반응형

인공광합성 구현의 핵심기술은 물로 태양에너지의 대부분을 차지하고 있는 가시광 영역에서 효율적으로 양성자를 발생시키는 기술을 확보하는 것입니다.

이 양성자는 지구 온난화의 주범인 이산화탄소와 반응해 메탄, 메탄올 등 친환경 석유연료로 만들 수 있습니다.

또 이 양성자 자체를 결합해 꿈의 자원인 수소도 효율적으로 생산할 수 있습니다.

그러나 기존의 광촉매 소재들은 태양에너지의 일부 영역인 자외선 영역과 고가의 백금 조촉매를 사용할 경우에만 물로부터 양성자를 생성시키는 것이 가능했습니다.

즉 태양광 중 가장 풍부한 가시광 영역에서는 양성자를 거의 생성할 수 없다는 한계를 갖고 있었습니다.

이엽 연구원(박사과정)

강정구 교수

그런데 KAIST 강정구 교수 연구팀이 이중금속으로 구성된 다전자 광촉매 물질을 합성해 인공광합성 기술을 구현하는 데 성공했습니다.

이중금속 물산화 광촉매 물질은 태양광의 대부분을 차지하는 가시광 영역에서 효율적으로 물을 산화해 산소를 발생시킵니다.

이를 통해 물로부터 산소 발생 후 물에는 양성자가 생성되는 것입니다.

강 교수팀은 타이테니늄 원자를 저가 산화물인 니켈 옥사이드 층상 구조에 니켈을 일부 치환시켜, 이중금속으로 구성된 다전자 광촉매 물질을 합성했습니다.

또 이중금속 다전자 층상 구조는 가시광 영역의 빛을 흡수할 수 있는 이종 금속의 한쪽 금속 전자가 기저상태에서 인접한 산소와 결합하고 있는 다른 쪽의 금속에 터널링을 통해 전자 이동이 비가역적으로 이뤄져 가시광 태양빛을 효율적으로 흡수할 수 있다는 것을 확인했습니다.

이중금속 층상구조 광촉매구조의 모식도. 양이온으로 구성된 금속 산화물 층을 음이온이 전하 균형을 맞춰주며 층간 구조를 형성하고 있는 물질이다.

이중금속 층상구조 물산화 촉매 특성 (자외선에 널리 사용되고 있는 타이테이니윰 옥사이트 (TiO2) 광촉매는 거의 물산화 광촉매 특성이 가시광에서 거의 없는 반면 새롭게 개발된 층상구조 이중금속 다전자 광촉매는 활성이 좋은 것을 확인함).


이번 연구결과는 광반응에서 생성된 양성자와 지구온난화 등의 문제가 되는 이산화탄소와추가적인 광반응을 통해 메탄, 메탄올 등의 청정연료로 변환하는 기술로도 응용이 가능합니다.

이는 궁극적으로는 지구온난화의 주범인 이산화탄소를 저감 시킬 뿐만 아니라 이를 자원화 해서 석유 자원을 대체할 수 있는 길을 열어 놓았다는 데 의의가 있습니다.

이번 연구결과는 에너지 환경분야의 저명한 학술지인 '에너지 앤 인바이런먼털 사이언스(Energy and Environmental Science)'지 1월 8일자 온라인 판(Advance Article)에 게재됐습니다.




  용   어   설   명

물산화 광촉매
: 물산화 광촉매는 태양광을 이용하여 전자와 정공(홀)을 생성한다. 이러한 광 여기된 전자와 정공을 이용하여 낮은 에너지로 물을 산소와 수소로 분해하는 것이 가능하다.
실용화를 위해서는 태양광의 대부분을 차지하는 가시광 영역의 빛을 이용할 수 있는 광촉매의 개발이 필요하다. 현재 대부분의 광촉매는 태양광의 매우 작은 부분을 차지하는 UV영역의 빛을 이용하기 때문에 효율이 현저하게 낮다는 문제점을 안고 있다.

이중금속 층상 구조
: 이중금속 층상구조(Layered Double Hydroxide)구조는 양이온으로 구성된 금속 산화물 층을 음이온이 전하 균형을 맞춰주며 층간 구조를 형성하고 있는 물질이다.
이중금속 층상구조 광촉매의 경우, 산화수가 서로 다른 두 종류의 금속이온이 금속 산화물 층을 형성하고 있다. 따라서 가시광 하에서 여기된 전자 및 홀이 이중금속간에 전이되어 효율적인 물산화를 통하여 산소를 발생하는 것이 가능하다.
양자역학 계산을 통하여 이러한 이중금속 층상 구조 광촉매의 전자구조를 예측하는 것이 가능하며, 이와 같은 디자인을 통하여 물을 분해하여 수소 및 산소를 발생하는 광촉매, 혹은 이산화탄소를 환원하여 메탄 및 메탄올 등의 청정연료를 생산하는 광촉매로도 활용이 기대된다.

반응형
반응형

반도체 양자점을 형광체로 이용해 고품질 LED를 만드는 원천기술을 국내 연구진이 세계 최초로 개발했습니다.

반도체 양자점(Quantum Dot)은 지름이 2~10 ㎚ 크기인 반도체 결정으로, 화학적 합성 공정을 통해 만들어지는 것으로 같은 성분임에도 크기가 바뀌면 색깔이 바뀌는 특징이 있습니다.

