면 분쇄할 때 이산화탄소 대신 다른 물질을 이용해 그래핀 가장자리에 다양한 기능을 갖는 그래핀을 생산해낼 수 있습니다.

EFG법을 이용한 그래핀 형성 메커니즘 모식도. 볼밀 과정에서 분쇄된 흑연이 주변의 이산화탄소와 반응하여 기능화된 그래핀이 형성되고 있다.

그래핀의 탁월한 물리적·전기적 특성들은 이론값으로, 실제 그 특성을 갖춘 그래핀을 생산하기에는 매우 어렵습니다.

그러나 연구팀이 개발한 EFG 방식을 사용하면, 다양한 기능을 갖는 그래핀을 대량으로 생산할 수 있습니다.

특히 이 기술은 간단한 볼밀 방법으로 그래핀을 친환경적이면서도 저렴하게 대량 생산할 수 있음을 보여주는 사례로, 향후 다양한 분야에서 그래핀을 활용할 수 있는 가능성을 획기적인 높였습니다.

이번 연구는 백종범 교수가 주도하고 전인엽 박사과정생(제1저자), 장동욱 박사, 리밍 다이 Case Western Reserve University 교수 등이 참여햇습니다.

이번 연구결과는 세계적으로 권위 있는 과학전문지인 '미국립과학원회보(PNAS)'에 3월 27일자로 게재되었다. 
(논문명: Edge-carboxylated graphene nanosheets via ball milling)

전인엽 박사과정생 (앞줄 왼쪽 첫 번째), 백종범 교수 (앞줄 왼쪽 두 번째) 장동욱 박사 (뒷 줄 왼편 두 번째)를 포함한 UNIST 연구팀


 용  어  설  명

그래핀 (Graphene) :
그래핀은 탄소의 동소체 중 하나로서, 탄소원자들이 각각 sp2 결합으로 연결된 원자 하나 두께의 2차원 구조로 육각형 형태의 벌집 모형의 결정 구조를 이룬다. 강철보다 200배 이상 강하고 구리보다 100배 이상 전기가 잘 통하는 등의 우수한 물리적, 전기적 특성을 가져 디스플레이, 에너지, 환경, 반소체 소자 등에서 주목받는 꿈의 신소재이다.

산화 흑연 (Graphite Oxide) :
가장 많이 사용되고 있는 그래핀 합성 방법인 화학적 합성법의 중간체로서, 강산과 산화제로 흑연을 산화시켜 강한 친수성을 도입하여 면간 간격이 3.4Å에서 6~12Å으로 넓어진 상태로 있다.

산화 그래핀 (Graphene oxide) :
장시간의 교반이나 초음파 분쇄기를 이용하여 산화 흑연을 박리시킨 것이다. 산화 그래핀은 많은 기능기를 가지고 있기 때문에 그래핀 고유의 우수한 성질을 대부분 상실하고 있으며, 그래핀을 얻기 위해서는 추가적으로 환원 공정이 필요하다.

<연 구 개 요>

Edge-carboxylated graphene nanosheets via ball milling In-Yup Jeon et al.
(Proceedings of the National Academy of Sciences of the United States of America)

그래핀 나노시트는 0차원 플러렌, 1차원 탄소나노튜브, 3차원 흑연과 같은 탄소 나노물질의 동소체로서 2차원의 벌집모양의 결정구조가 판형으로 밀집되어 있는 구조를 가지고 있으며, 이 신물질은 다양한 응용 가능성을 지니고 있어 최근 학계로부터 엄청난 관심을 일으키고 있다.
그래핀 나노시트를 제조하기 위해서는 스카치테이프를 이용한 박리법, SiC기판에 성장시키는 에피택시 성장법, 화학 증기 증착법 (CVD), 산화 흑연 (GO)의 용액 박리 등 여러 기술들이 보고되었다.
스카치테이프를 이용한 박리법이 높은 품질을 가지는 그래핀 나노시트를 발견함으로 해서 노벨상을 수상하는 영예를 안았으나 이 방법은 매우 낮은 수율로 인해 대면적의 그래핀 나노시트 필름을 제작 하는 데에는 적합하지 않다.
30 인치 이상의 대면적 그래핀 나노시트 필름이 진공 상태에서 정교하고 세심한 제조 공정인 화학 증기 증착에 의해 제조되었으나, 이 역시 제조과정이 까다롭고 고가이기 때문에 대량생산에는 적합하지 않다.
흑연을 산화하여 산화 흑연으로 제조한 후에 용액상에서 박리하여 환원시키는 제조법은 현재 널리 보고되어 있으며 전 과정이 용액 내에서 진행되며 대량생산이 용이한 장점이 있다.
그러나 흑연 층간의 강한 반데르발스(Van der Waals) 인력으로 인해 용액 박리법은 강한 산화제를 필요로 하며 또한 까다로운 여러 공정이 수반된다.
이러한 부식성의 산화제는 탄소 기저면(basal plane)에 수많은 화학적·물리적 결함을 도입해서 종종 심각한 손상의 원인이 된다.
결과적으로 이 방법은 손상된 기저면을 복구시키기 위해 산화 그래핀을 환원시켜 환원된 산화 그래핀을 만드는 것이 필수적이다.
하지만 안타깝게도 환원 과정에는 위험한 환원제가 사용되지만, 환원이 전부 일어나지도 않는다 (~70%). 환원된 산화 그래핀은 여전히 산화된 기능기와 구조적 결함을 가지고 있으므로, 추가적으로 고온에서 가열냉각 (annealing) 과정을 거쳐야 한다.
 위에 언급된 산화 그래핀 제조법의 한계점을 극복하기 위해, 본 연구팀은 드라이아이스 존재 하에서 볼밀에 의해 간편하지만 효과적·친환경적·가장자리 선택적 기능화로 산화되지 않은 흑연 제조의 새로운 방법을 보고한다.
가장자리가 카르복실화된 흑연 (edge-carboxylated graphite, ECG)은 높은 수율로 제조되며, ECG는 용액 과정에 유용한 그래핀 나노시트로서 자가 박리를 일으켜 다양한 극성 용매에 매우 잘 분산된다.
산화 그래핀과는 달리 가장자리가 선택적으로 기능화된 흑연은 기저면의 높은 결정 구조를 보호할 수 있다.
가장자리에 붙어있는 기능기들은 서로 반발하는 성질을 지니고 있기 때문에 효과적으로 흑연의 가장자리를 벌리게 되며, 이는 용매 내에서 자가 박리를 일으키게 된다.
분산된 용액은 높은 품질의 그래핀 나노시트/필름의 제조를 가능하게 한다.
그 예로 산화 그래핀보다 더 뛰어난 1214 S/cm의 전기 전도도를 가지는 대면적의 그래핀 나노시트 필름은 기판 위에 필름을 형성하고 열로 기능기를 없애므로 해서 쉽게 제조할 수 있는 대면적의 그래핀 나노시트 필름은 또한 볼밀에서 카르복실화를 위해 사용된 반응물인 드라이아이스의 사용은 대기 중의 이산화탄소 배출과 지구에서 악영향을 줄이거나 없애기 위해 이산화탄소를 포획 및 저장하기에 용이할 수 있다.
유해한 화학물질도, 까다로운 공정도 없는 새로 개발된 볼밀 공정은 매우 낮은 제조단가에서 높은 품질의 그래핀 나노시트를 대량생산으로 기존의 제조법을 능가한다. 

 

<백종범 교수> 

1. 인적사항                          

 ○ 성 명 : 백종범(46세)
 ○ 생년월일 : 1967.03.17.
 ○ 소 속 : UNIST 친환경에너지공학부

2. 학력
  1984.3 - 1991.2  경북대학교 공업화학과 학사   
  1991.3 - 1993.2 경북대학교 고분자공학과 석사  
  1994.8 - 1998.8 University of Akron, Department of Polymer Science 박사   
  
3. 경력사항 
  1993.07 - 1998.08   국비장학생 
  1998.12 - 1999.10   Liquid Crystal Institute, Kent State University 박사후 연구원
  1999.11 - 2003.08   US Air Force Research Lab/UDRI 선임연구원
  2003.09 - 2008.08  충북대학교 부교수
  2008.08 - 2009.08   Georgia Institute of Technology 방문교수
  2010.04 - 현재     UNIST 저차원 탄소소재 연구센터장
  2008.11 - 현재     UNIST 친환경에너지공학부 부교수

<전인엽 연구원> 

1. 인적사항

 ○ 성 명 : 전인엽 (34세)
 ○ 소 속 : UNIST 친환경에너지공학부
 
2. 학력
  1998.03 - 2004.02     충북학교 공업화학과 학사   
  2005.09 - 2007.08      충북대학교 공업화학과 석사  
  2008.03 - 2009.02     충북대학교 공업화학과 박사과정
  2009.03 - 현재        UNIST 친환경에너지공학부 박사과정 


 


 

반응형
반응형

20세기 인류에게 농업혁명을 안겨준 질소비료가 생산한 산화이질소는 태양으로부터 지구를 보호하는 오존층의 파괴 촉매제입니다.

세계 인구 증가에 따른 식량·에너지 문제는 화학비료와 생물연료의 사용을 가속화시킬 것이며, 이로 인해 산화이질소의 배출도 지속적으로 증가될 것입니다.

지금까지 지구온난화와 오존층 파괴의 주범으로 지목되어 온 CFCs(프레온가스)는 많은 노력으로 감소 추세에 있지만, 산화이질소의 경우 산업혁명 이후 지속적인 증가 추세에 있고, 최근에는 더욱 가파르게 상승하고 있습니다.

과학자들은 현재의 증가 추세가 지속된다면 앞으로 산화이질소가 오존층에 입히는 피해는 기존에 알려진 어떤 물질보다도 더 클 것이라고 합니다.

이 산화이질소의 동위원소는 생성과 소멸의 과정을 말해주는 꼬리표입니다.

지구온난화의 주범인 산화이질소의 생성과 소멸 메커니즘을 추적하는 방법이 과학적으로 규명되었습니다.

서울대 박선영 교수팀은 1940년 이후 60여 년 동안 대기 중 산화이질소 동위원소 변화 과정을 추적해 대기 중 산화이질소의 농도 증가가 질소비료 사용에 기인한 것임을 확인했습니다.

또 비료의 사용이 토양 내 미생물의 화학적 반응을 더욱 활성화 시킨다는 사실도 밝혀냈습니다.

그리고 산화이질소 동위원소의 분포가 계절에 따라 주기적으로 변하는 사실도 증명했습니다.

이러한 동위원소 변동성이 갖는 폭과 주기는 산화이질소가 어디서 얼마나 발생하고 분해되었는가를 말해줍니다.

이 변동성은 산화이질소 생성원을 규명하고 오존층이 존재하는 성층권에서 발생하는 광분해 영향 정도를 밝히는 새로운 척도로 평가받고 있습니다.

