반응형

p53 유전자는 세포의 이상증식을 억제하고 암세포 사멸을 촉진하는 유전자로, 항암 유전자라고도 불립니다.

현재까지 가장 강력한 암 억제 유전자로 알려진 p53을 타깃으로 암 치료제를 개발하려는 노력이 계속되고 있지만, 임상실험에서는 기대와 달리 효과가 거의 없었고, 또 부작용 등의 문제점이 나타났습니다.

이것은 p53을 조절하는 원리를 정확히 이해하지 못했기 때문으로, 최근 과학자들은 p53의 조절원리와 상호작용을 정확히 규명하기 위한 연구를 진행 중입니다.

PIMT의 발현에 따른 폐암 및 유방암 환자의 생존율을 보여 준다. PIMT의 발현이 많을 경우 생존율이 낮음을 알 수 있다.


성균관대 한정환 교수팀이 노화된 단백질을 회복시키는 효소로만 알려진 핌트(PIMT)가 암을 억제하는 역할을 하는 유전자(p53)의 기능을 억제해 암을 유발하거나 촉진한다는 사실을 밝혀냈습니다.

연구팀은 메칠화 효소인 핌트가 강력한 암 억제 기능을 지닌 p53을 감소시켜, 궁극적으로 암 발생을 촉진한다는 새로운 원리를 규명했습니다.

연구팀은 핌트의 발현이 증가한 여러 종류의 악성 암세포에서 p53이 감소되었음을 확인하였는데, 특히 핌트가 지나치게 발현된 암환자의 생존률이 그렇지 않은 환자에 비해 약 20% 낮다는 사실을 밝혀냈습니다.
 
특히 핌트가 p53을 메칠화시키고, 이를 통해 p53의 기능을 억제하여 암을 일으키는 암 유발 효소임이 처음으로 밝혀졌습니다.

이는 핌트가 p53을 메칠화시키고, 이 메칠화는 p53의 유비퀴틴화를 촉진함으로써, 결국 p53의 양을 감소시켜 암을 유발한다는 것입니다.


PIMT를 억제시켰을 경우 암 억제 단백질인 p53이 증가하며(좌측), 암세포의 성장이 억제됨(우측)을 보여준다.


PIMT 효소에 의하여 암 억제 단백질인 p53의 특정 잔기에 메칠화가 일어남을 의미한다.

연구팀은 핌트가 p53의 기능을 억제해 결국 암을 촉진한다는 이번 연구결과가 인간의 암세포에만 특이적으로 적용되는 원리라는 것도 확인했습니다.


PIMT에 의하여 암 억제 단백질과 p53의 결합이 조절됨을 의미하며(좌측), 이를 통하여 p53의 안정성이 영향 받음을 나타낸다(우측).

p53의 특정 잔기의 카복실 메칠화가 p53 단백질의 안정성에 핵심적인 역할을 함을 보여준다.



이번 연구는 한정환 교수가 주도하고, 이재철 박사와 하신원 학생이 참여했습니다.

연구결과는 네이처(Nature)의 자매지인 'Nature Communications' 6월 27일자에 게재되었습니다.
(논문명 : Protein L-Isoaspartyl Methyltransferase regulates p53 Activity)

<연 구 개 요>

암은 국내에서 사망률 1위의 질환이며 세계적으로 그 치료를 위한 많은 연구가 진행되고 있다.
현재까지 알려진 가장 강력한 암 억제인자인 p53을 타깃으로 암 치료제를 개발하려는 노력이 있었으나 이를 대상으로 실시한 임상 실험에서는 기대와는 달리 미미한 효과와 부작용 같은 문제점들이 대두되었다.
최근에는 이러한 문제점들이 p53을 조절하는 기전에 대한 이해 부족에서 기인하는 것으로 여겨지고 있다. 따라서 이러한 문제점을 해결하기 위해 p53의 조절 기전 및 상호작용에 대한 연구의 필요성이 부각되고 있으며, 그에 대한 연구가 활발하게 진행 중 이다.
○ 본 연구에서는 p53의 단백질 양이 카르복실 메칠화 효소인 PIMT (Protein L-Isoaspartyl Methyltransferase)에 의하여 감소되는 현상을 확인하였다. 또한 PIMT에 의하여 p53의 기능 역시 현저하게 억제됨을 확인하였으며 PIMT가 과발현하고 있는 암환자의 생존률이 감소함을 관찰하였다.

○ 본 연구진은 일련의 실험을 통하여 PIMT에 의하여 p53이 카르복실 메칠화 됨을 확인하였으며 이러한 현상이 p53의 기능 조절에 연관됨을 밝혀내었다.