LED와 OLED, 태양전지, 바이오 표시자, 바이오센서, 위조방지 인쇄 등의 성능을 획기적으로 향상시킬 수 있습니다.

한창수 박사

한국기계연구원 나노역학연구실 한창수 박사팀은 다중껍질 양자점이 포함된 복합체에 UV를 쬐어 양자점의 발광효율을 2배로 높이는 데 성공, 적은 양의 양자점만으로 고품질의 LED를 구현했습니다.

이번 기술 개발로 자연색의 70% 수준인 기존 LED의 색 선명도가 91%까지 높아졌습니다.

또 기존에는 미세한 색 표현이 어려워 제작 과정에서 불량 LED가 많이 생산됐으나 양자점을 이용하면 미세 색조절이 가능해 불량률도 낮출 수 있게 됐습니다.
  
반도체 양자점에 대한 국내외의 연구는 아직 초기단계에 있으며, 양자점 복합체를 자외선 처리를 통해 고효율의 형광 복합체로 제조한 것은 이번이 처음입니다.

현재까지 개발된 양자점 활용 LED 제작 기술은 많은 양의 양자점이나 광안정성이 떨어지는 단일껍질 양자점을 주로 활용했습니다.

낮은 광안정성은 실용화에도 어려움을 줬습니다.

그런데 이번 기술 개발로 양자점을 기존의 절반만 사용해도 목표 성능을 얻을 수 있게 됐습니다.
 

(a) 양자점 형광체를 이용한 고품질 LED 개략도 (b) 제조된 LED 사진 (c) 구동된 LED의 White Color 발광 결과 (CRI: 91, Color Temp: 4805 K)


이에 따라 LED를 포함해 향후 양자점이 포함된 모든 복합소재 이용 제품군의 성능을 극대화하고, 상용화를 앞당기는데 크게 기여할 것으로 보입니다.

UV를 조사하기 전과 후의 폴리머 안에서의 양자점 분포 (투과전자현미경 사진)모서리 그림은 양자점 복합체의 UV 조사 전후의 발광 사진


이 기술은 현재 국내 특허를 출원했고, 국제특허 출원도 앞두고 있습니다.

또 이번 연구결과는 재료 분야의 권위 있는 저널인 '어드밴스드 머티리얼스(Advanced Materials)' 온라인판에 게재됐습니다.

이번 연구는 지식경제부 산업원천 연구개발사업인 '나노양자점 형광체 기반 차세대 LED 모듈 개발사업'을 통해 이뤄졌고, 기업으로는 탑엔지니어링이 참여했습니다.

 양자점 복합체의 UV 조사를 통한 발광효율 향상

반도체 양자점(NQD; Semiconducting Quantum Dot)
: 원자가 10,000~1000,000 정도로 이루어진 Dot형태의 물질 (2~10nm)로 마치 원자 하나의 물리적 특성과 유사한 성질을 가지고 있으며, 광의 흡수 및 발광효율이 매우 높아 광학 분야에서 최근 가장 각광받고 있는 나노 크기의 신소재이다. 같은 성분임에도 크기만 바꾸면 아래와 같이 발광하는 파장이 달라져 다른 색의 빛을 발광하는 특징이 있다.

반응형
반응형

이상엽 교수

KAIST 이상엽 교수팀이 한국생명공학연구원 및 화학연구원, 전남대 이준행 교수팀 등과 공동연구를 통해 항생제에 내성을 가지는 병원균 퇴치를 가능케하는 신약 발굴 방법론을 개발했습니다.


이 교수팀은 병원균이 항생제 오남용으로 인해 치유가 쉽지 않은 점을 감안해 내성 병원균의 가상세포를 만들고, 이에 대한 특성을 분석해 제어하는 방법으로 효과를 입증했습니다.

이번 연구의 대상은 오염된 어패류에 의해 감염되는 패혈증의 병원균인 비브리오 불니피쿠스(Vibrio vulnificus; 비브리오균) 중 내성균 2개로, 이에 대한 게놈정보와 생물정보를 토대로 가상세포를 구축했습니다.

이준행 교수

이 같은 가상세포가 생존하기 위해 필요한 화학물질은 193개로 분석됐으며, 이 중 결정적 역할을 수행하는 5개의 화학물질을 추출, 이에 관여하는 유전자를 제거함으로써 내성 비브리오균의 성장이 억제되는 효과를 증명했습니다.


이에 따라 시스템생물학 기법에 근거한 신약발굴 방법론은 다른 내성 병원균은 물론 다양한 인간 질병에도 적용할 수 있는 토대를 마련했습니다.

이번 연구결과는 세계적 권위의 전문지인 네이쳐 자매지 분자시스템생물학지(Molecular Systems Biology) 1월 18일자에 논문으로 게재됐습니다.

○ 병원균의 기본적인 특성을 파악한다. 그 후 게놈 정보와 여러 데이터베이스에 산재해 있는 생물정보, 문헌 및 추가적인 실험을 통하여 병원성 미생물의 가상세포를 구축한다. 

○ 가상세포에 필수적으로 필요한 화학물질을 분석 적용하여 약물 표적을 체계적으로 예측하며, 이로부터 나온 약물 표적은 실제 실험을 통하여 검증한다.

○ 마지막으로는 최종적으로 선택된 필수 화학물질의 구조정보를 이용하여 화합물 라이브러리로부터 일부 화합물만을 선별한 후, 후보 항생제를 발굴한다. 