 

(a):
지난 60년에 걸친 대기 시료의 관측은 산화이질소가 지속적으로 증가하고 있음을 보임
(b-d): 산화이질소 농도의 증가와는 반대로 동위원소 비율(δ로 표기)은 지속적으로 감소하며, 이는 비료 사용으로 토양 내 미생물 작용이 활성화되고, 동위원소 비율이 낮은 산화이질소를 다량 만들어내고 있음을 의미함

(a): 산화이질소 농도의 계절 주기성과 함께
(b-d): 동위원소 분포의 계절 주기성이 밝혀짐. 각 동위원소 계절변동의 크기와 주기는 산화이질소 분해가 일어나는 성층권 공기의 영향과 산화이질소가 만들어지는 토양과 해양의 복합 작용에 의해 결정됨.

 

이번 연구는 서울대 박선영 연구교수(제1저자)가 주도하고 미국 UC Berkeley 및 호주 CSIRO 기후연구센터 연구팀이 참여했습니다.

연구결과는 세계 최고 권위의 학술지인 '네이처'의 자매지 네이처 지구과학(Nature Geoscience) 온라인(3월 11일)에 게재되었습니다.
 (논문명 : Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940)

호주 Cape Grim의 풍광. 본 연구에서는 이곳에서 매주 채취되어 보관되어온 공기시료를 이용하여 지난 60여 년간의 산화이질소 변화를 추적하였음

 

 용 어 설 명

안정동위원소 :
원자번호는 같지만, 원자핵 내 중성자수의 차이로 원자량이 다른 원소를 동위원소라고 하며, 방사능 붕괴를 하지 않는 동위원소를 특히 안정동위원소라고 부른다.
산화이질소(N2O)의 질소 동위원소는 14N과 15N이며, 산소 동위원소는 16O, 17O와 18O이다.
산화이질소 분자 내 이들 동위원소의 상대적 비는 산화이질소가 관여하는 생물-지구화학 반응에 따라 달라진다.
따라서 동위원소는 산화이질소가 경험하는 생성과 소멸의 순환 기작를 추적하는 꼬리표로 사용될 수 있다.

교토의정서(Kyoto protocol) :
지구 온난화의 규제 및 방지를 목적으로, 1997년 일본 교토에서 지구 온난화 방지 교토 회의(COP3) 제3차 당사국 총회에서 채택하고 2005년 발효한 국제 협약.
본 의정서를 인준한 국가는 이산화탄소, 산화이질소 등을 포함하는 여섯 종류의 온실 가스의 배출량을 감축하며 배출량을 줄이지 않는 국가에 대해서는 비관세 장벽을 적용하게 된다.

질산화 반응 :
미생물에 의해 암모니아(NH3)가 아질산염(nitrite, NO2-)으로, 이어 아질산염이 질산염 (nitrate, NO3-)으로 산화하는 일련의 반응.
이때 암모니아가 산소와 반응하여 아질산염으로 되는 단계의 부산물로서 산화이질소가 만들어진다.

탈질산화 반응 :
질소산화물들이 유기물 산화를 위해 전자 수용체로서 사용되는 환원 반응.
즉, 미생물들에 의해 질산염이 아질산염, 산화질소(NO), 산화이질소를 차례로 거쳐 질소(N2)로 환원되어지는 일련의 반응을 일컫는다.
이때 만들어지는 주요 중간 산물이 산화질소와 산화이질소이다.

  

<연 구 개 요>

Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940
대기 중 산화이질소 (N2O) 동위원소의 60년 변화추세와 계절 변동성

국내 연구진의 주도하에 대기 중 산화이질소(N2O) 안정동위원소의 계절 변동성이 처음으로 밝혀졌다.
서울대학교 지구환경과학부 박선영 연구교수와 김경렬 교수 연구팀은 미국 UC Berkeley 대학 Kristie A. Boering 교수 및 호주 CSIRO 기후관측센터 L. Paul Steele 박사 연구팀과의 공동 연구를 통해 산화이질소 동위원소의 계절 주기성을 밝힘으로써, 산화이질소의 생물-지구화학 순환을 규명하는 새로운 과학적 기틀을 제시하였다.
그 연구결과는 지구과학분야 최고 권위의 학술지인 네이처 지구과학(Nature Geoscience) 3월 11일자 온라인판에  발표되었다.
 
사람들의 농업혁명을 이루어낸 질소비료가 만들어 낸 원하지 않는 부산물인 산화이질소는 지구온난화 및 기후변화와 관련된 교토의정서가 규정한 주요 온실기체이며, 성층권 오존층 파괴를 촉매하는 대기 물질이다.
과학자들은 다음 세기에는 산화이질소에 의한 오존층 파괴가 냉매로 사용되어온 CFC와 같은 할로겐화합물의 효과를 능가할 것으로 전망한다.
할로겐화합물들은 생산과 사용의 규제로 현재 감소 추세에 있지만, 산화이질소의 경우 그 대기 중 농도가 산업혁명이후 지속적으로 증가하는 추세에 있고 최근 더욱 가파르게 상승하고 있다.
산화이질소의 자연적·인위적 생성원들을 규명하고 생성원의 차이에 따른 발생량을 측정하는데 있어서 가장 큰 과학적 난제는, 산화이질소가 광분해로 소멸되는 장소인 성층권 공기의 영향을 정량적으로 밝히는 것이었다.
 
서울대 박선영 교수, 김경렬 교수 연구팀은, UC 버클리 대학, 호주 온실기체 연구팀과 함께 1940년 이후 지난 60여년 동안 이 기체의 동위원소가 변화해온 과정을 추적하는 연구를 통하여 산화이질소의 증가가 농업 생산 증대를 위한 지속적인 비료 사용에 기인한 것임을 확인하였고, 비료 사용으로 미생물에 의한 토양 내 질산화 반응 (nitrification)이 탈질산화 반응(denitrification)에 비해 더욱 활성화됨을 밝혔다.
더욱이 산화이질소 동위원소 분포가 계절에 따라 주기적으로 변화하는 것을 최초로 증명하고, 동위원소 분포 계절변동의 폭과 주기가, 산화이질소의 생성원을 규명하고 성층권에서 발생하는 광분해의 영향 정도를 밝히는 새로운 척도임을 제시하였다.
본 연구는 토양내 미생물 생태, 성층권 광화학, 성층권-대류권 상호 공기 순환, 해양내 질소 화학 및 순환, 기후학 등 광범위한 분야에 향후 미칠 학문적 영향이 인정되어 네이처(Nature) 학술자매지인 네이처 지구과학(Nature Geoscience)에  게재된 것이다.
 본 연구의 서울대팀 공동저자인 김경렬 교수는 산화이질소의 분포에 미치는 성층권 광화학의 영향을 동위원소 분석을 통해 최초로 증명하고, 이 연구 결과를 1993년 사이언스(Science)지에 게재한 바가 있다.
또한 지구환경과학부 석좌교수였던 Paul J. Crutzen 교수에게 1995년 노벨화학상을 안긴 연구 성과가 바로 산화이질소를 포함한 질소화합물들이 관여하는 오존 형성과 파괴 기작에 대한 규명이었다.
 
본 논문의 제 1저자로서 연구를 주도한 박선영 연구교수는 "세계 인구 증가에 따른 식량 및 에너지 문제는 화학비료와 생물연료(biofuels)의 사용을 가속화시킬 것이며, 이에 따라 산화이질소의 배출은 지속적으로 증가될 것"이라고 경고한다.
따라서 "산화이질소 배출규제의 근거확보를 위하여 산화이질소 동위원소 분포의 시?공간적 변동에 대한 지속적 모니터링이 필요하며, 상대적으로 연구가 미흡한 해양에서의 산화이질소 생성 및 변화에 관한 연구가, 자연계 산화이질소 순환의 완전한 이해를 위해 반드시 진행되어야한다"라고 강조한다.

 

 <박선영 교수>(제 1저자) 

 
1995. 02. 서울대학교 해양학 학사
 1997. 02. 서울대학교 해양화학 석사
 2005. 05. University of California at Berkeley (UC Berkeley) 지구과학 박사
 2005. 07. ~ 2008. 06. Harvard University 박사후 연구원
 2008. 07. ~ 2011. 08. Harvard University 연구원
 2011. 03. ~ 현재 서울대학교 지구환경과학부 연구 교수
 연구 분야: 온실기체 농도와 동위원소 측정을 통한 생물-지구화학 순환 과정 연구
<Kristie A. Boering>(교신저자) 
 
 
1985. University of California at San Diego (UC San Diego) 화학 학사
 1991. Stanford University 물리화학 박사
 1991. ~ 1998. Harvard University 박사후 연구원 및 연구원
 1998. ~ 2005. UC Berkeley 화학 및 지구과학과 겸임 조교수
 2006. ~ 현재 UC Berkeley 화학 및 지구과학과 겸임 부교수
 연구 분야: 고층대기 온실기체 측정과 농도 시뮬레이션 및 탄화수소 광화학 연구
<김경렬 교수>(공동저자)
 

 

1971. 02. 서울대학교 화학 학사

 1973. 02. 서울대학교 분석화학 석사
 1983. University of California at San Diego 해양화학 박사
 1984. ~ 현재 서울대학교 지구환경과학부 교수
 2006. 03. ~ 2012. 02. 서울대학교 지구환경과학부 학부장
 2006. 03. ~ 현재 서울대학교 지구환경과학부 BK21 사업단 단장
 연구 분야: 해양화학 및 온실기체 대기모니터링, 산화이질소 동위원소에 관한 연구로 1990년 Nature지에 이어 1993년 Science지에 논문 게재

4. L. Paul Steele,  Ray L. Langenfelds, Paul J. Fraser, and Paul B. Krummel (공동저자) (Paul.Steele@csiro.au; Ray.Langenfelds@csiro.au; Paul.Fraser@csiro.au; Paul.Krummel@csiro.au)
호주 기후연구센터/CSIRO 대기 및 해양 연구소 (Centre for Australian Weather and Climate Research /CSIRO Marine and Atmospheric Research) 책임 연구원
  연구 분야: 남반구 온실기체 분포 특성 및 공기 시료 장기 보존에 관한 연구. Nature 및 Science 논문 다수 게재.

5. David M. Etheridge, Dominic Ferretti, Tas.D. van Ommen, and Cathy M. Trudinger (공동저자) (David.Etheridge@csiro.au; domferretti@yahoo.com; Tas.Van.ommen@aad.gov.au; Cathy.Trudinger@csiro.au)
 호주 기후연구센터/CSIRO 대기 및 해양 연구소/타스마니아 대학 (Centre for Australian Weather and Climate Research /CSIRO Marine and Atmospheric Research/University of Tasmania) 책임 연구원
  연구 분야: 극지방 빙핵 및 firn에 포집된 과거 공기시료에서의 온실기체 연구

반응형
반응형

교육과학기술부와 한국연구재단은 '이달의 과학기술자상' 4월 수상자로 노철언 인하대 교수를 선정했습니다.

노철언 교수는 다양한 대기 환경에서 미세입자의 물리화학적 특성을 규명하고 기존의 측정 분석 방법의 한계를 뛰어 넘는 획기적인 대기입자 측정 분석법을 세계 최초로 개발했습니다.

지구 기후 변화와 인체 건강에 영향을 미치는 대기입자의 물리화학적 특성 규명은 대기환경 및 환경역학 분야에 매우 중요한 사안으로 대두되고 있습니다.

