반응형

1아토초(AttoSecond)는 '100경 분의 1초' 입니다.

비교하자면, 우주의 나이인 137억 년을 1초라고 가정할 때 137억 년 : 1초 = 1초 : 1아토초 가 되는 셈입니다.

이렇게 짧은 순간인 아토초는 원자 내부에서 움직이는 전자의 움직임을 표현할 때나 사용 가능합니다.

그러나 이처럼 짧은 순간을 연구하는 이유는 원자 단위의 초고속 현상을 계측하고 이를 조절하는 등 자연계의 초고속 현상을 정확히 측정할수록 더욱 정교한 과학적 기반을 마련할 수 있기 때문입니다.

□ 자연계의 다양한 초고속 현상을 정확히 측정할 수 있는 '아토'과학의 시대가 열렸습니다.

국내 연구진이 아토초 펄스를 이용해 시간적으로 매우 빠르게 변화하는 헬륨 원자의 상태를 정확히 측정하는데 성공했습니다.

KAIST 남창희 교수팀은 아토초 펄스를 이용해 초고속 광이온화를 계측하는데 성공했습니다.

아토과학 연구를 위해 자체 개발한 실험 장치. 아래쪽의 긴 원통 부분은 광전자 에너지 스펙트럼 측정에 사용되는 고성능 전자분광기이다. 지구자기장의 영향을 없애기 위해 전자가 진공 속에서 진행하는 원통은 뮤메탈 판으로 싸여있다.



광이온화는 아토초 영역에서 레이저나 연엑스선(의료용 엑스선보다는 약간 파장이 긴 엑스선)을 광원으로 원자를 이온화한 것입니다.

남 교수팀은 아토초 엑스선 펄스와 펨토초(1000조 분의 1초) 레이저 펄스를 이용해 헬륨 원자를 광이온화하고, 이 때 발생한 전자의 파속을 측정하여 초고속 광이온화 과정을 규명했습니다

아토초 펄스를 이용한 원자의 초고속 광이온화 계측은 연구팀이 자체 개발한 고출력 펨토초 레이저와 고성능 광전자 계측장비에 의해 수행된 순수 국내 연구진의 결실입니다.

자체개발한 1 kHz 반복률의 고출력 펨토초 레이저. 펨토초 레이저 공진기부터 펄스 확장기, 2단의 증폭단, 펄스 압축기까지 자체 개발하였으며, 2009년에는 이를 추가적으로 펄스 압축하여 3.7 펨토초, 0.3 테라와트 출력을 얻어 세계적으로도 최고의 성능을 갖는 결과를 보였다.

고출력 펨토초 레이저 장치의 작동 모습



남 교수팀은 앞서 지난 2010년에 고차조화파를 이용해 세계에서 가장 짧은 60아토초 펄스 생성에 성공하기도 했습니다.

연구팀은 고출력 펨토초 레이저를 이용해 아르곤 기체에서 아토초 고차조화파 펄스를 생성하고, 이를 이용해 헬륨 원자를 광이온화시켜 원자에서 발생하는 초고속 광이온화 현상을 계측했습니다.

이번 연구는 아토초 펄스를 이용해 시간적으로 매우 빠르게 변화하는 헬륨 원자의 상태를 정확히 측정한 것으로, 향후 이번 연구결과를 바탕으로 원자와 분자 내부에서 일어나는 초고속 현상을 계측하고 이를 이용해 원자와 분자의 상태를 조절하는 연구를 진행하는 등 자연계의 초고속 현상을 정확히 측정할 수 있는 기반을 마련했습니다.

이번 연구는 KAIST 남창희 교수가 주도하고 김경택 박사와 금오공대 최낙렬 교수 등이 참여했습니다.

연구결과는 물리학 분야의 권위 있는 학술지인 'Physical Review Letters'지 3월호(108권, 3월 2일자)에 게재되었습니다. (논문명: Amplitude and Phase Reconstruction of Electron Wave Packets for Probing Ultrafast Photoionization Dynamics)

  

남창희 교수, 고동혁 학생, 김경승 학생


 용  어  설  명

티타늄 사파이어 펨토초 레이저 (Ti:sapphire femtosecond laser) :
사파이어에 도핑된 티타늄을 이득 매질로 사용하여 발진되는 레이저로 이득 매질의 흡수영역과 방출영역이 매우 넓어서 시간폭이 펨토초 영역인 매우 짧은 극초단 펄스를 생성할 수 있다. 넓은 스펙트럼 영역에서 방출된 레이저 빛을 모드잠금과 분산 보정 기술을 통해 수십에서 수 펨토초에 이르는 레이저 펄스를 생성할 수 있다.

고차조화파 :
강한 펨토초 레이저를 기체원자에 집속하여 발생된 연엑스선 영역에서 레이저의 특성을 닮은, 매우 짧은 펄스폭을 가지는 우수한 연엑스선 광원

고차조화파 광원 (high - harmonic light source) :
고출력 펨토초 레이저와 기체 원자와의 상호 작용을 통해 발생되는 연엑스선 광원이다. 강력한 레이저장을 통해 이온화된 전자가 이온과 재결합함으로써 넓은 스펙트럼을 갖는 결맞는 엑스선이 발생된다. 이와 같은 연엑스선 발생 현상이 레이저장의 반주기마다 반복되기 때문에 구동레이저의 홀수배에 해당하는 연엑스선 성분만 강하게 남아 고차조화파의 특징인 빗살 모양의 스펙트럼이 나타난다.

아토초 고차조화파 펄스 (attosecond high-harmonic pulse) :
기체 원자와 극초단 고출력 펨토초 레이저 펄스와의 상호 작용으로 발생하는 고차조화파는 연엑스선 영역에서 넓은 스펙트럼을 갖는 광원이기 때문에 시간적으로 아토초에 해당하는 극초단 펄스를 생성할 수 있다. 다 주기 레이저 펄스에서 발생된 고차조화파는 주로 아토초 펄스열을 형성하나 시간 게이팅 방법을 도입하여 단일 아토초 펄스로 생성할 수 있다.

광이온화 :
아토초 영역에서 레이저나 연엑스선(의료용 엑스선보다는 약간 파장이 긴 엑스선)을 광원으로 원자를 이온화한 것. 

Physical Review Letters :
물리학 분야에서 세계적으로 권위 있는 학술지로, 물리학 전반에 걸쳐 최첨단 선도 연구 과제 중 가장 우수한 결과를 세계 학계에 널리 빠르게 알려기 위한 목적으로 미국 물리학회에서 발행하는 학술지. (2010 SCI 피인용지수 : 7.621)

<연 구 개 요>

자연계의 초고속 현상을 측정하기 위해서는 그 현상이 일어나는 시간보다 더 짧은 측정수단이 필요하다.
최근 눈부시게 발전한 레이저 기술 덕택으로 매우 짧은 레이저 펄스 생성이 가능해졌다.
빛에너지를 저장하였다가 매우 짧은 시간 동안 방출하는 여러 가지 기술이 개발되어 나노초 (10의 -9승 초), 피코초 (10의 -12승 초), 펨토초 (10의 -15승 초)의 레이저 펄스를 만들 수 있다.
빛은 1초에 지구를 일곱 바퀴 반이나 돌 수 있으나, 1 나노초는 이 시간 동안 빛이 단지 30 cm를 진행할 수 있는 매우 짧은 시간이다.
1 피코초는 1 나노초의 천분의 일초이며, 1 펨토초는 1 피코초의 천분의 일초인 지극히 짧은 시간이다.
피코초나 펨토초 레이저의 등장은 피코초나 펨토초 시간 영역에서 발생하는 물리나 화학적 현상을 분석하는 데 큰 기여를 하였으며, 1999년 노벨화학상은 펨토화학 분야의 선구자인 캘리포니아 공대의 즈웨일 교수에게 수여되었다. 
  