 용  어  설  명

게놈 (genome)
: 한 생명체가 가지고 있는 개개의 유전형질을 발현시키는 원인이 되는 인자 즉 유전자를 일컬으며 이러한 유전자 정보의 전체인 유전체라고도 불린다. 또한 게놈에 대한 연구를 수행하는 학문을 유전체학(genomics)이라고 한다.

시스템생물학(Systems Biology)
: 생명현상을 복합체로 규정하고 생물학뿐 만아니라 전산학, 수학, 물리학, 화학 등의 제반원리를 사용하여 분석하고 모사 발명하는 것을 목표로 하는 학문이다.

가상세포
: 한 생명체 내의 게놈에 있는 모든 유전자 정보를 수집하여, 이로부터 생성되는 단백질과 생화학 반응식의 정보를 컴퓨터에 기입하여 실제 생명체의 행동을 모사할 수 있는 수학적 모델을 가리킨다. 가상세포를 이용하여 다양한 조건에서 빠른 시간 안에 특정 생명체의 행동을 모사하는 것이 가능하다.

약물 표적
: 특정 병을 일으키는 병원균의 성장에 중요한 역할을 하는 생화학 물질을 일컬으며, 흔히 단백질 효소가 약물 표적으로서 작용한다. 신약 개발은 이들 약물 표적의 기능을 효과적으로 억제할 수 있는 화합물을 개발하는 것을 말한다.

반응형
반응형

허약하게 태어난 돼지를 허약자돈, 일명 왜소돈이라고 합니다.

일반적으로 허약자돈은 돼지서코바이러스질병'(PCVAD;Prince Circovirus Associated Disease)등 감염성 질환으로 어린 기간 중 폐사율이 높습니다.

돼지서코바이러스는 허약자돈의 폐사율을 높이는 대표적인 바이러스 질환으로, 돼지 사육 농가는 폐사율을 줄이기 위해 항생제와 성장촉진제 투여 등 다양한 방법으로 대응하고 있는 실정입니다.

돼지는 보통 한 번에 15마리 내외의 새끼를 낳는데, 이 가운데 항생제 처방을 하지 않을 경우 평균 폐사율이 20~30%에 달합니다.
 
그러나 정부는 돼지 사료에 대한 항생제 사용으로 인간의 항생제 내성 축적 피해를 줄이기 위해 올 하반기부터 배합 사료 내 항생제 첨가를 전면 금지시키는 법안을 마련할 예정입니다.

국내 돼지 사료첨가제 시장 규모는 2008년 4200억원에서 2009년에는 4700억원으로 급격하게 증가하고 있으며, 사료첨가제 시장에서 항생제 대체물질 및 친환경 천연물 유래 항균, 항바이러스 제제 시장이 주목 받고 있는 실정입니다.


이런 가운데 한의학연구원이 허약자돈의 생존율을 크게 향상시키는데 효과가 있는 한약제제 기반의 사료첨가제를 개발했습니다. 

한국한의학연구원(KIOM) 신 한방제제연구센터 마진열 박사팀은 이유기의 허약자돈을 대상으로 'KIOM-C'를 1%희석시켜 투여해 본 결과 체중 증가율 및 활동성이 크게 향상됨을 밝혔습니다.

KIOM-C는 지난해 한의학연이 동물시험을 통해 신종플루 바이러스 증식을 억제하는데 효능이 있는 것으로 확인하고 특허 출원한 한약제제입니다.

연구팀은 음성대조군(허약자돈 KIOM-C 비투여)과 양성대조군(건강한 자돈, 비투여), 실험군(허약자돈,KIOM-C 음수 투여, 투여 비율 1% 희석)등 3개 군에 대해 각 10마리 씩 시험을 실시하고, 투여 4주 후 각각의 증체율을 비교했습니다.

시험 결과 음성대조군은 85%의 증체율(2마리 폐사 제외)을 기록했습니다.

그러나 KIOM-C를 투여한 허약자돈 실험군에서는 한 마리의 폐사율도 나타나지 않았고, 건강한 양성대조군에 비해 평균 97% 수준에 달하는 평균 체증 증가율을 보였습니다.

한국한의학연구원은 기존 KIOM-C와는 별도로 천궁, 방풍, 당귀, 대황, 길경 등이 포함되어 있는 사료첨가제용 'KIOM-C'를 특허출원했으며, 최근 이를  바이오 기업인 (주)비타바이오에 기술 이전했습니다.
 
※특허 : '음수 및 사료첨가용 조성물'_기술분야 / 서코바이러스 감염에 의해 초래되는 다양한 임상증상 개선 / 출원번호 10-2010-0093902.

반응형
반응형

이지스함이나 F-22 등 최신예 전투기의 핵심인 무단절 다수 목표 추적능력은 능동위상배열 레이더가 있기에 가능합니다.

기존의 회전식 레이더는 탐지면이 목표물과 접촉하지 않는 동안 목표의 고도, 속도, 위치 정보가 단절될 수 밖에 없습니다.   

그러나 능동위상배열 레이더는 송신과 수신을 수행하는 단위 소자가 360도 전방향을 주시하도록 배치해 표적 정보의 단절 없이 실시간으로 처리할 수 있기 때문에 다수 목표에 대한 정확한 추적이 가능합니다.





우리나라는 고성능 능동위상배열 레이더나 고해상도 영상 레이더를 전량 수입에 의존하고 있습니다.

이와 관련해 자주국방에 필요한 전략 원천핵심기술이 부재하기 때문입니다.