대기입자는 대기 중에서 각각의 입자가 독립적으로 행동하기 때문에 단일입자의 특성을 파악할 수 있는 단일입자 분석(Single particle analysis) 기술이 필요합니다.

노철언 교수는 마이크로미터 크기의 대기 미세입자를 정량적으로 분석할 수 있는 획기적인 단일입자 분석 기술을 개발하고, 이를 실제 대기입자 분석에 응용하여 도시, 해양, 황사 등 다양한 환경의 대기입자 특성을 명확히 파악했습니다.

이에 대한 연구 성과로 지난해 국가연구개발 우수성과 100선과 차세대 핵심환경기술개발사업 우수논문으로 채택되었습니다.

또 2010년에는 환경부장관 표창, 한국대기환경학회 학술상, AWMA학회의 Outstanding Author Award를 수상하기도 했습니다.

이 밖에 2011 Japan Society for Atmospheric Environment, 2010 Pacifichem, 2008 American Geophysical Union 등 다수의 국제 학회에서 초청받아 국내외 연구자들의 주목을 받고 있기도 합니다.

노철언 교수는 지난 15년간 대기 미세입자 분석 기술을 개발하고 응용한 결과를 대기 환경 및 분석분야에서 세계적으로 유명한 Analytical Chemistry, Environmental Science and Technology, Atmospheric Environment, Atmospheric Chemistry and Physics, Journal of Geophysical Research 등 SCI 저널에 70여편의 논문을 게재한 바 있습니다.

현재까지 발표한 논문들의 피인용 횟수는 983회이며, 국제학회 85회(초청 강연 8회 포함), 국내학회 127회에 걸쳐 관련 사항을 발표했습니다.

한편 노철언 교수는 2011년 인하대학교 Inha Fellow Professor, 2010년 Asian Journal of Atmospheric Environment 편집장, 2010년 X-Ray Spectrometry 편집위원으로 선정됐고, 올해는 한국대기환경학회와 한국환경분석학회 부회장으로 선임되었습니다.

<노철언 교수> 

▶소속 : 인하대학교 화학과

● 학    력

▶1977 ∼ 1981       서울대학교 학사 (화학 전공)
▶1981 ∼ 1983       한국과학기술원 석사 (물리화학 전공)
▶1986 ∼ 1991       Univ. of North Carolina at Chapel Hill 박사 (분석화학 전공)

● 경    력

▶2011 ∼ 현재
▶2004 ∼ 2011
▶1993 ∼ 2004
▶2010 ∼ 현재
▶2010 ∼ 현재
▶2012 ∼ 현재
▶2008 ∼ 현재
인하대학교 화학과 (Inha Fellow Professor)
인하대학교 화학과 (교수)
한림대학교 화학과 (교수)
Asian Journal of Atmospheric Environment (편집장)
X-Ray Spectrometry (편집위원)
한국대기환경학회 (부회장)
한국환경분석학회 (부회장)


● 주요업적 : 대기 미세입자의 측정 분석 기술 개발 및 응용
□ 대기 미세입자의 특성을 명확히 규명할 수 있는 새로운 단일입자 분석 기술을 개발하고 다양한 대기 환경에서의 대기 입자의 물리화학적 특성을 규명
□ 대기입자 특성 분석 분야에서 세계적인 선도 연구를 수행해 왔으며, 대기입자 특성을 명확히 규명함으로써 지구 기후 변화 및 인체 건강에 미치는 영향을 파악하는데 크게 기여


반응형
반응형

현재 전 세계적으로 무기물 압전 반도체 물질 기반 압전 에너지 발전소자가 활발히 연구되고 있지만, 물질 내부에 존재하는 자유전자로 인해 압전 효율이 높지 못한 상황입니다.

에너지 효율을 기존보다 36배 가량 획기적으로 높인 압전 에너지 발전소자가 국내 연구진에 의해 구현됐습니다.

■ 성균관대 김상우 교수팀은 '유-무기물 하이브리드 구조'를 이용해 효율이 높은 압전 에너지 발전소자를 만드는데 성공하고, 구동 메커니즘을 규명했습니다.

김 교수팀은 무기물 압전 반도체 내부에 존재하는 자유전자를 효과적으로 제거하여 고효율의 압전 에너지 발전소자를 구현하고자, n형의 무기물 압전 반도체 물질(산화아연, ZnO)과 p형의 폴리머 물질(P3HT)을 나노구조로 제어·접합시켜, P3HT 내부에 존재하는 정공과 산화아연 내부에 존재하는 자유전자와의 결합을 유도하여 압전 효율을 크게 증가시켰습니다.

유·무기물 하이브리드 구조를 이용한 압전 에너지 발전소자는 무기물 압전 반도체만을 이용한 압전 에너지 발전소자보다 에너지 변환효율이 36배 이상 대폭 증가되었습니다.

이 결과를 바탕으로 연구팀은 배터리와 같이 외부의 전력공급원 없이 유·무기물 하이브리드 구조를 이용한 압전 에너지 발전소자만으로 적색, 녹색, 청색 LED를 구현하는데 성공하여 차세대 에너지 기술 분야에서 획기적인 발전을 이룬 것으로 평가받고 있습니다.

이번 연구는 성균관대 김상우 교수가 주도하고, 이근영 박사과정생(제1저자), 최덕현 경희대 교수(공동교신저자), 종린 왕 조지아텍 교수 등이 참여했습니다.

연구결과는 나노과학 분야의 권위 있는 학술지인 'Nano Letters'지 온라인 속보(3월 16일자)에 게재되었습니다. 
(논문명: P-Type Polymer-Hybridized High-Performance Piezoelectric Nanogenerators)

(왼쪽부터 시계방향으로) 성균관대 김상우 교수, 이주혁, 승완철, 김성균, 김도환 석사과정생, 이근영 박사과정생


 

 용  어  설  명

압전(壓電)에너지 발전소자 :
초음파, 미세진동, 혈류, 바람, 조류, 신체 움직임 등 주변 환경에 존재하는 기계적 에너지를 압전효과를 이용해 전기에너지로 변환시키는 소자.
초음파, 미세진동, 혈류, 바람, 조류, 신체 움직임 등 주변 환경에 존재하는 기계적 에너지를 압전효과를 이용하여 전기에너지로 변환하여주는 소자로서, 최근에는 압전소재의 나노화를 통하여 압전 효율을 대폭으로 향상시킬 수 있고 파괴 없이 큰 변형이 가능하여 기계적으로 매우 안정한 소자 제작이 가능하여 고효율의 에너지 발전소자를 구현할 수 있음.
자연 에너지만으로 전력을 발생할 수 있어서 차세대 그린 에너지장치로 활용이 가능함.
예로 신발 속에 초소형 압전 에너지 발전소자를 내장할 경우, 걷거나 뛸 때 생기는 운동에너지를 전기에너지로 바꿀 수 있음.
또한 신체 내 혈류의 흐름에 의한 기계적 에너지를 전기에너지로 변환이 가능하여 심박동 센서 등의 바이오메디컬 장비로도 응용이 가능함

n형 무기물 압전 반도체 :
전기 전도현상을 지배하는 주된 운반체가 정공(hole)이 아니라 전자(electron)인 무기물 압전 반도체

압전효과 (Piezoelectric Effect) :
○ 원자가 규칙적으로 정렬되어 있는 결정에 일정한 방향으로 압력을 가했을 때, 전기적 분극 현상이 유기되는 전기 유전적 특성. 즉 압전체를 매개로 기계적 에너지와 전기적 에너지가 상호 변환하는 작용으로 압력이나 진동을 가하면 전기가 발생하고 전기를 흘려주면 진동이 발생하는 효과임

산화아연 (ZnO) :
아연산화물 형태로서 반도체 특성을 나타내며 자외선 영역의 고유한 발광을 할 수 있으며, 전기적 특성 제어를 통해 디스플레이 소자 및 태양전지의 투명전극 물질로 사용되고 있음. 또한 강한 압전 효과를 나타내어 최근 압전 에너지 발전소자 구현을 위한 압전 물질로서의 응용에 관한 연구가 활발히 진행되고 있음

P3HT(poly-3-hexylthiophene) :
전도성 폴리머로 p-type 반도체 특성을 나타냄. 결정성이 높은 고분자로서 주로 유기물 태양전지 활성층의 donor 재료 및 광흡수 물질로서 널리 사용되고 있음

나노 레터스(Nano Letters)誌
세계적 권위의 나노분야 대표과학전문지 (인용지수 impact factor 12.186)


 

<연 구 개 요>


압전 에너지 발전소자는 기존의 태양전지, 풍력, 연료전지등과 같은 친환경 에너지와 달리 주변에 존재하는 미세진동이나 인간의 움직임과 같은 소모성의 기계적 에너지를 전기에너지로 무한히 추출할 수 있는 새로운 개념의 친환경에너지 발전소자로서 자연계에 존재하는 미소에너지원을 활용할 수 있는 장점이 있다. 

전 세계적으로 압전 에너지 발전소자의 출력 향상을 통해 차세대 에너지원으로서의 응용을 위한 실용화 연구가 활발히 진행되고 있지만, 여전히 낮은 출력을 나타내고 있다. 그 중 무기물 압전 반도체를 기반으로 한 압전 에너지 발전소자의 경우, 무기물 압전 반도체 내부에 존재하는 자유전자가 기계적 응력에 의해 발생되는 압전 포텐셜을 감소시켜 압전 효율이 감소하는 것으로 알려져 있다. 

이번 연구는 무기물 압전 반도체 내부에 존재하는 자유전자를 효과적으로 제거하여 고효율의 압전 에너지 발전소자를 구현하기 위한 효과적인 방법으로, n형의 무기물 압전 반도체 물질인 산화아연(ZnO)과 p형의 P3HT(Poly(3-hexylthiophene))를 나노구조로 제어·접합시켜, P3HT 내부에 존재하는 정공과 산화아연 내부에 존재하는 자유전자를 결합시켜 제거하고, 추가적으로 압전 포텐셜에 의한 유·무기물 계면에서 페르미준위(Fermi Level)의 변화를 유도하여 압전 효율을 크게 증가시켰다.
뿐만 아니라 출력향상을 위해 전도성 폴리머인 PCBM(phenyl-C61-butyric acid methyl ester)과 P3HT를 섞어 압전 포텐셜에 의해 추가적인 전하가 공급될 수 있도록 소자를 설계하여 압전 출력을 대폭 향상시켰다.
유·무기물 하이브리드 구조를 이용한 압전 에너지 발전소자는 기존 무기물 압전 반도체만을 이용한 압전 에너지 발전소자와 비교하여 0.068%의 기계적 응력 하에서 압전 전압 및 전류밀도가 각각 18배(1.45V), 3배(6.05μA/cm2)로 증가하였고, 에너지 변환효율이 0.5%에서 18%로 36배(0.88W/cm3) 이상 대폭 증가되었다.
이러한 결과를 바탕으로 연구팀은 배터리와 같은 외부의 전력공급원 없이 유·무기물 하이브리드 구조를 이용한 압전 에너지 발전소자만으로 적색, 녹색, 청색 발광다이오드(LED)를 구동시킴으로써 차세대 에너지 기술 분야에서 획기적인 결과를 거둔 것으로 평가받고 있다.