펨토초 레이저를 이용하여 이제는 펨토초의 천분의 일초인 아토초 (10의 -18승 초) 펄스 발생도 가능케 되었다.
아토초 펄스를 만들기 위해서 강한 펨토초 레이저를 원자에 집속하고 이때 발생하는 엑스선 영역의 고차조화파를 이용한다.
이 고차조화파는 주파수폭이 굉장히 넓기 때문에 이를 이용하여 아토초 펄스를 만들 수 있다.
남 교수팀은 고차조화파를 이용한 아토초 펄스 발생에서 세계에서 가장 짧은 60 아토초 펄스를 생성하여 2010년 보고한 바 있다. 아토초 광원이 등장함에 따라 이제는 펨토초보다 더 짧은 아토초 영역의 초고속 현상을 분석할 수 있는 "아토과학"의 시대가 되었다. 예를 들어, 전자가 수소원자를 한 바퀴 공전하는 주기는 150 아토초에 불과하다.
이러한 자연현상에 대한 연구를 위해 더욱더 짧은 펄스를 만들기 위한 노력은 계속되어 왔고, 이를 이용하여 초고속 현상을 연구하는 아토 과학은 최근 뜨거운 관심을 받고 있다. 
 
KAIST의 남창희 교수팀은 아토초 펄스를 이용하여 원자의 초고속 광이온화를 계측하는 데 성공하였다.
레이저나 연엑스선 광원으로 원자를 이온화할 때 나타나는 광이온화 현상은 아토초 영역에서 일어나는 매우 빠른 현상이다. 본 연구에서는 아토초 펄스와 펨토초 레이저 펄스를 이용하여 헬륨 원자를 광이온화하고 이 때 발생한 전자의 파속을 측정하여 초고속 광이온화 과정을 규명하였다.
아토초 펄스를 이용한 원자의 초고속 광이온화 계측은 자체 개발한 고출력 펨토초 레이저와 고성능의 광전자 계측장비에 의해 수행된 순수 국내 연구의 결실이다.
 
본 연구에서는 고출력 펨토초 레이저를 이용하여 아르곤 기체에서 아토초 고차조화파 펄스를 생성하고, 이를 이용하여 헬륨 원자를 광이온화 시켜 원자에서 일어나는 초고속 광이온화 현상을 계측하였다.

<남창희 교수>

 

1. 인적사항 
 ○ 소 속 : 카이스트 물리학과 교수

2. 학력
  ○ 1977 : 서울대학교  학사 (핵공학)
  ○ 1979 : 카이스트 석사 (물리학 )
  ○ 1988 :  프린스턴 대학 박사 (플라즈마 물리)
 
3. 경력사항
○ 1989 ~ 현재 : 카이스트 물리학과 교수
○ 1988 ~ 1989 : Princeton Plasma Physics Laboratory, Staff Research Physicist
○ 1979 ~ 1982 : 부산대학교 기계공학과, 전임강사
○ 1999 ~ 현재 : 교육과학기술부?한국연구재단 창의연구단, 도약연구단 단장

4. 주요연구업적
1. Kyung Taec Kim, Dong Hyuk Ko, Juyun Park, Nark Nyul Choi, Chul Min Kim, Kenichi. L. Ishikawa, Jongmin Lee, and Chang Hee Nam,
"Amplitude and phase reconstruction of electron wave packets for probing ultrafast photoionization dynamics," Phys. Rev. Lett. (accepted on Jan. 8, 2012).
2. Kyung Taec Kim, Kyung Sik Kang, Mi Na Park, Tayyab Imran, G. Umesh, and Chang Hee Nam,
"Self-Compression of Attosecond High-order Harmonic Pulses," Phys. Rev. Lett. 99, 223904 (2007).
3. I Jong Kim, Chul Min Kim, Hyung Taek Kim, Gae Hwang Lee, Yong Soo Lee, Ju Yun Park and Chang Hee Nam,
"Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field," Phys. Rev. Lett. 94, 243901 (2005).
4. D. G. Lee, J.?H. Kim, K. H. Hong, and Chang Hee Nam,
"Coherent control of high-order harmonics with chirped femtosecond laser pulses," Phys. Rev. Lett. 87, 243902 (2001).
5. Hyun Joon Shin, Dong Gun Lee, Yong Ho Cha, Kyung Han Hong, and Chang Hee Nam,
"Generation of Nonadiabatic Blueshift of High Harmonics in an Intense Femtosecond Laser Field," Phys. Rev. Lett. 83, 2544-2547 (1999).
6. Dong Hyuk Ko, Kyung Taec Kim, Juyun Park, Jae-hwan Lee and Chang Hee Nam,
"Attosecond chirp compensation over broadband high-order harmonics to generate near transform-limited 63-as pulses," New J. Phys. 12, 063008 (2010).
7. J. Park, J.-h. Lee, and Chang Hee Nam,
 "Generation of 1.5-cycle 0.3-TW laser pulses using a hollow-fiber pulse compressor," Opt.   Lett. 34, 2342 (2009).

반응형
반응형

KISTI(한국과학기술정보연구원)이 교육과학기술부와 공동으로 그린카, 대체수자원, 그린IT, 이차전지, 태양전지 등 녹색기술 5개 분야의 선진국 기술수준 및 기술개발 동향을 파악할 수 있는 녹색기술 지식맵을 작성했습니다.

이번 지식맵은 산업시장 전망, 기술수준, 국제협력 관계, 핵심연구 분야 등을 정량적으로 분석하고 주요 선도기업의 기술개발 동향을 제시함으로써 기업들이 연구개발 및 기술 상용화 단계에 적극 활용하여 미래의 불확실성과 위험에 대응할 수 있도록 마련됐습니다.

KISTI가 5개 분야의 국가경쟁력, 특허보유 수준, 기술역량을 종합적으로 검토한 결과에 따르면 미국과 일본은 자본 경쟁력과 무형자본 경쟁력에서 앞서고, 한국은 GDP 규모에 비해 R&D 투자 비율과 특허수준이 상대적으로 높았습니다.

또 특허활동지수 변화를 통한 R&D 현황에서 그린카 분야는 독일, 프랑스 및 이탈리아, 대체수자원 분야는 영국과 이탈리아, 그린 IT 분야는 캐나다와 미국, 이차전지 분야는 중국과 한국이 강세인 것으로 나타났습니다.

[ 녹색기술의 분야별 종합 분석 결과 ]

국가

자본 경쟁력

무형자본 경쟁력

특허수준(15점 만점)

GDP

(백만$)

R&D/GDP

(%)

연평균 출원수

그린카

대체

수자원

그린 IT

이차전지

태양전지

캐나다

1,116,252

1.98

39.6

9.62

7.88

8.86

10.74

8.55

중국

2,855,031

1.43

68.5

8.66

8.70

8.56

10.03

9.01

독일

2,755,078

2.58

174.9

9.83

10.39

9.89

10.58

10.23

프랑스

2,087,013

2.13

81.5

9.80

9.41

9.53

10.80

10.14

영국

2,112,343

1.77

40.0

10.05

9.53

9.17

10.80

10.05

이탈리아

1,716,815

1.16

13.0

9.70

8.61

8.85

10.71

8.96

일본

4,565,425

3.33

2312.3

9.55

9.06

9.41

10.13

9.47

한국

782,314

2.92

1062.3

9.25

9.08

9.34

10.89

9.92

미국

12,393,136

2.63

917.3

9.37

8.82

9.13

10.24

9.39

 ① 그린카
 ㅇ 하이브리드자동차는 일본, 클린디젤자동차는 유럽 중심으로 기술력이 우세하고, 전기자동차는 일본과 미국이, 연료전지자동차는 미국이 기술적 우위에 있음
 ㅇ 단기적으로 일본, 유럽과 경쟁할 수 있는 하이브리드자동차, 클린디젤자동차 개발에 집중하는 한편, 중장기적으로는 전기자동차 및 연료전지자동차 개발에 주력하는 것이 바람직함

 ② 대체수자원
 ㅇ 미국, 일본, 독일, 이탈리아 등의 선도 기업이 기술 및 시장을 주도하고 있으며, 향후 중국 기업이 강력한 경쟁자가 될 가능성이 있음