이로 인해 수입 가격의 불필요한 상승과 서로 다른 레이더시스템이 요구 사항에 유연하게 대응하지 못하는 단점이 발생하고 있습니다.

그러나 ETRI가 능동위상배열레이더 관련 원천기술 확보라는 쾌거를 이루면서 이 같은 문제가 해소할 전망입니다.

ETRI는 X-대역 능동위상배열 레이더와 고해상도 영상 레이더의 핵심 부품인 'MMIC(송수신 다기능 칩 및 고출력 증폭기)와 T/R 모듈'을 개발하는데 성공했습니다.

이번에 개발된 송수신 다기능 칩 MMIC는 레이더에서 방출되는 송신 전파와 수신 전파의 진폭, 위상, 경로를 하나의 칩으로 제어할 수 있는 마이크로파 집적 회로입니다.

이 기술은 미국과 프랑스 등 전 세계에서 2개 국가만 보유하고 있었습니다.

기존에는 진폭, 위상, 경로를 제어하는 칩이 별개로 제작되어 레이더 시스템이 커지고 무거워지는 단점이 있었습니다.

이번에 개발된 고출력 증폭기 MMIC는 레이더에서 방출되는 송신 전파의 세기를 키워 레이더의 탐지 거리를 넓히는 역할을 합니다.

하나의 칩에 부가 정합 회로가 내장되어 있기 때문에 보다 작고 가벼운 레이더를 만들 수 있습니다.

T/R 모듈은 이번에 개발된 송수신 다기능 칩 MMIC와 고출력 증폭기 MMIC를 사용해 레이더에서 방출되는 송신 전파와 수신 전파의 강도, 위상, 경로를 제어하는 모듈로, 고성능 레이더의 성능을 좌우하는 핵심 부품입니다.

ETRI는 이번 개발을 통해 고성능 레이더에 사용되는 국가 전략 원천 핵심 기술을 확보하는 기반을 마련했습니다.

이는 선진국으로부터 기술 이전이 불가능한 능동위상배열 레이더와 고해상도 영상 레이더의 국산화를 가능케 해 자주국방의 실현을 한층 더 앞당길 것입니다.

안도섭 ETRI 위성무선융합 연구부장은 이 기술로 고성능 레이더의 국산화가 가능할 뿐만 아니라 향후 이동통신 대역을 포함한 다양한 주파수 대역의 MMIC와 응용 기술을 개발할 수 있다고 밝혔습니다.

송수신 다기능 칩 MMIC와 고출력 증폭기 MMIC, T/R 모듈 기술은 ETRI가 천리안 위성 개발과정을 통해 확보한 인공 위성 품질 보증 절차를 통해 개발하고 검증한 것으로 RF 전문업체인 (주)에이스테크놀로지 등에 기술이전되어 제품 상용화를 추진 중입니다.

 ◈ MMIC와 T/R 모듈을 적용한 능동위상배열 레이더 개념도


송수신 다기능 칩 MMIC는 이득 및 위상 제어 분해능력이 6 bit     이상으로 31.5 dB의 이득 제어 범위와 360도의 위상 제어 범위를     가지고 있을 뿐만 아니라, 직-병렬 변환기(Serial-to-parallel           converter)라는 디지털 회로가 마이크로파 회로와 함께 하나의 칩     에 내장되어 레이더 시스템의 크기와 무게를 획기적으로 감소시     킬 수 있다.

고출력 증폭기 MMIC는 X-대역의 주파수에서 12 watt의 출력과       30 %의 효율을 가지고 있으며, 이러한 성능의 고출력 증폭기        MMIC는 미국과 유럽의 일부 국가만이 선보이고 있는 세계 최고      의 기술이다.

전투기 등에 적용되는 능동위상배열 레이더는 수천개의 T/R 모듈     이 사용되며, 수천개의 T/R 모듈에서 나온 신호를 합하여 레이더     전파의 빔을 만든다.

각각의 T/R모듈에서 신호의 세기와 위상을 제어하여 송수신하는    레이더 전파의 빔의 형태 및 크기와 방향을 제어할 수 있으며, 전    투기와 같은 고속의 물체 다수를 신속히 포착하고 추적할 수 있다.




 용  어  설  명


X-대역
8.2 ~12.4 GHz 의 주파수 대역을 말한다. 휴대폰은 1~2 GHz 의 주파수 대역을 주로 사용한다. GHz는 진동의 빈도를 나타내는 주파수의 단위로 1 GHz는 1초당 100억번 진동하는 주파수이다.


MMIC(microwave monolithic integrated circuit)
: 모놀리식 집적 회로의 하나로, 갈륨비소(GaAs) 등의 고속·고전도율의 반도체 기판 위에 마이크로파 주파수대(809MHz~30GHz)에서 작동하는 회로 소자의 접속 부분을 형성한 집적 회로.

T/R 모듈(Transmitter/Receiver Module)
: 레이더에서 방출되는 송신 전파와 수신 전파의 강도, 위상 및 경로를 제어하는 모듈로써, 고성능 레이더의 성능을 좌우하는 핵심 부품이다. 서큘레이터, 리미터, 저잡음 증폭기, RF 스위치, 위상 변위기, 가변 감쇠기, 구동 증폭기, 고출력 증폭기, 바이어스 변조 회로 등으로 구성되어 있다.