그림 1. n형 무기물 압전 반도체인 산화아연(ZnO) 기반 압전 에너지 발전소자의 구조(a) 및 에너지 발전 메커니즘(b), 측정된 압전 전압(c), 전류밀도(d)

 

그림 2. n형 무기물 압전 반도체인 산화아연(ZnO)과 P형 P3HT 기반 유·무기물 하이브리드 구조의 압전 에너지 발전소자의 구조(a) 및 에너지 발전 메커니즘(b), 측정된 압전 전압(c), 전류밀도(d)

 

그림 3. n형 산화아연과 P3HT:PCBM 기반 유·무기물 하이브리드 구조의 압전 에너지 발전소자의 구조 및 에너지 발전 메커니즘(a), 측정된 압전 전압(b), 전류밀도(c)

 

그림 4. 유·무기물 하이브리드 구조 기반 압전 에너지 발전소자의 직·병렬 연결에 통한 측정 전압(a), 전류밀도(b) 및 LED 적색, 녹색, 청색 발광다이오드(LED) 구동


<김상우 교수>

1. 인적사항

○ 성      명 : 김상우 (金湘祐, 40세)
○ 소      속 : 성균관대학교 신소재공학부, 성균나노과학기술원

2. 학력사항
○ 1998년 : 성균관대학교 금속공학과 (학사)
○ 2000년 : 광주과학기술원 신소재공학과 (석사)
○ 2004년 : Kyoto University 전자공학과 (박사)

3. 경력사항
○ 2004년 ~ 2005년 : University of Cambridge, Research Associate 
○ 2005년 ~ 2009년 : 금오공과대학교 전임강사, 조교수
○ 2009년 ~ 현  재 : 성균관대학교 신소재공학부 조교수, 부교수

4. 주요연구업적
○ "Large-Scale Synthesis of High-Quality Hexagonal Boron Nitiride Nanosheets for Large-Area Graphene Electronics", K. H. Lee, H. J. Shin, J. Y. Lee, I. Y. Lee, G. H. Kim, J. Y. Choi, and S.-W. Kim, Nano Lett., 12, 714 (2012)
○ "Controlled Growth of Semiconducting Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators", B. Kumar, K. Y. Lee, H.-K. Park, S. J. Chae, Y. H. Lee, and S.-W. Kim, ACS Nano, 5, 4197 (2011)
○  "Sound-Driven Piezoelectric Nanowire-Based Nanogenerators", S. N. Cha, J.-S. Seo, Seong Min Kim, H. J. Kim, Y. J. Park, J. M. Kim, and S.-W. Kim, Adv. Mater., 22, 4726 (2010)
○  "Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes", D. Choi, M.-Y. Choi, W. M. Choi, H.-J. Shin, J.-S. Seo, J. Park, S.-M. Yoon, S. J. Chae, Y. H. Lee, S.-W. Kim, J.-Y. Choi, S. Y. Lee, and J. M. Kim, Adv. Mater., 22, 2187 (2010)
○ "Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods", M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, Adv. Mater., 21, 2185 (2009)

<최덕현 교수> 

1. 인적사항 

○ 성      명 : 최덕현 (崔德賢, 36세)
○ 소      속 : 경희대학교 기계공학과 조교수

2. 학력
○ 2000년 : 포항공과대학교 재료금속공학 (학사)
○ 2002년 : 포항공과대학교 기계공학과 (석사)
○ 2006년 : 포항공과대학교 기계공학과 (박사)

3. 경력사항
○ 2006년 ~ 2006년 : 포항공과대학교 시스템바이오다이나믹스 센터 박사후 연구원
○ 2007년 ~ 2008년 : University of California at Berkeley (UC-Berkeley), Bioengineering, Berkeley Sensor and Actuator Center (BSAC), Biomolecular Nanotechnology Center (BNC) 박사후 연구원
○ 2008년 ~ 2010년 : 삼성종합기술원, Flexible Electronics Group 전문연구원
○ 2010년 ~ 현  재 : 경희대학교 기계공학과 전임강사, 조교수

4. 주요연구내용
○ "Control of naturally coupled piezoelectric and photovoltaic properties for multi-type energy scavengers", D. Choi, K. Y. Lee, M. J. Jin, S. G. Ihn, S. Y. Yun, X. Bulliard, W. Choi, S. Y. Lee, S.-W. Kim, J. Y. Choi, J. M. Kim, Z. L. Wang, Energy Environ. Sci., 4, 4607 (2011)
○  "Charge-Generating Mode Control in High-Performance Transparent Flexible Piezoelectric Nanogenerators", H.-K. Park, K. Y. Lee, J.-S. Seo, J.-A. Jeong, H.-K. Kim, D. Choi, and S.-W. Kim, Adv. Funct. Mater., 21, 1187 (2011)
○  "Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes", D. Choi, M.-Y. Choi, W. M. Choi, H.-J. Shin, J.-S. Seo, J. Park, S.-M. Yoon, S. J. Chae, Y. H. Lee, S.-W. Kim, J.-Y. Choi, S. Y. Lee, and J. M. Kim, Adv. Mater., 22, 2187 (2010)
○ "Self-organized Hexagonal Nanopore SERS", D. Choi, Y. Choi, S. Hong, T. Kang, and L. P. Lee, Small, 6, 1741 (2010)
○ "Additional Amplification of SERS via Optofluidic CD-based Platform", D. Choi, T. Kang, H. Cho, Y. Choi and L. P. Lee, Lab on a Chip, 9, 239 (2009)

<이근영 박사과정> 

1. 인적사항

○ 성      명 : 이근영 (李根永, 30세)
○ 소      속 : 성균관대학교 신소재공학부

2. 학력사항
○ 2009년 : 금오공과대학교 재료공학과 (학사)
○ 2011년 : 성균관대학교 신소재공학과 (석사)
○ 2011년 ~ 현  재 : 성균관대학교 신소재공학과 (박사과정)

3. 경력사항
○ 2011년 ~ 현  재 : 교육과학기술부, 한국연구재단 글로벌박사펠로우쉽(Global Ph.D. Fellowship) 선정·수행 중

4. 주요연구내용
○ "Controlled Growth of Semiconducting Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators", B. Kumar, K. Y. Lee, H.-K. Park, S. J. Chae, Y. H. Lee, and S.-W. Kim, ACS Nano, 5, 4197 (2011)
○ "Control of naturally coupled piezoelectric and photovoltaic properties for multi-type energy scavengers", D. Choi, K. Y. Lee, M. J. Jin, S. G. Ihn, S. Y. Yun, X. Bulliard, W. Choi, S. Y. Lee, S.-W. Kim, J. Y. Choi, J. M. Kim, Z. L. Wang, Energy Environ. Sci., 4, 4607 (2011)
○ "Charge-Generating Mode Control in High-Performance Transparent Flexible Piezoelectric Nanogenerators", H.-K. Park, K. Y. Lee, J.-S. Seo, J.-A. Jeong, H.-K. Kim, D. Choi, and S.-W. Kim, Adv. Funct. Mater., 21, 1187 (2011)
○ "Piezoelectric touch-sensible flexible hybrid energy harvesting nanoarchitecture", D. Choi, K. Y. Lee, K. H. Lee, E. S. Kim, S. Y. Lee, S.-W. Kim, J.-Y. Choi, and J. M. Kim, Nanotechnology. 21, 405503 (2010)

 

반응형
반응형

지구상에 존재하는 모든 생명체는 생체시계를 통해 밤낮의 구별과 계절의 변화를 미리 예측하고 그에 맞는 행동을 합니다.

수면과 기상을 포함한 사람의 모든 행동과 생리작용도 24시간을 주기로 생체리듬을 갖습니다.  

피어리어드 단백질은 생체시계를 이루는 핵심 단백질로, 피어리어드 단백질에 가해지는 수식화에 의해 피어리어드 단백질의 양과 기능도 변화하여 자연스럽게 시간을 알려주는 분자적인 지표가 됩니다.

사람의 수면과 기상의 리듬인 생체시계의 속도를 조절하는 새로운 원리가 규명되어, 생체시계를 자유자재로 조절할 수 있는 가능성을 열었습니다.

아주의대 김은영 교수와 연세대 조진원 교수 공동 연구팀은 생체시계 핵심 단백질인 피어리어드 단백질의 아세틸그루코사민(O-GlcNAc) 수식화가 잘 안되면 생체시계의 속도가 빨라져 약 21시간의 행동 리듬을 나타내고, 반대로 과도하게 수식화되면 생체시계의 속도도 느려져 약 27시간의 행동 리듬을 나타낸다는 사실을 밝혀냈습니다.

이번 연구는 피어리어드 단백질에 O-GlcNAc 수식화가 일어난다는 사실을 처음으로 밝혀내고, 이 피어리어드 단백질의 O-GlcNAc 수식화 정도가 생체시계의 속도를 조절할 수 있음을 동물 모델(초파리)을 통해 개체수준에서 규명한 것입니다.

피어리어드 단백질의 O-GlcNAc 수식화가 생체시계 작동에 미치는 역할에 대한 모델

(상) 정상 초파리에서 시간에 따라 피어리어드 단백질의 수식화가 일어나는 과정에 대한 모식도이다. 피어리어드 단백질은 특정 아미노산에 인산화가 일어나면 핵 안으로 이동하게 되는데, OGT 효소에 의해 피어리어드 단백질이 O-GlcNAc 수식화가 일어나면 인산화를 저해하여 피어리어드 단백질이 세포질 내에 일정 시간 머무르도록 한다. 그 결과 정상 초파리는 24시간의 생체리듬 주기를 유지할 수 있다.
(중) OGT 효소가 적게 만들어 지면 피어리어드 단백질의 O-GlcNAc 수식화가 감소하고 그 결과 피어리어드 단백질의 인산화가 촉진되어 피어리어드 단백질이 세포질 내에 머무르지 못하고 이른 시간에 핵 안으로 이동하게 되어 생체리듬의 주기가 약 21 시간으로 짧아지게 된다.
(하) OGT 효소가 많이 만들어지면 피어리어드 단백질의 O-GlcNAc 수식화가 오랜 시간 지속되고 피어리어드 단백질의 인산화가 더디게 일어나 피어리어드 단백질이 세포질 내에 머무르는 시간이 길어지고 핵 안으로 이동하는 시간이 늦어져 생체리듬의 주기가 약 27시간으로 길어진다.

또한 김 교수팀은 세포의 영양 또는 대사 상태에 따라 단백질의 O-GlcNAc 수식화가 달라지므로, 음식물 섭취와 대사과정이 생체시계에 영향을 미칠 수 있음도 확인했습니다.

우리 몸이 음식물을 섭취하고, 소화, 흡수 및 축적되는 일련의 대사 과정이 생체시계에 영향을 미치기 때문에, 생체시계는 하루 24시간 중 시간에 따라 다르게 조절됩니다.

특히 늦은 밤에 과식하면 쉽게 뚱뚱해지는 것은 그 때문입니다.