○ p53 단백질 양을 조절하는 인자인 HDM2는 p53과 결합하여 p53을 degradation 시키는 것으로 알려져 있다. 본 연구진은 PIMT가 p53의 카르복실 메칠화를 통하여 p53과 HDM2의 결함을 촉진시키고 결과적으로 p53을 감소시키는 것을 확인하였다.


○ 본 연구진은 이와 같은 결과를 통해 PIMT가 p53의 기능을 억제하여 암을 유발시키는 암 유발 단백질임을 최초로 규명하였다.


○ 현재, 암을 치료하기 위한 새로운 암 치료제 개발이 전 세계적으로 진행되고 있다. 특히 가장 강력한 암 억제 인자인 p53을 타깃으로 하는 암 치료제 개발을 위해서는 p53의 조절 기전에 대한 이해가 선행되어야할 과제로 남아 있다. 본 연구 결과는 PIMT에 의한 p53의 새로운 조절 기전을 제시하였으며 이는 p53을 대상으로 하는 암 치료제 개발 및 암 조절 기전연구의 중요한 기초자료로 활용될 수 있을 것으로 기대한다.



 용  어  설  명

카르복실 메칠화 (carboxyl methylation)
메칠화란 단백질의 전사 후 변형(post-translational modification)의 일종으로 특정 단백질의 특정 아미노산 잔기에 메칠기(CH3-)가 결합하는 현상을 의미함.
카르복실 메칠화는 아미노산의 카르복실 잔기(CHOO-)에 일어나는 메칠화로 일반적으로 많이 알려져 있는 lysine, arginine 메칠화에 비하여 그 연구가 미미 하였다. 본 연구에서는 이러한 카르복실 메칠화의 세포내 의미를 찾고 그 조절 기전을 분석하였다.

유비퀴틴화(ubiquitination) 
특정 단백질에 유비퀴틴(76개 아미노산으로 구성된 단백질로, 다른 단백질과 결합해 분해를 촉진함) 단백질이 결합하는 현상

Nature Communication
세계  최고 권위 Nature 자매지 중 최초의 online 저널로, multidisciplinary 분야에서 권위 있는 과학전문지

 

<한정환 교수>

1. 인적사항
 ○ 소 속 : 성균관대학교 약학대학                 
               

2. 학력
  1978 - 1982  성균관대학교 약학대학 약학학사   
  1982 - 1984  성균관대학교 약학대학 약학석사  
  1987 - 1991  독일, Ruhr University Bochum, 이학박사
  
3. 경력사항
  1992 - 1992 독일, Ruhr University Bochum, Post-doc
  1992 - 1995 스위스, Friedrich Miescher Institute, Post-doc 
  1996 - 2006 성균관대학교 약학대학, 부교수
  1997 - 2006 경기의약연구센터, 연구기획간사
  2006 - 현재 성균관대학교 약학대학 교수
  2007 - 현재 성균관대학교 생명의약협동과정 책임교수
  2010 - 현재  교육과학기술부?한국연구재단 선도연구센터 (MRC, 에피지놈 제어 연구센터) 센터장

4. 전문 분야 정보
- 대한약학회 국제 협력위원장
- 암정복추진기획단 추진위원
- 대한약학회 국제 협력 위원장
- 중앙약사심의위원회 심의위원
  - 응용약물학회, 편집위원 
  - Archives of Pharmacal Research, 편집위원
- 한국분자생물학회 회원
- 저서: 리핀코드의 그림으로 보는 생화학, 약품생화학총정리 등

5. 주요 논문 업적
 - 1990년대 후반기부터 약 20년 동안 에피지놈 분야에서 활동하여 국제학술지(190편), 국내외학술회의(134여회) 발표를 하였음. 아래는 한정환 교수의 최근 주요 대표 논문업적 6편

1. Protein L-Isoaspartyl Methyltransferase regulates p53 Activity. Nat. Commun. Accepted (2012)
2. Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proc Natl Acad Sci U S A. 108(1):85-90 (2011)
3. Depletion of embryonic stem cell signature by histone deacetylase inhibitor in NCCIT cells: involvement of Nanog suppression. Cancer Res. 69(14):5716-25 (2009)
4. Reversine increases the plasticity of lineage-committed cells toward neuroectodermal lineage. J Biol Chem. 284(5):2891-901 (2009)
5. Histone deacetylase inhibitor apicidin downregulates DNA methyl-transferase 1 expression and induces repressive histone modifications via recruitment of corepressor complex to promoter region in human cervix cancer cells. Oncogene. 27(10):1376-86 (2008)
6. Histone chaperones regulate histone exchange during transcription. EMBO J. 26(21):4467-74 (2007)

 

반응형

+ Recent posts