 ㅇ 국내 기업의 취약 영역인 멤브레인, 필터, 분리막 등의 핵심소재 부분과 시스템 엔지니어링 및 운영기술 부분에 대한 기업의 연구개발 및 국가 R&D 지원을 통해 경쟁력 확보가 시급

 ③ 그린 IT
 ㅇ 향후 서비스 시스템으로의 확장은 물론 다른 기술과의 융합이 촉진될 것으로 전망
 ㅇ 전력공급의 문제를 해결하기 위해 에너지절감 및 에너지관리와 관련된 정부차원의 지원 및 에너지저장장치 분야와 연동한 사업아이템의 출현이 예상됨
 ㅇ 국가마다 전력감축과 고효율화를 위한 추진방향이 다른 것으로 추정되며, 국내는 클라우드 컴퓨팅 분야에서 고속정보통신 인프라를 활용한 상호 연계나 망제어 부분이 발전할 것으로 전망됨

 ④ 이차전지
 ㅇ 에너지저장시스템에 대한 높아지는 관심과 함께 중대형 이차전지 수요가 증가하면서 이차전지 시장 점유율이 높은 국내 기업에게 기회가 되고 있음
 ㅇ 국내 기업은 우수한 제조기술력에 비해 핵심소재?부품 기술력이 취약한 편이나, 신소재 개발 및 소재 특성에 따라 중소기업에서 빠른 시간에 진출 가능한 분야이므로, 이에 대한 R&D 지원이 필요함 

 ⑤ 태양전지
 ㅇ 대기업의 수직계열화가 진행되면서 대기업을 중심으로 시장전환이 이루어지고 있음
 ㅇ 시장이 커지고 있는 박막 태양전지와, 염료감응 및 유기 등 3세대 태양전지의 상용화를 위한 기술 개발이 시급함
 ㅇ 국내 기업의 취약한 부분인 부품?장비 분야를 육성하기 위해 반도체 디스플레이 산업 발전 사이클에서 힌트를 얻어 중소기업과 대기업의 협력체제 구축을 통한 중견 장비기업의 육성이 필요함

<녹색기술 지식맵 분야별 주요 내용>

★ 그린카
 ㅇ 전문가 의견과 리서치 자료를 기반으로 개괄적으로 살펴본 결과, 일본은 하이브리드자동차(HEV), 유럽은 클린디젤자동차(CDV) 중심으로 기술력이 우세한 것으로 파악되었으며, 전기자동차(EV)는 일본과 미국이, 연료전지자동차(FCEV)는 미국이 기술적 우위에 있는 것으로 파악됨
 ㅇ 단기적으로 일본, 유럽과 경쟁할 수 있는 하이브리드자동차, 클린디젤자동차 개발에 집중하는 한편, 중장기적으로는 전기자동차 및 연료전지자동차 개발에 주력하는 것이 바람직함
   * 국내 클린디젤자동차 및 하이브리드자동차 조립 능력은 선진기술 대비 비슷한 수준이지만, 핵심부품 기술력이 취약함
 ㅇ 독일, 프랑스, 캐나다, 일본의 특허수준이 높게 나타났으며, 클린디젤자동차는 유럽이 강세이고, 하이브리드자동차와 전기자동차는 일본의 수준이 높음
   * 한국의 경우 클린디젤자동차와 연료전지자동차 분야는 기술수준이 다소 낮으나 하이브리드자동차 분야는 매우 높은 편이며, 전기자동차 분야는 아직까지는 다소 낮은 편으로 파악되었고, 클린디젤자동차 분야에서 기술수준 향상을 위해 기술 선도국인 유럽 기업과의 협력이 필요한 것으로 보임

★  대체수자원
 ㅇ 미국, 일본, 독일, 이탈리아 등의 선도 기업이 기술 및 시장을 주도하고 있으며, 물 부족 국가 중에서는 이스라엘과 남아프리카공화국이 시장 활동은 약하지만, 자국내에서 필요에 의해 R&D 활동을 비교적 활발히 진행하고 있는 것으로 나타남
   * 세계적 물(Water) 기업의 중국 현지 투자 및 사업화가 활발히 진행되고 있고, 중국내 물 기업 수의 증가가 빨라 향후 대체수자원 분야에서 중국 기업이 강력한 경쟁자가 될 가능성이 있음
 ㅇ 담수화와 재이용 분야의 성장으로 이 분야에서 사용되는 수처리 기술인 멤브레인 시장이 성장할 것으로 예상되며, 시장은 과점에서 다극경쟁으로 변화할 것으로 보임
   * 플랜트 시공 부분의 기술력은 우수하나 국내 기업의 취약 영역인 멤브레인, 필터, 분리막 등의 핵심소재 부분과 시스템 엔지니어링 및 운영기술 부분에 대한 기업의 연구개발 및 국가 R&D 지원을 통해 경쟁력 확보가 시급함
   ** 핵심 부품이나 소재 분야의 기술력은 해외 기술에 의존하고 있는 반면 중소기업에서 참여 가능한 분야이기도 하므로, 이에 대한 R&D 지원을 통해 대형 플랜트 기업의 국내 파트너 기업을 육성할 필요가 있음

★ 그린 IT
 ㅇ 해외 그린 IT 시장과 리더 기업들을 벤치마킹했을 때, 향후에는 서비스 시스템으로 확장, 그리고 다른 기술과의 융합이 촉진될 것으로 전망
 ㅇ 최근 대규모 정전사태와 같이 전력공급의 문제를 해결하기 위해 정부차원에서 에너지절감 및 에너지관리와 관련된 IT기술을 지원할 가능성과 필요성이 증가하고 있고, 다른 대안으로서 에너지저장장치 분야와 연동한 사업아이템들의 출현이 예상됨
   * 특허수준은 대체로 양호한 편이지만 분야별 선도국과의 격차를 줄이기 위한 R&D 지원이 필요하며, 특히, 그린하우스/에코시스템 분야의 경우 중국과의 차이가 별로 없어 유럽국과의 협력을 통해 추격에 대비해야 할 것으로 보임
   ** 전력망 곳곳에 전력저장장치 및 전력전자 스위치를 설치하여 수요의 변동성에 대처하고, 유무효전력을 제어 관리하는 시스템의 기능을 강화시키는 기술이 최근의 대규모 정전사태로 인해 한동안은 주목받을 것으로 전망됨
 ㅇ 2004년을 전후로 특허활동을 비교해 본 결과, 이산화탄소 배출량이 가장 많은 중국은 절전기기 및 시스템 분야가 증가하였으며, 미국은 클라우드 컴퓨팅, 일본은 조명제어시스템과 에코하우스 분야가 증가한 것으로 조사되어, 국가마다 전력감축과 고효율화를 위해 추진하는 방향이 다른 것으로 추정됨
   * 클라우드 컴퓨팅 분야는 국내 고속정보통신 인프라를 활용하여 발전이 활발할 것으로 추정되나, 통신사들과 데이터센터(IDC) 등 상호연계나 망제어 부분에서 수익발생아이템들이 존재할 것으로 전망

★ 이차전지
 ㅇ 대기업의 투자로 이차전지 제조기술력은 우수하나, 핵심소재?부품 기술력은 취약함
   * NaS 전지, RFB는 리튬이온전지에 비해 제조 및 원천 기술력이 미흡함
 ㅇ 이차전지 분야에서 특허활동지수 변화를 통한 R&D 현황을 살펴보면, 이차전지 및 그의 제조 기술은 이탈리아가, 발전요소 이외 부분의 세부구조 기술은 중국과 한국이, RFB/NaS 전지 분야는 캐나다와 영국이 강세임
 ㅇ 그린카의 핵심은 배터리 기술로서 이차전지 기술이 필요하며, 에너지저장시스템에 대한 높아지는 관심과 함께 중대형 이차전지 수요가 증가하면서 이차전지 시장 점유율이 높은 국내 기업에게 기회가 되고 있음
 ㅇ 우리나라의 경우 세계 최고 수준의 전지 제조기술에 비해 부품?소재 기술은 매우 취약한 편이나 이러한 후방산업 영역이 신소재 개발 및 소재의 특성에 따라 중소기업에서 빠른 시간에 진출 가능한 분야이며, 전방산업의 경우 Mobile IT 영역에서 중소기업의 참여가 가능함