이렇듯 생체시계와 대사작용이 서로 상호조절을 하는 예는 생체시계가 파괴되거나 교란된 동물들에서 대사 질환이 발병되고, 인위적으로 비만을 유발하면 생체시계가 교란된다는 사실도 실험적으로 입증되었습니다.

포도당으로부터 유래된 O-GlcNAc 수식화의 정도에 따라 피어리어드 단백질의 기능이 변화하여 생체시계의 속도가 달라진다는 것은 영양 또는 대사 상태가 생체시계와 상호 작용한다는 원리를 이해하는데 핵심적인 실마리를 제공한 것입니다.

이번 연구는 아주의대 김은영 교수와 연세대 조진원 교수, 정은희 연구원, 정현정 박사과정생, 박수진 박사과정생, 아이작 에더리 Rutgers University 교수 등이 참여했습니다.

연구결과는 생명과학분야의 권위 있는 학술지인 '유전자와 발생(Genes and Development)'지에 3월 1일자로 게재되었습니다. (논문명: A role for O-GlcNAcylation in setting circadian clock speed)

김은영 교수(가운데)가 정은희 연구원(오른쪽)과 초파리를 보면서 생체시계 속도 조절 원리를 토론하고 있다.

 

 용  어  설  명

Tranascriptional/Translational Feedback Loop (TTFL)
생체시계를 작동하는 핵심 분자 기전으로 양성 인자 (Positive element)와 음성 인자 (Negative element)로 이루어진 음성 되먹임 고리 (Negative Feedback Loop) 이다.
이 TTFL은 생체시계의 작동 기전을 설명하기 위해서 초파리를 이용한 연구에서 처음으로 제시되었고 포유류를 비롯한 모든 동물에서 동일한 기전으로 생체시계가 작동함이 이후의 연구들을 통해 밝혀졌다.
초파리에서는 양성 인자로서 dCLOCK (dCLK)과 CYCLE (CYC) 단백질이 음성 인자인 dPERIOD (dPER), TIMELESS (TIM), VRILLE (VRI), 그리고 PDP1ε을 만든다. dPER와 TIM은 dCLK/CYC의 활성을 억제하여 자신의 발현을 저해하고, VRI과 PDP1ε은 각각 dCLK의 발현을 억제, 촉진하는 역할을 한다.

O-GlcNAc 수식화
단백질의 Serine 잔기 또는 Threonine 잔기에 일어나는 수식화로서 포도당으로부터 Hexosamine Biosynthetic Pathway를 거쳐 만들어진 UDP-GlcNAc 이 O-GlcNAc tranasferase (OGT) 효소의 작용으로 hydroxyl group에 첨가되는 반응이다. 첨가된 O-GlcNAc은  O-GlcNAcase (OGA)에 의해 떨어진다.

 

<연 구 개 요>


A role for O-GlcNAcylation in setting circadian clock speed Kim, E.Y. et al. (Genes and Development - 2012. 3.1. 출판)

이 지구상에 존재하는 모든 생명체들은, 생체시계를 통하여 지구의 자전결과 나타나는 낮/밤의 변화, 그리고 더 나아가서는 일 년을 주기로 나타나는 계절의 변화를 미리 예측하고 이에 맞게 행동할 수 있게 되었다. 
따라서 인간의 수면/기상 주기와 같은 여러 가지 행동 및 생리적인 현상 등이 24시간의 주기를 갖는 생체리듬을 나타낸다.

생체시계의 분자생물학적인 작용 기전은 아주 하등한 단세포 동물로부터 사람에 이르기 까지 종간 진화적 보존성이 매우 높은데 특히 사람을 포함하는 포유류의 생체시계에 관한 이해는 초파리를 모델로 한 일련의 연구로부터 가능하였다.
전사인자인 dCLOCK (dCLK)과 CYCLE (CYC) 단백질이 dPERIOD (dPER)와 TIMELESS (TIM) 단백질의 발현을 촉진하고 dPER 단백질은 TIM 단백질과 이합체 (dimer)를 이루어 dCLK과 CYC의 활성을 저해하여 자신의 발현을 억제함으로써 생체시계 유전자 및 생체시계의 조절을 받는 유전자의 발현이 진동 (oscillation) 하도록 하는 Tranascriptional/Translational Feedback Loop (TTFL)이 생체시계 작동의 분자적 기전이다.
특히 dPER 단백질은 많은 Ser/Thr 잔기에서 시간에 따라 인산화가 조절되고, 그 결과 dPER 단백질의 양, 활성, 그리고 핵 안으로의 이동 등이 조절됨으로써 생체시계 시스템에서 시간을 알려주는 분자적 지표로 인식되고 있다.

앞서 언급한 TTFL에 의해 생체시계 유전자들이 24시간의 주기를 가지고 발현이 진동 (oscillation) 하기 위해서는 dPER 단백질이 합성된 후 바로 dCLK/CYC의 활성을 억제하지 않고 어느 정도 시간이 경과한 후 dCLK/CYC의 활성을 억제하는 것이 필요하다.
따라서 dPER 단백질이 합성된 후 세포질에서 어느 정도 머물러 있다가 특정 시간에 핵 안으로 이동하도록 조절하는 것이 동물이 24시간의 생체리듬을 갖도록 하는데 중요한 조절 기전이 될 것임이 제시되어 왔으나 어떤 시그널이 dPER가 일정 시간 동안 세포질 안에 머무르도록 하는지에 대해서는 알려진 바가 없었다.
본 연구에서는 단백질의 O-GlcNAc 수식화가 Ser/Thr 잔기에 일어나고 인산화와 다양한 상호작용을 통해 단백질의 활성을 조절한다는 사실에 기반을 두어 O-GlcNAc 수식화가 생체시계의 작동에 영향을 미칠 수 있는지 조사하여 본 결과, dPER 단백질이 O-GlcNAc 수식화될 수 있음을 처음으로 밝혔다.
더욱이 초파리를 이용한 다양한 유전학적인 연구기법을 이용하여 O-GlcNAc 수식화가 dPER 단백질의 안정성 및 핵 안으로 이동하는 타이밍을 조절함으로써 생체시계가 24기간의 주기를 유지할 수 있도록 한다는 것을 개체수준에서 입증하였다.

매우 흥미롭게도 초파리에서 dPER 단백질의 O-GlcNAc 수식화는 시간에 따라 조절되었다.


dPER 단백질의 O-GlcNAc 수식화 정도를 조절하기 위하여 단백질의 O-GlcNAc 수식화를 매개하는 효소인 OGT 단백질의 발현정도를 생체시계 세포에서 저하 (knockdown)시키거나 과발현 (overexpression) 시킨 후 생체리듬의 변화를 조사하였다.
그 결과, ogt의 발현이 저하된 초파리는 생체리듬이 24시간에서 21.7시간으로 짧아졌고 반면, ogt가 과발현된 초파리는 생체리듬이 26.5시간으로 늘어나는 것을 확인하였다.

dPER 단백질의 O-GlcNAc 수식화가 dPER 단백질에 어떠한 영향을 미치는가, 그리고 어떠한 기전을 통하여 생체시계의 속도를 조절하는가를 조사해 본 결과 먼저 O-GlcNAc 수식화는 dPER 단백질을 안정화 시킨다는 사실을 발견하였다 (그림 3, A 와 B).
초파리 뇌에서 생체시계는 약 150개의 신경세포들에 의해서 조절되며, 특정 그룹들의 신경세포들이 생체리듬의 서로 다른 특징들을 조절하는 것으로 잘 알려져 있다.
특히 small ventral lateral neuron (sLNv)은 외부에서 오는 시간의 정보가 없을 때 초파리의 행동이 생체리듬을 유지하도록 하는데 중요한 기능을 담당한다. 이 신경세포에서 dPER 단백질의 시간에 따른 세포내 분포정도를 조사해 본 결과, ogt의 발현이 저하되어 O-GlcNAc 수식화가 적게 일어난 dPER 단백질은 합성된 후 세포질 내에 머무르지 못하고 이른 시간에 핵 안으로 이동하는 것을 확인할 수 있었고 (그림 3, C와 D), 반면에 ogt의 발현이 증가하여 O-GlcNAc 수식화가 많이 된 dPER 단백질은 오랜 시간 세포질 내에 머무르며 핵 안으로 이동이 더뎌지는 것을 확인할 수 있었다.
이는 생체시계 세포에서 ogt의 발현 정도에 따라 생체리듬의 주기가 빨라지거나 느려지는 것과 일치하는 결과이다.

O-GlcNAc 수식화의 기질이 되는 UDP-GlcNAc 이 포도당으로부터 만들어지기 때문에 단백질의 O-GlcNAc 수식화는 세포에서 영양 상태를 감지하는 시그널로 알려져 있다. 생체시계는 빛 자극 뿐 아니라, 영양/대사에 의해서도 영향을 받는 것이 잘 알려져 있다.
본 연구에서 생체시계의 핵심 단백질인 dPER 단백질이 O-GlcNAc 수식화에 의해 조절되고, 이러한 조절이 생체시계의 속도를 바꿀 수 있음을 밝혀냄으로써 영양/대사에 의해 생체시계가 조절 되는 신호체계를 이해하는데 실마리를 제공하였는데 매우 의의가 크다고 하겠다.


<김은영 교수>

1

. 인적사항                          

 ○ 성 명 : 김 은영 (43세) 
 ○ 소 속 : 아주대학교 의과대학

2. 학력사항
  1988.3 - 1992.2   연세대학교 생물학과 학사   
  1992.3 - 1994.2  연세대학교 생물학과 석사  
  1997.3 - 2000.2  아주대학교 의과대학 박사 
    
3. 경력사항 
  1994.1 - 1996.7   동아제약 (주) 연구소 연구원
  2000.3 - 2008.2   Rutgers University
                   Center for Advanced Biotechnology and Medicine  박사후연구원
  2008.3 - 현재     아주대학교 의과대학 조교수

4. 주요성과 
1.  Kim, E.Y.*, Jeong, E.H., Park, S., Jeong, H.J., Edery, I., Cho, J.W.* (2012) A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 26(5):490-502 (*Co-corresponding author)
2.  Sun, W.C., Jeong, E.H., Jeong, H.J., Ko, H.W., Edery, I., Kim, E.Y. (2010) Two distinct modes of PERIOD recruitment onto dCLOCK reveal a novel role for TIMELESS in circadian transcription. J. Neurosci. 30(43):14458-69.
3.  Ko, H.W. *, Kim,E.Y.*, Chiu,J., Vanselow,J.T., Kramer,A., Edery,I. (2010) A hierarchical phosphorylation cascade that regulates the timing of PERIOD nuclear entry reveals novel roles for proline-directed kinases and GSK-3beta/SGG in circadian clocks. J. Neurosci. 30(38):12664-75. (*Co-first author)

<조진원 교수>

1. 인적사항

 ○ 성 명 : 조진원
 ○ 소 속 : 연세대학교 대학원 WCU 프로그램 융합오믹스 의생명과학과 / 생명시스템대학 시스템생물학과
 

2. 학력사항
  1977.3 - 1982.2   연세대학교 생물학과 학사   
  1982.3 - 1984.2  연세대학교 생물학과 석사  
  1987.3 - 1993.1  Univeraity of California, Davis PhD 