위상(位相)
: 주기적인 신호의 한 싸이클, 또는 한 주기 내에서 시작 시점을 기준으로 위치나 시간 차이를 나타내는 값. 일반적으로 한 싸이클을 360도로 나타낸다.

이득(利得)
: 전자 공학에서 증폭기와 같은 전기 회로가 신호나 출력을 증폭하는 비율이다. 대개의 경우 전기 회로의 입력 신호 대비 출력 신호의 비의 로그 값으로 나타낸다.

반응형
반응형

한국천문연구원(이하 천문연)이 발표한 ‘두 개의 태양을 가진 외계행성 발견’ 논문이 미국 천문학회지에서 지난 2년간 가장 많이 인용된 논문 중 하나로 집계됐습니다.

두 별로 이루어진 쌍성 주위를 공전하는 외계행성계 모식도


이 논문은 천문연 광학적외선천문연구본부의 이재우 박사와 김승리 박사, 충북대 김천휘 교수 등 국내외 학자 7명으로 이루어진 연구팀이 지난 2009년 두 별로 이루어진 쌍성 주위에서 함께 생성된 후 격렬한 진화과정에도 살아남은 2개의 외계 행성을 세계 최초로 발견한 내용을 담고 있습니다.

이 발견은 영화 '스타워즈'에 등장하는 주인공 루크 스카이워커의 고향 행성인 타투인에서와 같이 두 개의 태양을 가진 외계행성의 존재 가능성과 더불어 2개의 별로 이루어진 쌍성에서도 행성이 생성되고 살아남을 수 있음을 밝히는 중요한 관측적 증거를 세계 최초로 제시하고 있습니다.

스타워즈의 한 장면. 타투인 행성에서 2개의 태양이 지고 있다


이는 당시 행성의 기원과 진화 연구에 획기적인 전환점이 될 것으로 기대받았습니다.  
 
미국 천문학회지가 지난 2년간 발표된 논문 인용도 조사 결과 이 논문이 이 최다 인용 논문 5편에 포함됐습니다.

다른 논문들이 대형 관측장비를 이용한 자료로 인용도가 높은 논문임을 감안하면 이 논문은 단일 천체를 대상으로 연구했음에도 평균 인용도보다 10배나 높은 것입니다.

김 박사는 “천문연이 건설 중인 2m급 외계 행성 탐색용 망원경이 완성돼 연구에 활용되면, 지구형 외계행성의 발견과 더불어 우리 은하 내의 외계행성에 관한 우수한 연구결과를 다수 발표할 수 있을 것으로 기대된다”고 밝혔습니다.

제목: The sdB+M Eclipsing System HW Virginis and its Circumbinary Planets)
http://iopscience.iop.org/1538-3881?tab=most_cited)


반응형
반응형

국방과학연구소(ADD)는 1월 12일 대전 본소에서 국방분야 최초 민간 기부금으로 건축된 친환경 신물질 연구센터 ‘의범관’ 개관식을 가졌습니다.


의범관은 기부자인 김용철 옹이 국가안보를 위해 써달라며 국방부에 쾌척한 100억 원으로 건립됐습니다.

의범관 1층은 김용철 옹의 흉상과 소장품을 전시해 평소의 검소한 생활 모습을 영원히 기리고, ‘인생은 유한하지만 국가는 무한하다’는 옹의 좌우명을 내걸어 국가 안보의식을 고취키로 했습니다.

2층과 3층은 화약물질 미세탐지, 친환경 에너지변환·저장 및 경량화 연구실험실 등으로 사용되며, 각 실험실에는 펄스형 질량분광기 등 첨단 실험장비를 갖추고 있습니다.

연구센터 건립 사업책임자 김인호 박사는 “의범관을 통해 친환경 신물질 원천기술들을 개발, 미래지향적 신개념 무기의 독자개발에 박차를 가할 예정”이라며 “국방과학 원천기술을 지속적으로 발전시켜 연구소 연구역량을 세계적 수준으로 배양하고 친환경 신물질 연구센터를 모태로 국방과학의 원천기술 개발 기반을 확충할 것”이라고 밝혔습니다.

반응형
반응형
신약 개발은 오랜 시간과 대규모 자금이 소요되는 분야로써, 현재 세계적인 다국적 제약사들이 주도하고 있습니다.

지금까지의 신약 개발 과정은 무작위로 약물 타겟을 찾아가는 블라인드 스크리닝 방법을 사용하기 때문에, 고가의 장비와 인력, 시간이 투입돼야 합니다.

신약개발 과정 중 신약 타겟 및 신약 후보물질 개발에 소요되는 시간이 매우 길기 때문에, 신약 후보물질의 효과적인 검증이 진행되지 못하고 있는 것입니다.

이 기간을 최소화하고 분석효율을 극대화할 경우, 다국적 제약사에 비해 상대적으로 열세인 국내 신약개발 분야도 새로운 신약 후보물질을 다량으로 확보할 수 있게 될 뿐만 아니라 궁극적으로 신약개발 가능성을 획기적으로 높일 수 있습니다.

이와 관련한 '표적지향형 실시간 단백질-단백질 결합 분석 기술 (CUPID; Cell-based Un-/identified Protein Inteaction Discovery)'이 국내 연구진에 개발되고 특허까지 확보했습니다.

이 기술이 개발되기 전에는 단백질 결합분석이 시험관내 또는 제한적인 세포내 실험을 통해서만 확인이 가능했습니다.

이에 따라 이 기술을 통한 신약 후보물질 발굴이 본격 활용될 전망입니다.