★ 태양전지
 ㅇ 시장은 초기 중소기업 위주로 형성되었으나, 대기업의 진출로 인해 대기업 중심으로 시장전환이 이루어지고 있음
   * 실리콘 태양전지는 대기업의 활발한 진출로 인해 선진국과의 격차가 좁혀질 것으로 예상됨
 ㅇ 시장이 커지고 있는 박막 태양전지와, 염료감응 및 유기 등 3세대 태양전지의 상용화를 위한 기술 개발이 시급함
 ㅇ 부품?장비 분야를 육성하기 위해 반도체 디스플레이 산업 발전 사이클에서 힌트를 얻어 중소기업과 대기업의 협력체제 구축이 필요함
   * 염료감응, 유기 태양전지 분야의 그간의 한국의 성과는 대학, 연구소 위주로 전개되었으며, 향후 혁신형 벤처기업을 비롯한 중소기업의 원천기술 개발 및 대학이나 연구소 연구 성과의 양산화 기술 개발로 확장 전개될 것으로 기대됨
 ㅇ 한국은 유기 태양전지와 염료감응 태양전지가 상대적으로 특허활동도가 높고, 미국은 실리콘 박막 태양전지, CIGS 태양전지에 집중하고 있음
   * Applied Materials와 LG전자는 삼극특허비율과 최신특허비율이 평균 이상으로 글로벌 경쟁력과 최신기술력을 보유한 것으로 판단되며, 동진쎄미켐도 최신특허비율이 매우 높아 최근 연구개발이 활발한 것으로 나타남


반응형

'과학산책 > KISTI' 카테고리의 다른 글

박영서 KISTI 원장 신년사 전문  (0) 2012.01.02
대학 R&D 성과 살린다  (0) 2011.11.06
KISTI, 동경대와 글로벌 연구협력 협약  (0) 2010.11.22
반응형

촉매금속 위에서 합성된 대면적 그래핀은 디스플레이, 태양전지 등에 다각적으로 활용될 수 있어, 이에 대한 연구가 전 세계적으로 활발히 진행되고 있습니다.

그러나 이 대면적 그래핀을 실제 전자기기에 응용하기 위해서는 단원자 층인 그래핀을 촉매금속으로부터 손상 없이 떼 내는 것이 무엇보다도 중요합니다.

지금까지는 화학약품을 이용해 금속을 녹여 제거함으로써 그래핀을 촉매금속으로부터 분리했습니다.

그러나 이 방법은 금속을 재활용할 수 없을 뿐만 아니라 생산단가도 높아 경쟁력이 없고, 특히 금속을 녹이는 과정에서 많은 양의 폐기물이 발생하여 환경문제를 일으킬 수 있습니다.

또 공정 단계도 매우 복잡해 그래핀의 양산화에 큰 장벽으로 작용했습니다.

□ KAIST 김택수, 조병진 교수팀은 금속위에서 합성된 그래핀의 접합에너지를 정밀측정한 후 이를 이용하면 그래핀을 금속으로부터 쉽게 분리할 수 있다는 사실을 밝혀냈습니다.

이번 연구는 그동안 어떠한 연구팀도 정확히 측정할 수 없었던 그래핀과 촉매금속간의 접합에너지를 처음으로 정밀히 측정하는데 성공한 것입니다.

금속 재활용이 가능한 친환경, 저가 기반의 그래핀 양산 기술과 이를 이용하여 제작된 그래핀 전계 효과 트랜지스터


이를 이용해 촉매금속을 기존처럼 일회용으로 사용하는 것이 아니라, 무한대로 재활용할 수 있게 돼 친환경적이면서도 저렴한 고품질 대면적 그래핀 생산의 원천기술을 마련했습니다.
    
또한 이 방법을 사용해 기계적으로 분리된 그래핀을 다른 기판에 전사하지 않고 곧바로 그 위에 전자소자를 제작하는데 성공해 기존의 복잡한 그래핀 생산단계를 획기적으로 줄였습니다.

특히 그래핀을 떼어낸 후에도 그 금속기판을 수차례 재활용하여 그래핀을 반복적으로 합성해 처음과 같은 양질의 그래핀을 합성할 수 있어 친환경, 저비용 그래핀 양산기술에 새로운 길을 열었습니다.
 
이번 연구결과를 통해 매우 간단한 단일 공정만으로 그래핀을 금속으로부터 손쉽게 떼 내어 그래핀 응용소자를 제작할 수 있게 됐습니다.

연구결과는 나노과학 분야의 권위 있는 학술지인 'Nano Letters'지 온라인 속보(2월 29일자)로 게재되었다. 
(논문명 : Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process)  



(왼쪽부터) 신우철 박사과정생, 윤태식 석사과정생, 김택수 교수, 조병진 교수.

 용  어  설  명

그래핀 분리기술 :
금속위에서 성장된 대면적의 그래핀을 활용하기 위해 원하는 기판위에 그래핀을 전사시키는 기술.
기존에는 화학 약품을 이용한 식각 공정으로 금속을 제거하여 그래핀을 분리하였으나, 식각 공정 중에 그래핀의 손상과 환경오염, 높은 제작비용 등의 문제로 인해 그래핀 상용화에 큰 걸림돌이 되어왔다.

접합에너지 :
이종 고체간의 상호작용으로 인하여 서로 점착하려는 경향을 나타내는 값으로서 금속위에서 성장된 원자 한층 수준의 얇은 그래핀을 금속으로부터 분리해 내기 위해서는 접합에너지에 대한 규명이 필수다. 

 

<연 구 개 요>

그래핀은 우수한 전기적, 기계적 특성으로 인해 다양한 분야의 핵심 소재로서 각광 받고 있다. 현재까지 고품질의 대면적 그래핀은  촉매 금속위에서 Chemical Vapor Deposition (CVD) 방법을 통해 성장되어 왔다. 
금속위에서 성장된 그래핀을 전자 응용소자 제작에 이용하기 위해서는 금속으로부터 그래핀을 분리해내는 그래핀 분리 과정이 필수적인데, 현재까지는 화학적 식각 방법을 통해 금속을 제거하는 금속 식각 공정이 이용되었다.
그러나 이러한 과정은 그래핀에 손상을 줄 수 있고 대면적의 금속 식각으로 인한 상당한 양의 폐기 물량을 유발할 뿐만 아니라, 금속 기판을 일회성으로 밖에 이용할 수 없어 그래핀 상용화에 커다란 장벽으로 작용해왔다.

본 연구진은 세계 최초로 금속위에서 성장된 그래핀이 금속과 이루는 접합에너지를(0.75±0.07 J/m2) 실험적으로 정확하게 밝혀내었다. 그림 1. 은 Double Cantilever Beam (DCB) testing을 이용한 그래핀과 구리 사이의 접합에너지 측정을 보여준다.  이것은 그래핀을 금속으로부터 기계적으로 분리해내는데 가장 중요한 정보라고 할 수 있는 접합에너지의 구체적인 값을 규명하였다는 면에서 상당한 의미를 가진다고 할 수 있다.

그림 1. DCB fracture mechanics testing을 이용한 그래핀과 구리 금속 사이의 접합에너지 측정. Loading/crack-growth/unloading cycle을 반복해서 수행하면서 crack length (a) 및 접합에너지를 추출하였다.       


그림 2. (a) 촉매 금속 기판의 재활용이 가능한 친환경, 저가 비용의 그래핀 양산 기술의 모식도
        (b) 하나의 금속 기판에서 반복적으로 그래핀을 성장 및 분리시킨 후 측정한 라만 결과.
            고품질의 그래핀을 하나의 금속 기판위에서 반복적으로 성장시킬 수 있다.