3. 경력사항
  1993.2 - 1996.2   SUNY Stony Brook 박사후연구원  
  1996.3 - 현재 연세대학교 시스템생물학과/융합오믹스 의생명과학과 교
  현재            융합오믹스 의생명과학과 학과장, 한국당과학회 회장, 한국분자세포생물학회 교육위원장, International Glycoconjugates Organization 한국대표, 4th ACGG Symposium 조직위원장, 24th International Symposium on Glycoconjugates 조직위원장 
4. 주요성과
1. Won Ho Yang, Ji Eun Kim, Hyung Wook Nam, Jung Won Ju, Hoe Suk Kim, Yu Sam Kim, and Jin Won Cho (2006) Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nature Cell Biology 8: 1073-1084
2. Won Ho Yang, Sang Yoon Park, Hyung Wook Nam, Do Hyun Kim, Jeong Gu Kang, Eun Seok Kang, Yu Sam Kim, Hyun Chul Lee, Kwan Soo Kim, and Jin Won Cho (2008) NFκB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. P Natl Acad Sci USA 105:17345-17350
3. Sang Yoon Park, Hyun Sil Kim, Nam Hee Kim, Suena Ji, So Young Cha, Jeong Gu Kang, Ichiro Ota, Keiji Shimada, Noboru Konishi, Hyung Wook Nam, Soon Won Hong, Won Ho Yang, J?rgen Roth, Jong In Yook, Jin Won Cho (2010) Snail1 is stabilized by O-GlcNAc modification in hyperglycemic condition. EMBO J 29, 3787-3796

 

반응형
반응형

체내의 모든 세포로 분화될 수 있는 배아줄기세포는 치매 등 난치성 질환을 치료할 수 있는 무한한 잠재력이 있습니다.
 
그러나 면역 거부반응과 같은 부작용과 난자를 이용해야 하는 윤리적 문제로 인해 그 사용이 제한되고 있습니다.

이 같은 문제점을 해결하고자 환자로부터 얻은 체세포를 배아줄기세포와 유사한 상태로 유도하는 체세포 역분화 연구가 활성화되고 있습니다.
  
특히 지난 2006년에는 일본 쿄토대 야마나카 교수팀이 체세포 역분화 유전자를 삽입하여 배아줄기세포와 매우 흡사한 유도만능줄기세포 생산에 성공하기도 했습니다.

그러나 유도만능줄기세포는 분화과정에서 소량의 미분화세포가 잔류해 세포를 이식하는 과정에서 종양이 생성될 수 있는 문제점이 있습니다.

따라서 최근에는 역분화과정을 거쳐 유도만능줄기세포로 만들지 않고, 직접적인 세포치료를 위한 체세포로의 직접전환(리프로그래밍)을 유도하기 위한 기술개발이 진행되고 있습니다.
 
하지만 이 기술도 세포들이 이미 최종단계까지 분화되어 자기재생능력이 없는 세포들로서, 시험관에서 일정기간 이상 배양이 어려워 세포치료에 필요한 충분한 양의 세포를 확보하는 것이 현재 기술로는 불가능했습니다.

그런데 신경줄기세포의 특이적인 유전자를 이용해 '유도신경줄기세포'를 생산, 기존의 배아줄기세포와 유도만능줄기세포를 대체할 세포치료의 한계가 극복되었습니다.
 
■ 건국대 한동욱 교수팀은 독일 막스플랑크연구소와 공동으로 기존 문제점을 개선한 '유도신경줄기세포'를 개발하고, 치매 등 퇴행성 뇌질환 치료에 새로운 가능성을 열었습니다.
 
 한 교수팀은 생쥐의 체세포에 신경줄기세포의 특이적인 유전자를 삽입하여 뇌 조직으로부터 나온 신경줄기세포와 유사한 세포를 생산해냈는데, 이를 '유도신경줄기세포'라고 이름 붙였습니다.
 

유도신경줄기세포로의 직접 리프로그래밍 기법 모식도.체세포에 신경줄기세포 특이적인 유전자를 도입, 체외와 체내에서 정상적인 분화능을 가진 유도신경줄기세포의 생산이 이루어짐.



 한 교수팀이 개발한 유도신경줄기세포는 시험관에서 1년 이상 장기 배양이 가능하여 자기재생능력이 증명되었고, 분자생물학적 측면에서도 뇌 조직으로부터 나온 신경줄기세포와 일치했습니다.

직접 리프로그래밍 기법으로 생산된 유도신경줄기세포.체외에서 장기간 배양이 가능하여 자기재생능을 획득했음이 증명되었으며, 형태학적으로 뇌조직 유래 신경줄기세포와 매우 유사함.

유도신경줄기세포의 체외 분화능.직접 리프로그래밍을 통해 생산된 유도신경줄기세포가 신경세포, 성상세포, 희돌기교세포로 분화가 이루어져 정상적임 분화능을 가지고 있음이 증명됨.



또한 생쥐의 뇌 조직에 주입하자, 어떠한 종양도 형성되지 않고 다양한 신경세포로 분화되어 정상적인 분화능력도 확인되었습니다.

신경줄기세포로의 직접 리프로그래밍 기술은 분화 및 자기재생 능력을 겸비한 성체줄기세포 중에서도 줄기세포 분야 블루칩으로 각광 받는 기술입니다.

이번 연구는 체세포를 성체줄기세포로 직접 역분화를 유도한 첫 번째 사례로서, 기존의 유도만능줄기세포를 이용한 치료의 가장 큰 문제점인 종양 형성의 문제점을 극복한 획기적인 방법으로 평가받고 있습니다.

이번 연구결과는 세계 최고 권위의 과학전문지 '셀(Cell)'의 자매지인 '세포줄기세포지(Cell Stem Cell)' 주요 논문으로 온라인 판(3월 22일)에 게재되었습니다.
(논문명: Direct reprogramming of fibroblasts into neural stem cells by defined factors)

한동욱 교수(왼쪽)


 용  어  설  명

배아줄기세포(Embryonic stem cells, ESCs) :
수정란에서 유래 가능한 줄기세포로서, 전분화능 (pluripotency, 전능성)을 가지고 있어서 우리 몸을 구성하는 모든 종류의 세포로 분화 가능한 세포이다.

유도만능줄기세포(Induced pluripotent stem cells, iPSCs) : 
체세포에 4가지 전사 유전자 (Oct4, Sox2, Klf4, c-Myc)를 도입하여 만든 세포로서 전분화능을 비롯한 다양한 측면에서 배아줄기세포와 유사한 세포이다. 2006년 일본 쿄토대학의 신야 야마나카 연구진이 개발하였다.

리프로그래밍(Reprogramming) :
일반적으로 분화가 이루어진 체세포를 여러 가지 실험적 방법을 이용 다시 배아줄기세포화 시키는 방법이다. 최근 체세포를 전혀 다른 형태의 체세포로 바꾸어 주는 과정 역시 직접 리프로그래밍(Direct reprogramming, Direct conversion, Transdifferentiation)이라고 부른다.

신경줄기세포 (neural stem cells, NSCs) :
뇌조직이나 척수에서 유래 가능한 성체줄기세포로서 자기재생능을 가지며 신경, 성상세포, 희돌기교세포로 분화가 가능한 다능성을 가진다.

세포줄기세포(Cell Stem Cell)지 :
Cell지의 자매지인 Cell Stem Cell지는 줄기세포분야 최고 권위(인용지수 impact factor 26.967)지로서 주로 다양한 줄기세포에 대한 연구내용을 다룬다.

<연 구  개 요>

최근  Embryonic stem cells (ESCs) 특이적인 전사인자를 이용하여 체세포를 ESCs과 동일한 상태 즉 유도만능줄기세포 (induced pluripotent stem cells, iPSCs)로  reprogramming이 가능하게 되었다.
그러나 특정 체세포에서 특이적으로 발현하는 전사인자들을 도입, 전혀 다른 형질을 가진 adult stem cells로의 직접 리프로그래밍 여부는 아직 알려진 바 없다.
최근 분화된 체세포에 reprogramming 유전자 (Oct4, Sox2, Klf4, c-Myc) 또는 세포 특이적인 전사유전자들을 적용하여 신경세포, 심근세포, 혈액전구세포, 간세포, 외배엽줄기세포로의 직접 리프로그래밍의 유도가 성공적으로 이루어졌다.
기존의 연구에 따르면, 신경세포 특이적인 전사유전자 및 microRNA를 적절히 조합하여 생쥐와 인간의 fibroblast를 다양한 신경세포로 직접 리프로그래밍이 가능함이 밝혀졌다.

이러한 유도신경세포 (induced neurons, iN cells)는 신경세포와 유사한 유전자 발현 양상은 물론 활동전위를 발생시킬 수 있었으며 이 결과는 체외에서 직접 리프로그래밍을 통해 생산된 유도신경세포가 체내 유래 신경세포와 기능적으로도 매우 유사하다는 것을 보여준다.
그러나 자기재생능 (self-renewal) 없는 유도신경세포는 체외에서 일정기간 이상 배양이 어렵고 따라서 충분한 양의 세포를 확보할 수 없기 때문에 직접 리프로그래밍에 관여하는 분자 세포학적 기전을 이해하기 어렵고 나아가 세포치료에 필요한 충분한 양의 세포를 얻어내는 것이 현실적으로 불가능하다.
현재까지 가장 잘 알려진 성체줄기세포인 신경줄기세포 (Neural stem cells; NSCs)는 자기재생능은 물론 신경세포 (neurons), 성상세포 (astrocytes), 희돌기교세포 (oligodendrocytes) 로의 분화능력을 갖추고 있다.
따라서 섬유아세포의 신경줄기세포로의 직접 리프로그래밍은 궁극적으로 신경세포뿐만 아니라 신경 관련 세포들을 대량 확보할 수 있는 기술로 적용 가능하다.
본 연구진은 신경줄기세포 특이적인 전사유전자와 줄기세포 특이적 전사유전자를 적절히 조합하여 fibroblast를 기능성을 구비한 유도신경줄기세포 (induced neural stem cells, iNSCs)로 직접 리프로그래밍에 성공하였다.

iNSCs는 뇌 조직에서 유래된 신경줄기세포와 형태학적 특성, 자기재생능, 후생학적 상태, 체내와 체외 분화능에서 매우 유사하였다.
또한 본 연구진은 fibroblast에서 iNSCs로의 직접 리프로그래밍이 체세포 특이적인 유전자의 발현이 시간이 지남에 따라 비활성화되는 점진적 방식 (gradual process)으로 이루어짐을 발견하였다.
따라서 이 연구결과는 체세포를 실질적으로 자기재생능과 정상적인 기능성을 겸비한 성체줄기세포로의 직접 리프로그래밍을 유도한 첫 번째 연구사례로 사료된다.