한국기초과학지원연구원 생명과학연구부 이지원, 김수현, 김승일 박사 연구팀은 CUPID 및 이를 이용한 결합 저해제 발굴 기술을 개발했습니다.

김수현 박사

이경복 박사

이지원 박사



CUPID는 단백질간의 상호작용을 translocation module과 형광단백질의 움직임을 이용하여 실시간 검출이 가능한 능동형 기술로, 단백질 결합분석을 살아있는 세포에서 직관적으로 분석할 수 있습니다.

가. 단백질결합 및 결합저해 분석, a) 외부자극(PMA)에 의해 p53과 MDM2 단백질의 결합 유도 결과, b) 항암제(Nutlin-3)에 의한 p53과 MDM2 단백질의 결합 저해 결과,

나. 결합유도 및 경쟁적 저해효과 분석, (a) 외부자극(PMA)에 의한 FKBP12 단백질과 FRB 단백질의 비결합 확인, b) Rapamycin에 의한 FKBP12 단백질과 FRB 단백질의 결합 유도, c) FK506에의 Rapamycin에 의해 유도된 FKBP12와 FRB 단백질의 결합 저해 분석 결과.



이는 기존 기술들의 한계인 형광체 간의 수동적 상호작용을 완전 배제한 기술로, 위양성(false-positive) 없이 결합여부를 확증할 수 있는 기술로 인정받고 있습니다.

CUPID을 활용하면 약물타겟에 대한 신약 후보물질을 발굴하거나 곧바로 설계를 진행함으로써 국내 연구자 및 신약개발을 진행중인 제약산업 전반에 효율적인 방법으로 사용될 전망입니다.

기초과학연구원은 이번에 개발된 신기술의 특허 등록을 완료하고 주요 다국적 제약사들과의 기술이전에 관한 논의를 진행하고 있습니다.

황정미 연구원

또 이 기술을 이용해 골다공증과 관절염을 표적으로 하는 화합물 라이브러리 스크리닝 및 표적지향형 항암제 개발에 착수한 상태입니다.


한편 이번 연구결과는 'Angewante Chemie Intl Ed誌; '의 1월호 인터넷 판에 게재됐습니다.
(http://onlinelibrary.wiley.com/doi/10.1002/anie.201005333/abstract)

※ 논문명 : Direct Monitoring of the Inhibition of Protein?Protein Interactions in Cells by Translocation of PKCδ Fusion Proteins


반응형
반응형

◆신약재창출을 통해 세상에 나온 비아그라

최근 다국적 제약회사들은 신약개발을 위한 초기 투자비용이 증가하고 신약에 대한 안전성 심사기준이 강화됨에 따라 개발 단계의 후기에 실패하는 비중이 크게 늘어나 생산성과 수익성 악화를 겪고 있습니다.

이러한 위기를 극복하기 위해서는 저비용으로 짧은 기간에 약물을 개발할 수 있는 방법이 절실히 요구되며, 이러한 신약재창출 전략은 약물개발에 소요되는 시간과 비용을 줄이고 개발 성공 확률을 높일 수 있어 앞으로 신약개발의 대안이 될 수 있을 것으로 기대되고 있습니다.

신약재창출은 임상에서 실패한 약물 또는 시판 중인 기존 의약품을 재평가하고, 새로운 약효를 발굴하여 다른 질병의 치료제로 쓰고자 하는 시도를 말합니다.

일반적인 신약개발의 경우 임상과정을 거쳐 신약 승인까지 약 10년 이상의 기간과 10억 달러 이상의 자금이 소요되는 데 반해, 신약재창출의 경우 이미 전임상 또는 임상 초기 단계를 거친 약물이 대상이므로 초기 합성과 최적화 단계를 생략할 수 있고 기존의 임상 독성 자료도 이용할 수 있는 장점이 있습니다.  


전통적인 신약개발 과정(a)과 달리 신약재창출(b)의 경우 이미 전임상 및 임상 초기 단계를 거친 약물 및 후보물질을 대상으로 하므로 질환 표적과 후보물질의 발굴 및 최적화 단계를 생략할 수 있다 [Ashburn & Thor 2004 Nat. Rev. Drug Discov. 3, 673-683]. 따라서 약물 개발에 소요되는 비용과 시간을 줄이고 개발 성공 가능성을 높일 수 있는 장점이 있다.

신약재창출의 대표적 성공사례인 비아그라의 경우 원래 화이자(Pfizer)사에서 고혈압 및 협심증 치료제로 개발 중이었으나 임상에서 약효가 부족한 것으로 판명됐고, 이후 약물 투여량을 증가시키기 위해 임상을 다시 하는 과정에서 새로운 약효를 발견해 발기부전증 치료제로 시장에 출시, 현재 연간 16억 달러 이상의 매출을 기록하고 있습니다.  

구조 기반 신약재창출이란 질환 표적 단백질 간 구조적 유사성에 기초하여 기존 약물과 표적 단백질 간 새로운 교차결합(off-target binding)을 발굴하고 이로부터 기존 약물의 새로운 질환에 대한 치료 효능을 찾아내어 신약으로 개발하는 전략을 말한다.



◆생명공학연구원, 항암 약물 신약재창출 기반 마련

기존에 개발된 항암 약물의 새로운 분자 표적을 발굴을 통해 이미 개발된 약물을 이용, 신약을 재창출할 수 있는 구조 기반 전략이 제시됐습니다.