그래핀이 금속과 이루는 접합에너지는 그래핀 분리 기술의 핵심적인 정보를 지니고 있음에도 불구하고, 원자 한 층으로 이루어진 그래핀을 대면적의 금속으로부터 정확하게 박리해 내기가 매우 어려워 지금까지 어떠한 연구진에 의해서도 규명되지 못하고 있었다. 
또한 본 연구진은 규명한 접합에너지를 이용하여 하나의 금속 기판을 무한대로 재활용하여 그래핀을 양산할 수 있는 친환경, 저가 비용의 그래핀 분리 기술을 개발하였다.
그림 2. a 는 하나의 구리 기판에서의 그래핀의 성장과 분리가 반복적으로 가능하다는 것을 보여주며, 그림 2. b 는 반복 성장된 그래핀의 라만 결과로서 하나의 금속기판 위에서도 고품질의 그래핀을 계속해서 무한대로 양산할 수 있다는 것을 보여준다.
본 연구에서 개발한 그래핀 분리 기술을 이용할 경우 기존의 기술 대비 생산 비용을 상당히 낮출 수 있을 뿐만 아니라 간단한 기계적 박리 기술로 쉽게 그래핀을 얻어 낼 수 있으므로 현재의 복잡한 그래핀 양산 과정을 오직 하나의 단일 단계만으로 단축시킬 수 있을 것으로 기대된다.
실제로 본 연구진은 이러한 기계적 박리 기반의 그래핀 분리기술을 이용하여 양산시킨 그래핀을 소자의 채널물질로 이용하여 전계 효과 트랜지스터를 유연기판위에 제작하는데 성공하였다.
그림 3. (a) 은 본 연구에서의 개발된 그래핀 분리기술을 이용하여 제작된 그래핀 전계 효과 트랜지스터(Field Effect Transistor, FET) 의 사진 및 모식도를 보여준다.  그림 3. (b),  (c), (d) 는 제작된 그래핀 FET 소자의 전류-전압 특성과 Bending Stability를 나타낸다.  본 연구진은 기계적 박리를 통해 그래핀을 원하는 기판에 전사시켜 응용소자의 제작이 가능하다는 것을 밝혀내었으며 이것은 본 연구에서 개발한 그래핀 분리기술이 그래핀 응용 소자 제작에 바로 이용가능하다는 것을 보여주는 결과로서 그래핀 상용화 크게 앞당길 것으로 기대한다.

그림 3. (a) 기계적 박리를 통해 단일 공정만으로 분리된 그래핀을 이용한 전계효과 트랜지스터의 모식도 및 사진.
       (b) 제작된 그래핀 전계 효과 트랜지스터의 Output 특성. (c 유연성 기판에 전사되어 제작된 그래핀 전계 효과 트랜지스터의 Transfer 특성 및 Bending Stability.
       (d) 그래핀 전계 효과 트랜지스터의 bending 조건에 따른 이동도 변화. 이동도 특성 변화는 10 %로서 매우 안정된 소자의 구동이 가능함을 알 수 있다. 


<조병진 교수>

1. 인적사항        
 ○ 소 속 : 카이스트 전기 및 전자공학과   
 
2. 학력
  1981 - 1985    고려대학교 전기공학과 졸업
  1985 - 1987    카이스트 전기 및 전자공학과 석사 졸업
  1987 - 1991    카이스트 전기 및 전자공학과 박사 졸업
 
3. 경력사항
2007 - 현재   카이스트, 전기 및 전자공학과 교수
1997 - 2007    싱가포르 국립대학교, 전기 및 컴퓨터 공학과 교수
1993 - 1997   하이닉스 반도체, 메모리 연구소 책임연구원
1991 - 1993    벨기에 IMEC 연구원
<김택수 교수>

1. 인적사항    
 ○ 소 속 : 카이스트 기계공학과                
 
2. 학력
  2001    연세대학교 기계공학과 학사 졸업
  2006    스탠포드 대학교 기계공학과 석사 졸업
  2010    스탠포드 대학교 기계공학과 박사 졸업
 
3. 경력사항
2010.12 ~ 현재      카이스트, 기계공학과 조교수
2010.1 ~ 2011.11 스탠포드 대학교 재료공학과 박사 후 과정(Postdoctoral Scholar)
 

반응형
반응형

'이달의 과학기술자상' 3월 수상자로 자연의 광합성 현상을 모방하여 태양에너지로부터 최종적으로 화학물질을 생산할 수 있는 인공광합성 원천기술을 개발한 KAIST 박찬범 교수(43)가 선정됐습니다.

박찬범 교수는 바이오소재(Biomaterials) 분야의 석학으로, 인공광합성을 위한 고효율 나노바이오소재들을 개발하여 학계의 주목을 받아왔습니다.

광합성은 식물 등 자연계의 생물체가 태양광을 에너지원으로 하여 일련의 물리화학적 반응들을 통해 탄수화물과 같은 화학물질을 생산하는 현상입니다.

식물의 엽록소는 태양광을 받으면 전자를 방출하고(광반응), 이 전자는 주변으로 전달돼 연쇄적 화학반응을 일으키면서 환원에너지를 생산합니다.

또 햇빛이 없는 밤에는 낮에 재생했던 에너지를 이용해 이산화탄소를 탄수화물로 환원시킵니다.

박찬범 교수는 이러한 자연계의 광합성시스템을 모방하기 위하여 광반응의 엽록소 대신에 태양전지 등에서 사용되는 양자점 등 나노크기의 광감응 소재로 빛에너지로부터 화학적 환원에너지를 고효율로 재생하는데 성공했습니다.

또한 자연계의 연쇄적이고 복잡한 암반응 대신에 단순한 생체촉매반응을 이용하여 빛에너지로부터 최종적으로 메탄올 등 화학연료, 의약품 등 고부가가치 정밀화학물질을 생산하는 친환경 녹색생물공정 개발의 전기를 마련했습니다.

박 교수가 개발한 나노바이오소재 기반 인공광합성기술은 무한한 에너지원인 태양광을 사용해 화학연료, 정밀화학제품 등을 생체촉매반응으로 합성한다는 점에서 파급효과가 매우 큽니다.

박찬범 교수는 Advanced Materials, Angewandte Chemie 등 재료분야의 권위 있는 학술지에 2008년 이후 교신저자로서 48편의 논문을 발표하였고, 이 학술지들의 인용지수(IF)의 합계가 323(1편당 평균: 6.73)으로 매우 높습니다.

특히 인공광합성에 대한 연구결과로 지난해에만 총 6편의 표지논문을 발표하는 등 학계의 큰 주목을 받았습니다.

또 박 교수가 개발한 나노바이오소재 기반 인공광합성 기술은 2010년도 대한민국 10대 과학기술뉴스로 선정되기도 했습니다.

<박찬범 교수> 

● 인적사항

 ▶성명 : 박찬범 (朴燦範)
 ▶소속 : 카이스트 신소재공학과

● 학    력

▶1995 ∼ 1999    포항공과대학교 화학공학과, 박사
▶1993 ∼ 1995    포항공과대학교 화학공학과, 석사
▶1987 ∼ 1991    포항공과대학교 화학공학과, 학사

● 경    력

▶2008 ∼ 현재
▶2006 ∼ 2008
▶2002 ∼ 2006
▶1999 ∼ 2002
카이스트 신소재공학과, 부교수 (영년직)
카이스트 신소재공학과, 조교수
애리조나주립대학교, 조교수
UC Berkeley, 박사후연구원


● 주요업적 : 나노바이오소재 기반 인공광합성 기술개발
□ 자연의 광합성현상을 모방하여 태양에너지로부터 시작하여 최종적으로 메탄올 등 화학연료, 의약품 등 고부가가치 정밀화학물질을 태양에너지를 이용해 생산하는 친환경 녹색생물공정 원천기술 개발


반응형
반응형

한국기계연구원 에너지플랜트안전연구실 최병일 박사팀과 가상현실 전문기업 에이알비전은 초고층 복합건물에서 발생한 가상의 화재 상황을 실감 영상기술로 재현하는 팀 단위의 구조 훈련을 할 수 있는 일선 소방관용 훈련 시뮬레이터 개발에 성공했습니다.
  