<한동욱 교수>

1. 인적사항
 ○ 소 속 : 건국대학교 의학전문대학원 줄기세포교실  
     

2. 학력
  1994-2001  건국대학교 학사 (축산학)
  2001-2003  건국대학교 석사 (가축번식학)
  2005-2008 건국대학교 박사 (생명공학)
     
3. 경력사항
  2008 - 2011  독일 Max Planck 연구소, 박사후 연구원
  2011 - 현재  건국대학교, 총장석학교수
  2011 - 현재  건국대학교 의학전문대학원 줄기세포교실 부교수
 
4. 전문 분야 정보
  - 연구 분야
   1) 생쥐의 배아줄기세포와 외배엽줄기세포, 인간 배아줄기세포를 기반으로 하는 전분화능의 기작에 대한 연구
   2) 유도만능줄기세포의 생산과 역분화 기전에 대한 연구
   3) 유도만능줄기세포를 이용한 신약개발과 질병발생 기작에 대한 연구
   4) 체세포를 다른 형태의 체세포 혹은 성체줄기세포로 직접 리프로그래밍을 유도하기 위한 연구
   5) 직접 리프로그래밍 기법을 이용 임상수준의 유도만능줄기세포와 성체줄기세포의 생산에 대한 연구
   6) 역분화 과정과 생식세포의 발달, 분화과정 그리고 개체의 발달과정에서 수반되는 후생유전학적 리프로그래밍의 기작에 대한 연구

- 수행 과제
   2011-현재 : 교육과학기술부(한국연구재단) 일반연구자지원사업(우수신진연구)
   2011-현재 : 교육과학기술부(한국연구재단) 원천기술개발사업 (바이오.의료기술개발사업)
- 연구 논문
   SCI 및 SCI(E) 28편


반응형
반응형

양자통신은 정보를 빛의 기본입자인 광자의 양자 상태에 실어 전달하는 새로운 방식의 통신으로, 고전적 통신용량의 한계를 극복할 대안이 되고 있습니다.

한 펄스에 여러 개의 정보를 중첩하여 전송하므로, 빠른 속도와 정확한 정보전달 등 기존의 통신에 비해 많은 장점이 있습니다.

지금까지 불가능하다고 여겨왔던 100km 이상의 장거리 양자통신을 가능하게 하는 방식이 개발됐습니다.

■ 인하대 함병승 교수는 양자메모리 분야에서 지금까지 한계로 인식되던 밀리초 정도의 짧은 저장시간(스핀위상전이시간)을 수 시간까지 저장할 수 있는(스핀밀도전이시간) 새로운 포톤에코 방식을 개발했습니다.

함 교수는 지난 2009년 광잠금 라만에코방식의 양자메모리 프로토콜을 개발하였지만(Nature Photonics 발표), 마이크로파 영역대의 에코신호를 광신호로 치환하는 번거로움과 양자소음 미해결이 문제점으로 대두되었습니다.

이번에 개발한 포톤에코방식은 기존의 '광잠금' 방식을 차용하여 저장시간은 동일하되, '이중재위상화' 방식을 적용하여 양자소음문제와 마이크로파-광신호 치환문제를 동시에 해결했습니다.

이번 양자메모리 연구는 기존의 연구방식과는 차별되는, 특히 국내 연구진 단독으로 일궈낸 의미 있는 결과로서, 우리나라가 미래형 차세대 양자정보처리와 장거리양자통신의 핵심원천기술을 선점하고 선도할 수 있는 계기를 마련했습니다.

이번 연구결과는 미국물리학회에서 발간하는 양자광학분야의 권위 있는 학술지인 'PRA Rapid Communications'에 4월 1일자로 게재됩니다.

(a) 광잠금/이중재위상 포톤에코를 위한 에너지준위.
(b) 전산모사 결과. D/W/R은 세펄스 포톤에코 방식을 이룸. C1/C2은 광잠금을 이룸. RR은 이중재위상 펄스. 첫 번째 에코 E1은 조용한 에코로서 발생이 억제되나, 이중재위상에 의한 최종에코 E2는 밀도반전 없이 발생.

이중재위상과 광잠금에 의한 포톤에코 한계극복

본 포톤에코-양자메모리 방식의 핵심은 기존의 포톤에코에서 한계였던 밀도반전에 의한 양자소음 문제를 그림의 RR에 의한 이중재위상화로 극복했고, 광위상전이에 국한된 짧은 저장시간 문제를 C1/C2에 의한 ‘광잠금’방식을 적용하여 스핀밀도전이시간으로 해결한 데 있다.
그림에서 보듯이, 재생에코 E2는 밀도반전 없이(붉은 선은 들뜬상태의 밀도를 나타냄) 저장시간이 연장되었는데, 이 때 저장시간은
기존물리학의 한계였던 스핀위상전이시간(천분의 일초)을 초월하여 스핀밀도전이시간 즉 수 시간까지 가능하다.


 용  어  설  명

양자메모리 :
고전적인 전자정보나 광정보를 원하는 시간만큼 저장시켰다가 다시 꺼내 쓸 수 있는 장치 혹은 기술에 상응하는 개념으로서, 비고전적 양자정보를 잠시 저장할 수 있는 장치 혹은 기술방식으로 양자정보처리에 있어서 핵심요소기술

광잠금 방식 :
고전/비고전을 막론하고 어떠한 광학적 정보든지 시간의 흐름에 따라 원래의 값을 잃게 되는데, 본 양자메모리에 있어 광밀도전이에 따른 양자정보의 유실을 막기 위해 들뜬 상태에 있는 원자들을 독립적 상태에 있는 바닥상태 스핀준위로 옮겨놓는 방법으로 양자메모리 저장시간을 획기적으로 늘릴 수 있는 핵심원리.

스핀밀도전이시간 :
매질내 광전이(가시광선, 적외선, 자외선 등의 파장을 가짐)에 있어 들뜬상태준위에 있는 원자들이 바닥상태준위로 떨어지는데 필요한 시간에 대응하는 것으로서, 바닥상태준위사이 혹은 스핀(마이크로 파장을 가짐)의 밀도전이시간.

양자통신 :
정보를 빛의 기본입자인 광자의 양자 상태에 실어 전달하는 새로운 방식의 통신. 고전적 통신용량의 한계를 극복할 대안으로, 한 펄스에 여러 개의 정보를 중첩하여 전송하므로, 빠른 속도, 정확한 정보전달 등 기존의 통신에 비해 많은 장점이 있음

라만에코 :
2준위계를 이용하는 포톤(혹은 스핀)에코와는 달리, 3준위계에서 서로 다른 두 개의 광신호의 양자결맞음을 스핀에 직접 대응(저장)시키는 방식.

이중재위상화 방식 :
전통적 포톤에코(photon echo)의 기본원리는 매질의 재위상화(rephasing)로 양자소음(quantum noise)을 야기하여, 이 문제를 해결하기 위해 2010년 함 교수팀이 이중(double) 재위상화 방식을 제안함


<연 구 개 요>

Coherent control of collective atom phase for ultralong, inversion-free photon echoes
B. S. Ham (Phys. Rev. A Rapid Communications. USA - 2012. 4. 1 출판)

무어의 법칙에 기초하여 지난세기를 이끌어 온 현대문명의 해심동력인 전자컴퓨터는 단위소자의 처리속도에서 볼 때, 그 기술적 진보는 사실상 멈추었다 해도 과언이 아니다.
무어의 법칙에 따른 나노기술의 발전은 결국 스스로를 파괴할 수밖에 없는 양자세계로 향하고 있어 양자현상은 더 이상 피할 수 없는 디지털 시대의 딜레마였다.
한편, 1995년 쇼어의 양자컴퓨팅 알고리즘은 양자역학에 기초한 미래 양자기술 발전을 추동시켰으나, 17년이 지난 현재 겨우 10여개의 양자큐빗을 구현하는데 그쳐 양자컴퓨팅에 대한 근본적인 회의가 생겨나고 있다.
그러나 아프리카 오지까지 보급되는 인터넷의 확장과 아이폰의 등장으로 촉발된 무선통신용량의 폭발적 증가세는 조만간 고전통신으로는 도저히 감내해낼 수 없는 지경에까지 내 몰릴 것이 확실시된다.
양자정보의 기술적 발전은 "더 빠르게"라는 무어의 법칙에서 "더 많이"와 "더 안전하게"라는 미래기술의 진보를 요청하고 있다. 즉, 고전적 통신용량의 한계를 극복할 대안으로 한 펄스에 여러 개의 양자정보를 중첩하여 전송하는 양자통신과 무조건적 보안에 기초한 양자암호는 이미 시대의 화두가 되어버린 셈이다.
 
양자통신은 고전적 디지털통신과 마찬가지로 전송거리에 한계(약 100km)가 있다. 고전통신에서 전송거리의 한계를 중계기 혹은 증폭기를 사용하여 무한거리로 확장할 수 있듯이, 양자통신에서는 양자리피터를 사용하여 극복하게 된다.
이 양자리피터에 있어 핵심소자는 양자메모리인데, 장거리 양자통신을 위해 필요한 양자메모리의 저장시간은 최소 1초로 알려져 있다.
불행하게도 현재까지의 관측된 양자메모리 저장시간은 1초보다 훨씬 짧으며 그 원리적 한계는 천분의 일초 정도에 불과한 스핀위상전이시간이다. 결국 물리학적 원리 극복 없이는 장거리 양자통신의 실용화는 요원한 셈이다.
 
인하대학교 함병승 교수는 이미 2009년 네이처 포토닉스에 장거리 양자통신을 가능케 하는 장시간 양자메모리 프로토콜을 제안한 바 있다.
이 양자메모리 프로토콜은 라만에코에 '광잠금(optical locking)'이란 독특한 방식을 적용한 것으로서 그 저장시간이 수 시간까지 연장될 수 있는 획기적인 것이었으나, 스핀에코를 광신호로 치환하는 부가적 과정과 광밀도역전(population inversion)에 따른 자발방출/자극방출로 인한 양자소음(quantum noise) 문제를 내포하고 있었다. 
 
2011년 함병승 교수는 '이중재위상'방식을 최초로 포톤에코에 적용하여 양자소음문제를 해결하였으며, 2012년 이를 '광잠금'과 결합하여 양자메모리 저장시간은 스핀밀도전이시간, 즉 수 시간까지 가능하고 밀도재역전(이중재위상)으로 인해 양자소음이 제거된 새로운 양자메모리 프로토콜을 제안하였다.
이에 따르면, 양자광신호의 다중양자모드 즉 다중양자광정보의 동시적인 장시간 저장이 가능하여 비로소 장거리 양자통신이 실용화될 수 있는 전기를 마련하였다.
본 논문은 2012년 4월 1일자 미국 물리학회 저널 Phys. Rev. A의 Rapid Communications에 게재될 예정인데, Rapid Communications은 PRL과 더불어 양자광학분야 최고의 논문으로 인정받는다.