이번 연구는 한국생명공학연구원 단백체의학연구센터 지승욱 박사팀과 싱가포르 난양공대 윤호섭 박사와의 국제협력을 통해 진행됐습니다.

연구팀은 이번 연구를 통해질환 표적 단백질간의 구조적 유사성에 근거해 기존에 개발된 항암 약물이 원래 표적이 아닌 다른 질환 표적 단백질에도 결합하여 작용한다는 사실을 처음 발견했습니다.

이로부터 기존 약물을 다른 질환의 치료제로 개발하고자 하는 구조 기반 신약재창출(drug repositioning) 전략을 제시했습니다.

이번 연구에서 제시된 '구조 기반 신약재창출 전략'이란, 질환 표적 단백질 사이의 구조적 유사성에 기초하여 기존 약물과 표적 단백질 간 새로운 교차결합(off-target binding)을 발굴하고 이로부터 기존 약물을 신약으로 재창출하는 방법입니다.
 


본 연구에서는 단백질 복합체의 3차 구조 규명을 통해 MDM2 와 Bcl-2계 단백질이 p53 단백질을 결합하는 인식 기전이 매우 유사함을 발견하였다(A). 이를 근거로 하여 p53과 마찬가지로 p53 과 유사한 분자 구조를 가진 항암 약물 Nutlin-3가 여러 질환의 중요한 분자 표적으로 알려진 Bcl-2계 단백질에 교차결합한다는 사실을 규명하였다(B,C).


이를 통해 질환 표적 단백질 사이의 3차 구조적 유사성에 근거해 이미 임상에서 개발 중인 항암 약물 Nutlin-3가 원래 분자 표적인 MDM2 단백질 뿐 아니라 다른 질환의 중요한 분자 표적으로 알려진 Bcl-2계 단백질에도 결합하여 작용함을 새로이 밝혔습니다.

Nutlin-3는 MDM2에 결합해 MDM2와 p53 단백질 간 결합을 저해하는 소형분자 화합물로서 고형암 등의 치료를 위해 현재 임상에서 개발 중인 항암 약물입니다.

연구팀은 핵자기공명분광법에 의한 단백질 복합체의 3차 구조 규명을 통해 질환 표적인 MDM2와 Bcl-2계 단백질이 p53 단백질을 결합하는 인식 기전이 매우 유사함을 발견했습니다.

이러한 질환 표적 단백질 간 구조적 유사성에 근거해 p53 단백질의 구조를 모사하는 항암 약물인 Nutlin-3가 원래 표적인 MDM2 뿐만 아니라 Bcl-2계 단백질에도 결합하여 저해할 수 있음을 규명했습니다.

 

본 연구결과는 Nutlin-3라는 하나의 항암 약물이 MDM2 및 Bcl-2계 단백질과 결합하여 각각 핵에서의 p53 경로 및 미토콘드리아에서의 세포사멸 경로를 동시에 활성화시키는 분자 기전의 모델을 제시하였다. 이로부터 서로 상이한 항암 표적이 매개하는 두 개 이상의 암세포 생존 경로를 동시에 차단함으로써 항암 치료의 상승적 효과를 얻을 수 있다.

Bcl-2계 단백질은 미토콘드리아 세포사멸의 중추적 조절자로서 백혈병, 당뇨, 정신분열증 등의 발병에 관여하는 것으로 알려져 있습니다.

따라서 이번 연구결과는 Nutlin-3와 같은 기존에 개발된 MDM2 저해용 약물들을 이들 질환 치료에 활용할 수 있다는 새로운 신약재창출 전략을 제시했습니다.

이처럼 이번 연구는 1개의 약물이 어떻게 2개의 상이한 질환 표적 단백질에 결합하여 작용할 수 있는지에 관한 분자 수준의 메커니즘을 새로이 규명했습니다.

암과 같은 질환은 복잡하고 다양한 병인에 기인하고 암세포가 서로 상이하므로, 단일 표적의 암 치료제는 치료 효과의 한계를 가질 수밖에 없습니다.

따라서 이번 연구결과와 같이 하나의 약물이 서로 상이한 2개 이상의 표적을 동시에 공격할 수 있다면, 치료 효과의 시너지를 창출할 수 있을 것이고, 더 나아가 이중 표적 기반 질환 제어라는 원천기술 개발에 기여할 수 있을 것으로 기대되고 있습니다.

이번 연구결과는 화학분야에서 세계 최고의 권위를 자랑하는 '미국 화학회지(Journal of the American Chemical Society)' 1월 7일자 온라인 판에 발표됐습니다.
(논문명 : Molecular Mimicry-Based Repositioning of Nutlin-3 to Anti-Apoptotic Bcl-2 Family Proteins)

       

반응형
반응형

'ECR 이온원'은 강한 자장 속에 플라즈마를 가두고 고주파 전자공명 현상을 통해 전자들을 집중 가열함으로써 전자의 온도를 수십 keV (수억 도) 이상으로 높여 원자를 '다가이온'으로 만든 뒤 이를 선별적으로 추출해서 가속기에 공급해주는 장치입니다.

이는 가속기의 규모를 크게 늘리지 않고도 가속 에너지를 획기적으로 높일 수 있기 때문에 중이온 가속기의 성능을 좌우하는 핵심 부품 중 하나입니다.