현재 중앙소방학교에서 쓰이는 미국산 시뮬레이터는 일선 소방관이 아닌 지휘관용입니다.

이번에 새로 개발된 시뮬레이터는 네트워크 상에서 작동해 2인 1조로 이뤄진 총 3개 팀이 동시에 화재진압 훈련을 할 수 있어 상호 협조 훈련에 적합합니다.

소방관들의 이동 경로에 따른 유독가스 산출량을 실시간으로 보여주며, 전산 시뮬레이션을 통해 화재의 정확한 전파 상황과 온도 분포를 알려주고, 온도 변화에 따른 열기 체험도 가능합니다.

이번 시뮬레이터에 쓰인 교육 훈련 시나리오는 대규모 인명 피해가 예상되는 밀폐된 대형 구조물에 가장 적합하게 설계됐으며, 이는 우리나라 소방관들이 현재 사용 중인 '화재 대응지침(SOP)'에 기반해 제작됐습니다.

특히 소방구조 활동 중 가장 어렵다고 알려진 백드래프트(Backdraft), 플래쉬오버(Flashover) 등의 화재현상도 시뮬레이션 기법으로 완벽히 재현, 소방관들의 대처능력을 높이도록 했습니다.

이번 연구는 소방방재청 차세대 핵심 소방안전 기술개발 사업의 지원으로 진행됐습니다. 

- 훈련 소방대상물 : 고층빌딩, 지하역사
- 훈련자 : 화재현장 진입 소방대원 3팀(6명)
- 훈련내용 : 인명검색/구조, 화점탐색/진압, 배연, 플래시오버, 백드래프트 대응
- 구성 : 시뮬레이션 메인서버 1 set (교관용 console), 훈련자용 console (6 set), 실감영상생성시스템, 빔프로젝터
- 내용 : 가상환경에서 화재를 재현, 체험 및 3팀 소방훈련을 수행할 수 있는 실감영상기반 소방안전 대응 훈련 시뮬레이터

<기존 화재 대응 시뮬레이터와의 비교>

구분

목적

Fire Dynamics

훈련시나리오

VR 기술

비고

Fire Cube

화재체험

Zone Model

None

3-D 객체 가시화

국외기술

지휘훈련

시뮬레이터

지휘관

지휘훈련

None

지휘체계 SOP

3-D 객체 가시화

국외기술, 2005년

중앙소방학교 

도로터널

시뮬레이터

화재체험

3차원전산해석

None

3-D 객체 가시화 화원/연기 VR 구현

국내기술, 2008년

 기계연구원

기계연 개발 시뮬레이터

소방관 훈련

3차원전산해석

임무수행 SOP

팀 훈련

3-D 객체 가시화

화원/연기 VR 구현

국내기술



 용  어  설  명

백드래프트(Backdraft) :
역화(逆火).
산소가 부족하거나 훈소(불꽃 없이 타는 연소) 상태에 있는 실내에 산소가 일시적으로 다량 공급될 때 연소가스가 순간적으로 발화하는 현상.

플래쉬오버(Flashover) :
연소된 인화물에서 발생한 가연성 혼합 기체가 가득차 실내 온도가 가연성 혼합기체의 발화점보다 높아지는 순간 한꺼번에 착화되는 현상. 

반응형
반응형

KAIST 생명화학공학과 이상엽 특훈교수가 의장으로 있는 세계경제 포럼 산하 ‘미래기술 글로벌 어젠더 카운슬’에서 ‘2012년 세상을 바꿀 10대 신기술’을 선정했습니다.

이번에 선정된 10대 기술은 △정보기술 △합성생물학과 대사공학 △녹색혁명2.0 △물질설계 나노기술 △시스템생물학과 화학 생물시스템의 시뮬레이션기술 △이산화탄소의 원료로서 활용기술 △무선 파워전송기술 △고에너지밀도 파워시스템 △개인 맞춤형 의약 등입니다.

이번에 선정된 기술은 가까운 미래에 세상을 변화시킬 가능성이 높은 것으로 과학계, 산업계, 정부 등 다양한 분야에 걸친 전문가들의 의견을 바탕으로 정해졌습니다.


<2012년 세상을 바꿀 10대 신기술>

1. 정보에 가치를 보태주는 인포매틱스
개인과 조직이 접속할 수 있는 정보의 양은 현재 인류 역사상 유래를 찾을 수 없을 만큼 많고, 정보의 양은 앞으로도 계속 기하급수적으로 늘어날 것이다. 그러나, 단순히 정보의 양으로만 보자면 현재는 가치를 창출하기보다는 불필요한 잡음 역할을 할 위험성이 있을 정도로, 정보의 효율적인 사용이 제한을 받고 있다. 정보를 분류하고, 처리하여 꼭 필요한 정보만을 간추리는 혁신적인 기술이 불필요한 정보를 걸러내고,  글로벌한 정보를 제공받음으로써 세계가 직면하고 있는 긴급한 문제들을 해결하는데 꼭 필요하다.

2. 합성생물학과 대사공학
생물체의 가장 핵심인 유전자 코드는 오랜 기간 진화 과정을 통해 타의 추종을 불허하는 유용성을 지니고 있다. 합성생물학과 대사공학의 빠른 발전으로 생물학자들과 공학자들은 이제까지 시도되지 않은 방법들을 통해 이 유용성에 좀 더 가까이 갈 수 있게 되었다. 또한 특정한 목적에 사용될 수 있는 유기체가 개발되었고, 새로운 생물학적 과정의 발달도 가능하게 되었으며, 바이오 매스를 화학약품이나 연료, 재료로 전환하여 새로운 치료제를 생산하거나, 해로운 물질로부터 인체를 보호 할 수 있게 되었다.

3. 녹색 혁명 2.0
식량과 바이오 매스를 증산하는 기술 곡물의 생산량을 획기적으로 늘리는 데 기여한 화학비료는 현대 화학이 이루어 낸 위대한 업적 가운데 하나이다. 그러나, 전세계적으로 건강에 좋고 영양가 높은 식량에 대한 수요의 증가는 한정된 에너지, 물 그리고 토지 자원에 새로운 위협이 되고 있다. 생물학과 물리학을 결합한, 새로운 녹색혁명은 환경에 대한 영향을 최소화하면서도, 에너지와 물에 대한 의존도를 줄이고, 탄소 발자국을 감소시키는 한편, 식량생산량을 더욱 증대시킬 수 있는 가능성을 높여주고 있다.  

4. 나노 스케일 소재의 고안
천연자원에 대한 수요가 늘어남에 따라 효율성을 높이는 문제가 더욱 중요성을 띠게 되었다. 분자단위로 설계, 고안된 특성물질을 함유한 나노 구조의 물질들은 이미 그 새롭고 독특한 특성들로 인해 차세대 청정에너지 혁명을 이끌 것으로 기대를 모으고 있다. 이 물질들은 고갈되어가는 천연 자원에 대한 우리의 의존도를 줄이는 한편, 각종 제조업이나 가공에서 효율을 높이는 역할을 할 수 있다.

5. 시스템 생물학과 컴퓨터 모델링
화학과 생물시스템 시뮬레이션 의료분야나 바이오 관련 제조업의 기능 향상을 위해서는 생물학과 화학이 어떻게 함께 작용하는 지를 이해하는 것이 중요하다. 시스템 생물학과 컴퓨터 모델링/시뮬레이션은 인간의 신체와 환경에 대한 영향을 최소화하면서도, 매우 효율적인 치료약품, 물질 혹은 제조과정을 설계하는 데 점차 그 중요성이 강조되고 있다.