<함병승 교수>
        

1. 인적사항
 ○ 성 명 : 함병승(咸炳承, 48세)
 ○ 소 속 : 인하대학교 IT공과대학 전기공학부

2. 학력
 ○ 1986 : 서강대학교 물리학과 이학사
 ○ 1993 : 미국 웨인주립대학교 물리학과 이학석사
 ○ 1995 : 미국 웨인주립대학교 전기/컴퓨터공학과 공학박사

3. 경력사항
 ○ 1996-1999 : 미국 MIT 및 공군연구소 박사후연구원
 ○ 1999-2003 : 한국전자통신연구원 선임연구원
 ○ 2000-2003 : 과기부지정 창의연구단장 (양자정보처리연구단) 및 한국전자통신연구원 팀장
 ○ 2003-2008 : 인하대학교 정보통신대학원 부교수
 ○ 2006-현재 : 교과부, 연구재단 지정 리더연구자지원사업 창의연구단장 (광양자정보처리연구단)
 ○ 2008-현재 : 인하대학교 전기공학부 교수
 ○ 2011-현재 : 인하대학교 인하펠로우 교수 (IFP)

4. 주요 연구 업적 및 수상
  ○ 1997 : 고체에서 전자기유도투과 최초 관측 (PRL게재 및 Science News에 보도)
  ○ 2002 : 고체에서 느린빛/정지빛 최초 관측 (PRL게재 및 Nature News에 보도)
  ○ 2009 : 장시간 양자메모리 프로토콜 제안 (Nature Photonics 게재)
  ○ 2010 : 교과부, 연구재단 이달의 과학기술자상 수상
  ○ 2010 : 인천시 과학기술대상 수상
  ○ 2010 : 기초연구우수성과 100선


반응형
반응형

뇌신경세포는 기억, 인지, 운동조절 등의 기능을 수행합니다.

이런 뇌신경세포가 기능을 수행하기 위해서는 다른 신경세포와의 교감이 필요한데, 이 때 사용하는 방법이 '신경전달물질'이라는 화학물질을 분비하는 것입니다.
 
이 화학물질 분비는 세포막 융합이라는 독특한 방법으로 이루어지는데, 이 현상이 어떠한 과정으로 조절되는지 지금까지 명확히 밝혀지지 않은 상태입니다.

■ 포스택 이남기 교수와 KIST 신연균 겸임연구원(아이오와주립대 교수) 공동 연구팀이 융합과학을 이용해 뇌신경세포에서 신호를 전달하는 과정을 단계별로 정확히 측정해 치매 등 질환에 뇌신경세포가 손상되는 원인을 규명하는 새로운 가능성을 열었습니다.

연구팀은 단일분자관측 방법으로 기존에 알려지지 않은 신경세포의 신경물질전달 과정을 단계별로 명확히 규명했습니다.

연구팀은 화학물질분비 과정에서 생체막 단백질(시냅토태그민)이 세포막의 특정 지질(PIP2) 및 세포막 융합 단백질(SNARE)과 단계적으로 결합하면서 세포막 융합을 조절한다는 사실을 밝혀냈습니다.

단일분자측정방법을 이용한 세포막 융합 과정을 관측하는 것이 가능하다. (a) 단분자 측정 현미경의 간략도. (b~e) 단분자 현미경을 통한 여러 세포막융합단계의 측정

 


특히 이번 연구는 물리학에서 활용하는 단일분자 방법과 신경분자생물학에서 사용하는 세포막 융합 방법을 이용해 도출한 연구성과입니다.

이번 연구는 뇌세포의 신경전달과정을 명확히 규명한 성과로, 향후 이 방법을 통해 뇌신경세포가 손상되는 치매 등 뇌질환의 정확한 발병원인을 규명할 수 있을 것으로 기대되고 있습니다.

연구결과는 분자생물학 분야의 권위 있는 학술지인 '유럽과학지(EMPO Journal)'에 온라인 속보(3월 10일)로 게재되었습니다.
(논문명: Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs)

뇌신경 세포에서 중요한 역할을 하는 시냅토태그민 (노란색)이 세포막 융합 단백질과 특정 지질간의 연속적인 상호작용을 통해서 세포막 융합에 관여하는 과정을 모식도로 보여준다

(왼쪽부터) 이남기 포스텍 교수, 김재열 박사과정, 최봉규 박사과정



 용  어  설  명

시냅토태그민(Synaptotagmin-1) :
인체 신경세포 내에서 신경물질을 포함하는 신경소낭에 존재하는 막 단백질로서, 칼슘이온과 결합하고 막 융합 단백질과 상호작용하여 빠른 신경전달을 유도하는 것으로 그 기능이 알려져 있다.

단일분자 관측방법(single molecule technique) :
실험 시료를 매우 작은 분자 하나의 움직임 수준까지 관측할 수 있는 방법으로, 단일 분자에 형광표지를 하고 형광의 움직임 및 변화를 관찰한다. 최근 학제간 융합과학, 특히 생물과 물리학의 융합 과학 분야에서 급속도로 발전하는 최첨단 방법이다.

엠보 저널(EMBO journal)지 :
유럽분자생물학기구에서 발행하는 학술지로서, 분자생물학 분야에서 세계적으로 영향력 있는 학술지(피인용지수 10.124) 중 하나이다.

<연 구 개 요>

사람의 뇌와 같은 신경기관은 뉴런이라 불리는 수많은 단위체들의 연결로 이루어져 있다.
이러한 단위체 간의 정보교환에는 아세틸콜린, 세로토닌, 도파민과 같은 신경전달물질들이 관여하고 있으며, 이러한 신경전달물질은 세포막 융합이라는 독특한 방법을 이용하여 세포 밖으로 방출하게 된다.
학계에서는 이러한 세포막 융합은 수많은 막 단백질간의 상호작용으로 이루질 것으로 제시하는 연구 결과가 보고되고 있다. 하지만 구체적으로 어떠한 방법으로 세포막 융합이 일어나는지 밝혀내지 못하였다.
특히 신경전달물질을 함유하는 신경소낭의 생체막에 존재하는 시냅토태그민 단백질은 신경전달에서 매우 중요한 신호물질로 알려진 칼슘이온과 강하게 결합하는 특성을 가지고 있어서, 시냅토태그민의 정확한 역할에 대해 많은 과학자들의 활발한 연구대상이었으나, 그 기능이 명확히 밝혀지지 않은 실정에 있었다.
 
최근 분자 하나의 움직임을 정밀하게 관찰할 수 있는 단일분자 수준의 측정방법이 확립 되면서, 생물학과 물리학 간의 융합과학의 급격한 발전이 이뤄지고 있다.
이러한 발전은 세포 밖 시험관 내에서 인공적인 신경세포 환경을 최대한 뇌세포와 동일하게 만들어 줌으로써 좀 더 정밀한 신경전달을 연구할 수 있게 하였다.

포스텍 이남기 교수와 아이오와주립대 및 KIST 신연균 교수 연구팀은 수용액상에서 확산하고 있는 소낭간의 융합을 단일분자 측정법에 적용 하는데 처음으로 성공하였다.
이는 실제 뉴런세포 내에서 수용액 상태로 확산하는 환경을 조성하여 줌으로써, 좀 더 실제 세포에 가까운 조건에서의 실험을 가능하게 하였으며, 여러 반응들을 분류하고 정량분석 할 수 있게 한데, 큰 의의가 있다.
 
이 연구 방법을 통해 본 연구팀은 시냅토태그민이 세포막 융합 전에도 세포막 융합 단백질과 결합한다는 사실을 밝혀냈다.
그 이후 세포막 융합 단백질간의 결합이 이루어지고 칼슘의 유입에 의해 세포막 융합이 빠르게 촉진됨을 연속적으로 관찰하였다.
또 특정지질과 세포막 융합 단백질간의 적절한 비율이 시냅토태그민의 기능에 매우 중요하게 작용함을 처음으로 밝혀냈고, 나아가 정량적인 반응속도 분석을 통해 시냅토태그민이 세포막 간의 세포막 결합속도를 약 1000배 이상 빠르게 향상시킴을 밝혀내는 개가를 이루었다.


<이남기 교수>

1. 인적사항
 ○ 소 속 : 포스텍 시스템생명공학부/물리학과 조교수
 
2. 학력
  ○ 1998 :  서울대학교 화학과 학사
  ○ 2000 :  서울대학교 화학과 석사
  ○ 2005 :  서울대학교 박사

3. 경력사항
○ 2006년 ~ 2008년 :  Harvard 대 Postdoctoral Fellow
○ 2009년 ~ 현재: 포스텍 시스템생명공학부/물리학과 조교수
 
4. 주요연구업적
1. J.Y. Kim, B. K. Choi, M. G. Choi, S. A. Kim, Y. Lai, Y. K. Shin, N. K. Lee, "Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs", EMBO J. In press (2012).
2. C. H. Kim, J. Y. Kim, B. I. Lee, N. K. Lee, "Direct characterization of protein oligomers and their quaternary structures by single-molecule FRET", Chem. Comm. 48, 1138-1140 (2012).
3. N. K. Lee, H. R. Koh, K. Y. Han, and S. K. Kim, "Folding of 8-17 deoxyribozyme studied by three-color alternating-laser excitation of single-molecules", J. Am. Chem. Soc. 129, 15526 (2007).
4. N. K. Lee, A. N. Kapanidis, H. R. Koh, Y. Korlann, S. O. Ho, N. Gassman, S. K. Kim, and S. Weiss, "Three-Color Alternating-Laser Excitation of Single Molecules: Monitoring Multiple Interactions and Distances", Biophys. J. 92, 303 (2007).
5. A. N. Kapanidis*, N. K. Lee*, E. Margeat, T. Laurence, S. Doose, and S. Weiss, "Fluorescence-Aided Molecule Sorting: analysis of structure and interactions by alternating-laser excitation of single molecules", Proc. Natl. Acad. Sci. USA 101, 8936 (2004).

<신연균 교수>

1. 인적사항
 ○ 소 속 : KIST 겸임연구원, 아이오와주립대 교수
 
2. 학력
  ○ 1982 :  서울대학교 화학과 학사
  ○ 1990 :  Cornell 대학교 박사

3. 경력사항
○ 1990년 ~ 1993년 :  UCLA의대 Postdoctoral Fellow
○ 1993년 ~ 2000년 :  University of California at Berkeley 조교수 (화학)
○ 2000년 ~ 2004년 :  Iowa State University 부교수
○ 2004년 ~ 현재: Iowa State University, 생명과, 물리학과 교수
○ 2008년 ~ 2011 :  포항공대 융합생명공학부 (WCU) 교수
○ 2011년 ~현재 : KIST 겸임연구원
 
4. 주요연구업적
1. Dynamic Ca2+-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Lee HK, Yang Y, Su Z, Hyeon C, Lee TS, Lee HW, Kweon DH, Shin YK, Yoon TY. Science. 2010 May 7;328(5979):760-3.
2. A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol. Tong J, Borbat PP, Freed JH, Shin YK. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5141-6. Epub 2009 Feb 27.
3.Supramolecular SNARE assembly precedes hemifusion in SNARE-mediated membrane fusion. Lu X, Zhang Y, Shin YK. Nat Struct Mol Biol. 2008 Jul;15(7):700-6. Epub 2008 Jun 15.
4. Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Yoon TY, Lu X, Diao J, Lee SM, Ha T, Shin YK. Nat Struct Mol Biol. 2008 Jul;15(7):707-13. Epub 2008 Jun 15.
5. A single-vesicle content mixing assay for SNARE-mediated membrane fusion. Diao J, Su Z, Ishitsuka Y, Lu B, Lee KS, Lai Y, Shin YK, Ha T. Nat Commun. 2010 Aug;1(5):1-6.


반응형

+ Recent posts