전자공명 이온원의 원리



한국원자력연구원은 중입자 가속기와 중이온 가속기에 필수적인 중이온 다가이온 빔을 발생시킬 수 있는 '마이크로파 전자 공명(ECR; Electron cyclotron resonance) 이온원'을 개발하고 다가이온 빔을 인출하는 데 성공했습니다.

원자력연구원이 개발한 14.5 GHz 전자공명 이온원 본체 구성도



부산 기장에 건설될 의료용 중입자 가속기는 물론 국제과학비즈니스벨트의 핵심 연구시설이 될 중이온 가속기 구축에도 직접 적용될 수 있는 핵심 원천기술을 확보한 것입니다.

오병훈 박사

한국원자력연구원 핵융합공학기술개발부 오병훈 박사팀은 교육과학기술부 원자력연구개발사업의 지원으로 지난 2007년부터 4년간 18억 원을 들여 수행한 '초전도 사이클로트론용 ECR 이온원 개발' 과제를 통해 'ECR 이온원'을 자체 설계와 제작을 통해 개발하고 성능 검증을 마쳤습니다.


오병훈 박사팀은 '차세대 초전도 핵융합연구장치(KSTAR)'의 플라즈마 가열을 위한 '중성입자빔 가열장치' 및 '고주파 가열장치' 개발을 통해 축적한 기술력을 바탕으로, 통상적인 '방전 플라즈마'를 통해서는 얻어낼 수 없는 다가이온 빔을 높은 전류로 만들어낼 수 있는 'ECR 이온원'을 순수 국내 기술로 개발한 것입니다.

'ECR 이온원'은 2015년 완성을 목표로 한국원자력의학원을 중심으로 순수 국내 기술로 개발 중인 의료용 초전도 중입자 가속기의 핵심 부품이며, 향후 국제과학비즈니스벨트에 들어설 중이온 가속기 구축에도 직접 활용될 것으로 기대됩니다.

특히 외국에서 개발한 동일 기종보다 더 강력한 자장 구조를 만들어 내기 위해 전자석과 영구자석 등 복잡한 자석들의 구조를 최적화해 배치, 다가이온 발생 영역을 효과적으로 제어할 수 있는 자장 구조를 구현했습니다.

이를 위해 특수 플라즈마 용기를 이용해서 높은 효율로 플라즈마를 만들어내고, 14.5㎓의 마이크로파를 주입해서 공명 현상에 의한 전자가열로 원자의 외곽에 있는 전자 뿐 아니라 원자의 내각에 위치한 전자들까지 궤도에서 떨어져 나간 상태의 다가이온을 생성시켜 20~30 keV의 고전압을 걸어 다가이온 빔을 인출하고, 이 중 필요로 하는 다가이온만 선택적으로 골라내서 가속부에 전달할 수 있도록 하는 'ECR 이온원'을 설계 제작하고 실험을 통해 이를 검증했습니다.

헬륨 가스에 의한 다가이온빔 인출 및 질량분석 결과



완성된 'ECR 이온원'은 의료용 중입자 가속기가 요구하는 C+6 이온(탄소 원자 한 개에서 전자가 6개 떨어져 나온 다가이온)의 인출을 최대 20㎂까지 인출할 수 있도록 장치를 안정화한 뒤 중입자 가속기에 적용할 계획입니다.

이번 'ECR 이온원' 개발을 통해 확보한 기술은 중이온 가속기의 이온원을 설계 제작하는 데 직접 적용 가능할 뿐 아니라, 반도체 생산 공정과 나노 공정 등 다양한 분야에 활용이 가능합니다.

이번에 개발한 'ECR 이온원'은 중이온 가속기가 최종적으로 요구하는 성능과는 아직 거리가 있지만 일부 실험이 가능한 수의 우라늄 다가이온을 충분히 만들어낼 수 있는 성능을 갖춰, 초기 중이온 가속기 실험에는 직접 투입될 수 있을 것으로 보입니다.


원자력연의14.5 GHz 전자공명 이온원 본체 전경




 용  어  설  명 

중성입자빔 가열장치, 고주파 가열장치 : 토카막의 플라즈마를 핵융합이 가능한 초고온(1억도 이상)으로 가열하기 위한 중성입자빔 또는 고주파를 플라즈마에 입사시켜 플라즈마 내의 전자 또는 이온의 온도를 높이는 장치

중이온 가속기 : 수소에서 우라늄까지 다양한 원소들을 높은 에너지로 가속시켜 다른 원자의 핵에 충돌시키는 과정 등을 통해 원자 이하 크기인 펨토 미터(1천 조 분의 1 미터) 세계를 연구하는 거대 과학 장비. 원자핵이나 소립자(물질의 가장 작은 단위)를 관찰하거나 새로운 입자를 만들어낼 수 있음

중입자 가속기 : 중이온 가속기의 일종으로, 탄소 이온을 빛의 속도의 70%로 가속한 뒤 환자의 몸 속으로 보내 암세포를 파괴하는 첨단 의료 장비. 주변 세포나 조직의 손상을 최소화하고 암세포와 같은 특정 세포만 선택적으로 사멸시킬 수 있어 꿈의 암 치료기로 불림

다가이온(multi-charged ion) : 전자가 2개 이상 떨어져 나간 이온 상태. 같은 이온이라도 전자를 더 많이 떼어낸 것이 더 강한 +극을 띠므로 낮은 전압에도 더 빨리 가속이 된다. 높은 수의 다가이온을 만들어내기 위해서는 높은 온도의 전자들이 필요함

반응형

+ Recent posts