6. 이산화탄소를 자원으로 활용
지구에서 탄소는 생명의 가장 기본이 되는 물질이다. 그러나, 지구 온난화를 막기 위하여 이산화탄소 배출을 규제하는 것이 사회, 정치, 경제적으로 중요한 일이 되었다. 이산화탄소 관리에 관한 혁신적인 새로운 접근방법은 그것을 골치덩어리에서 하나의 자원으로 전환하는 것이다. 나노 구조의 물질을 바탕으로 한 촉매제는 이산화탄소를 값비싼 탄화수소와 다른 탄소를 함유한 분자로 전환시킬 수 있다. 이것들은 건물을 짓는데 사용되는 벽돌이나 화학산업의 클리너, 혹은 지속가능성이 더욱 뛰어난 석유화학물질의 대용물로 사용될 수 있다.

7. 무선 파워 전달
현대 사회는 전기를 동력으로 사용하는 기구들에 크게 의존하고 있다. 그러나 유선 송전망이나 또는 전지를 계속 재충전하는 방법을 사용해야 한다는 점 때문에 많은 제약이 있다. 전선없이 무선으로 전기나 에너지를 전달하는 기술이 전기기구를 쓰기 위해 플러그를 꼽아야 일에서 해방을 시켜줄 것이다. 이 기술은 와이파이가 인터넷 사용에 영향을 끼친 것과 마찬가지로 개인 전자 장비에 커다란 영향을 줄 것이다.

8. 고밀도 파워시스템
차세대 클린에너지 기술의 실용화 되기 위해서는 고밀도 충전시스템이 필요하다. 이러한 수요에 맞추어 신기술들이 속속 개발되고 있는데, 여기에는 나노소재 전극이나 고체전극 또는 새로운 형태의 고성능 축전지를 이용하는 방법들이 해당된다. 이런 기술들은 차세대 청정에너지 산업에 필수적이다. 

9. 개인 맞춤의학과 영양 그리고 질병예방
전세계 인구가 70억이 넘고, 모든 사람들이 건강하게 오래 살기를 원하면서, 건강을 유지하기 위한 전통적인 방법들이 점차로 그 설 자리를 잃고 있다. 유전채학, 단백질체학, 대사체학의 발달로 각 개인에 맞추어 약을 제조하거나 영양을 공급하고, 사전에 질병 예방 조치를 취하는 것이 가능한 시대가 열리고 있다. 합성 생물학과 나노 기술과 같은 신기술의 발달은 의료계의 혁명이라 할 수 있는 개인 맞춤의학의 보급을 위한 초석이 되고 있다.

10. 진보된 교육 기술
젊은 세대에게 지식경제사회에 꼭 필요한 기술을 전달하기 위해서는 새로운 접근방법이 필요하다. 빠르게 발달하고, 하이퍼 커넥티드(hyperconnected) 되어있는 글로벌 사회에서는 이것이 더욱 중요하다고 할 수 있다. 각 개인의 비판적 사고력을 높이면서도, 창조성을 키울 수 있는 방향으로 IT기술을 바탕으로 각 개인에 맞춤 교육을 제공하는 교육방법이 주목 받고 있다. 소셜 미디어와 오픈코스웨어 (열린 강의자료), 그리고 상시 가능한 인터넷 접속 덕분에 교실 밖에서의 교육이 더욱 활성화되고 있다.

반응형
반응형

수소는 미래 에너지 문제를 궁극적으로 해결할 수 있는 청정에너지원으로, 한국을 비롯해 세계적으로 많은 연구가 진행되고 있습니다.

특히 주요 선진국들은 충분한 양의 수소를 작고 가벼운 저장장치에 담을 수 있는 기술을 연구 중입니다.

현재 관련 기술은 수소를 고압으로 압축하여 저장하는 방식이 주류를 이루고 있는데, 여전히 부피가 크고 사고 위험도 높기 때문에 낮은 압력에서도 효율적으로 수소를 저장하는 기술이 필요합니다.

낮은 압력 저장 방법의 하나로 현재 활발히 진행되고 있는 분야가 나노 크기 물질 사이에 수소 분자를 물리적으로 흡착시켜 저장하는 기술입니다.

이 경우 층간 간격을 어느 정도 유지할 때 저장 효율을 가장 높일 수 있는지가 핵심과제입니다.

□ 한국기초과학지원연구 김해진 박사팀이 수소 저장 재료의 층간물질 간격조절을 통해 수소 저장능력 향상시키는 실증실험에 성공했습니다.


김 박사팀은 산화그라핀(graphene oxide)의 층간 간격 조절을 통하여 0.6nm~0.65nm의 층간 간격에서 수소 저장 효율이 최대치를 보여준다는 사실을 실험적으로 증명했습니다.

그동안 학계는 0.5nm~0.7nm의 층간 간격에서 수소저장 효율이 최대가 된다는 사실은 이론적으로 제시되었지만 이를 실험적으로 증명한 것은 이번이 처음입니다.

실

실제 산화그라핀과 산화그라핀 간격조절의 예



산화그라핀(graphen oxide)은 그라핀에 산소를 포함한 유기물질들(-OH, -O-, -OOH)이 붙어 있는 것을 말하는 것으로, 이 그라핀 층 사이에 수소분자를 저장 할 수 있습니다.

연구팀은 산화그라핀을 간단한 열처리를 통해 층간에 존재하는 물분자와 기능성 물질들을 제거함으로써 층간 간격을 조절하여 최고 효율의 층간간격을 찾아냈습니다.

이번 연구결과는 영국왕립화학회지 'Physical Chemistry Chemical Physics'에 게재되었고, 국내 특허 출원을 완료했습니다.
 

작은 공동형 구조체가 보다 큰 공동형 구조체를 이룬 모습

층간 간격조절을 통해 수소저장량이 극대화된 PANI-VONC



 

 용  어  설  명

그라핀 (graphene) :
 그라핀은 흑연에서 가장 얇게 한 겹을 떼어낸 것으로, 탄소나노튜브, 플러렌(C60)처럼 탄소로 구성된 나노물질이며 층상구조를 갖고 있다.

Angstrom :
파장이나 원자간 거리의 측정단위 (100억 분의 1미터)

Nanometer(nm) :
파장이나 거리의 측정단위 (10억 분의 1 미터)

공동형 구조(hollow structure) :
속이 비어있는 구조 안에 귀속금, 전이금속 등을 넣어 수소저장량 향상 및 나노반응기와 같이 다양한 응용범위를 갖는다.

<연 구 개 요>

Thermally modulated multilayered graphene oxide for hydrogen storage
B. H. Kim et al. (Phys. Chem. Chem. Phys. - 2011. 11. 28 출판)

수소는 미래 에너지 문제를 궁극적으로 해결할 수 있는 청정에너지원으로 한국을 비롯해 세계적으로 많은 연구가 진행되고 있다.
각국 연구진은 특히 수소에너지를 수소연료자동차, 가정용 소형 발전시스템, 모바일용 전자기기 등에 사용하기 위해 충분한 양의 에너지를 가벼운 저장장치에 담을 수 있는 기술을 연구해왔다. 
 
현재 수소저장량 증가에 대한 연구가 답보상태에 있는 상황으로 어떻게 수소가 저장되는가에 대한 기초적인 연구가 전세계적으로 주목받고 있는 연구방향이 되고 있다.
따라서 층간 물질에서 층간거리에 따른 수소저장량의 변화를 이해하여 최적의 층간거리를 파악하고 수소저장 메커니즘을 규명하고, 수소저장용 나노재료 개발을 통하여 연구범위를 넓히고 그에 따른 원천기술을 확보함으로써 미래 에너지 기술을 선점할 수 있는 가능성이 높아졌다. 

본 연구에서는 차세대 수소저장물질로 주목받고 있는 산화그라핀(graphene oxide)을 간단한 열처리를 통해 층간에 존재하는 물분자와 기능성 물질들을 제거함으로써 층간 간격을 조절하여 수소저장능력을 향상시켰고, 이론적으로 5 - 7 ?의 층간 간격에서 수소 저장량이 최대치를 보여준다는 사실을 최초로 실증했다.
본 연구에서 사용된 산화그라핀은 그라핀에 산소를 포함한 기능성 물질들(-OH, -O-, -OOH)이 붙어 있는 것을 말하는데, 액체 상태의 산화그라핀을 상온상압에서 건조하면 8 - 12 ? 의 층간간격을 갖는 적층구조를 이룬다.
본 연구에서는 산화그라핀의 층간간격을 조절하기 위하여 27 - 220 ℃ 범위에서 열처리를 통하여 층간에 존재하는 물분자와 기능성 물질들을 부분적으로 제거하였고, X-선 회절 분석을 통하여 온도가 증가함에 따라 층간간격이 감소함을 확인하였다.
또한 핵자기공명 분광법을 통하여 산화그라핀의 구조를 분석하여 완전히 제거되지 않은 기능성 물질들이 산화그라핀의 층간 간격을 적절히 유지시켜 주고 있음을 확인하였다.
 
27℃, 50℃, 100℃, 170℃, 190℃, 200℃ 의 온도에서 열처리된 산화그라핀은 7.6 - 6.3? 의 층간 간격을 갖게 되는데, 고압수소저장장치를 통하여 상온과 질소온도에서 각각의 수소저장능력을 측정하였다.
특히 수소 90기압, 질소온도하에서는 층간 간격이 감소함에 따라 190℃로 열처리된 산화그라핀이 27℃로 열처리된 산화그라핀보다 수소저장능력이 4배 이상 증가함을 확인하였다.
하지만 220℃로 열처리된 산화그라핀의 경우에는 190℃ 로 열처리된 산화그라핀보다 오히려 수소저장량이 감소하여 수소저장량이 최대가 되는 최적의 층간간격을 찾을 수 있었다.
 
190℃로 열처리된 산화그라핀이 가지는 6.5? 의 층간 간격에서 수소저장량이 최대가 된다는 본 연구의 결과는 그 동안 이론적으로만 계산할 수 있었던 층간 간격과 수소저장량의 관계를 실제로 실험을 통하여 증명함으로써 수소저장 메커니즘을 규명하였고, 적층 구조를 가지는 수소저장용 나노 재료의 개발등의 활발한 연구가 이어질 전망이다.      


<김해진 박사>

 

□ 인적사항

 ○ 성      명 : 김해진(金海震, Kim, Hae Jin)
 ○ 소      속 : 한국기초과학지원(연) 물성과학연구부
 
□ 학력사항

1985. 3~1989. 2  고려대학교  물리학  학사
1989. 3~1991. 2  고려대학교  고체물리학  석사
1993. 3~1997. 2  고려대학교  고체물리학  박사

□ 경력사항

 1997. 03 - 1998. 05   Jozef Stefan 연구소   박사후연수연구원
 1998. 12 - 2000. 04        IOWA 주립대    박사후연수연구원
 2000. 5 - 2002. 09       포항공대    연구조교수
 2004 - 현재             ISNQI     국제위원
 2006 - 2009      IEA- HIA    Task22 위원
 2002. 10 - 현재     한국기초과학지원연구원  책임연구원
 2009. 03 - 현재  분석과학기술대학원   교수
 
□ 대표 연구 성과
 
  - 국내외 논문 발표 및 게재(70건), 국내외 특허출원 및 등록(21건)
  - 알루미늄 산화물 골격을 이용한 망간 산화물 나노튜브 또는 나노막대의 합성 개발
    해외특허 등록 (US7713660)

반응형
반응형

평판 디스플레이 산업은 21세기 정보화 산업을 주도하는 핵심 산업으로, LCD를 중심으로 활발히 연구되고 있습니다.

이는 우리나라가 세계시장의 50% 이상을 점유하고 있는 세계선도 산업이기도 합니다.

LCD에는 전기광학소자로서 액정을 구동시키기 위해 여러 기술이 집약되는데, 특히 표시 소자의 품질과 기능을 좌우하는 가장 기본적이면서 핵심적인 기술이 LCD를 구동하기 위해 사용하는 액정(Liquid Crystal)을 한쪽 방향으로 정렬하는 액정배향기술입니다.

현재 모든 LCD 제품의 액정배향기술은 얇은 고분자 필름 표면에 일정한 방향으로 기계적으로 홈을 파고, 그 홈을 따라 액정 물질을 배향시키는 기법이 적용됩니다.

그러나 고분자 배향막은 고분자 설계 합성부터 후처리까지 많은 시간과 비용이 소비되고, 고분자 안정화를 위한 고온공정은 자유롭게 기판을 선택할 수 없게 하여, 자유자재로 휘어지는 디스플레이 등 차세대 디스플레이에 활용하기 힘든 기술적 한계가 있었습니다.

기존 LCD와 달리 고분자 배향막이 필요 없는 신개념 LCD 기술이 개발됨에 따라 더욱 얇고 고화질에 속도도 빠른 차세대 디스플레가 나올 전망입니다.


□ KAIST 정희태 교수팀은 고분자 배향막 없이 LCD에 사용되는 투명한 전극용 유리막(ITO)만을 이용해 액정을 배향시키는 무배향막 기술을 개발했습니다.

정 교수팀의 원천기술인 신개념 방식의 패턴기법을 전극용 유리막에 적용하여 20nm의 높은 분해능과 높은 종횡비를 갖는 패턴을 형성한 후에도 투명전극의 고유 성질인 전도도와 투과도가 변함없이 유지되어, 배향막과 투명전극의 기능을 동시에 수행할 수 있음이 확인됐습니다.

연구팀이 개발한 기술은 고분자 배향막 없이 투명전극 패턴만을 이용하여 액정의 수평(혹은 수직) 배향 모두 가능합니다.

따라서 제조공정이 기존의 배향막 공정시간만큼 단축되었을 뿐만 아니라, 현재 사용하고 있는 LCD보다 수 ㎛에서 ㎝까지 더욱 얇게 LCD를 만들 수 있습니다.

(좌) 초고분해능(폭 20nm, 높이 200nm)과 고종횡비를 가지는 ITO 패턴의 모습 (우) ITO 패턴 (노란 점선)만을 이용한 액정 배향 편광현미경 사진



또한 현재 LCD보다 더욱 낮은 구동전압과 빠른 응답속도 등의 특성을 보여 배터리 수명도 길고 화질이 좋으면서 속도도 빠른, 고화질 초고속 화면 디스플레이 개발에 가능성을 열었습니다.

이 기술은 어떠한 기판에도 적용할 수 있고, ㎚ 단위로 미세조절이 가능해 액정 기반의 플렉시블 및 멀티도메인 모드와 같은 차세대 디스플레이에도 적용할 수 있는 기술로 평가 받고 있습니다.

또한 연구팀이 개발한 투명전극 패턴기술은 디스플레이 분야뿐만 아니라 투명전극 기판이 쓰이는 민감도가 크게 향상된 터치패널에도 활용될 수 있습니다.

이번 기술은 고분자 배향막이 필요 없고, LCD에 사용했던 기판을 그대로 활용하여 구동할 수 있다는 점에서 산업적 의의가 매우 큽니다.

이번 연구는 KAIST 정희태 석좌교수(교신저자)가 주도하고 정현수, 전환진 박사과정생(공동1저자), 한국화학연구원 김윤호 박사와 전북대학교 강신웅 교수(공동 교신저자) 등이 참여했습니다.

연구결과는 '네이처'의 자매지 'Nature Asia Materials(NPG Asia Materials)' 온라인 속보(2월 17일)에 게재되었습니다.
(논문명 : Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications)

장성우 연구원, 전환진 연구원, 이은형 연구원(왼쪽부터)이 ITO 패턴 제작을 위한 ion-bombardment 공정장비의 상태를 점검하고 있다.


 용  어  설  명

ITO (Indium Tix Oxide) :
ITO (인듐주석산화물): 산화 인듐과 산화주석의 혼합물로서 흔히 투명전극이나 ITO라고 한다.
얇은 박막에서 투명하고 전기전도율이 좋아 평판디스플레이, 터치스크린, 태양전지등 다양한 분야에서 투명도와 전도도가 요구되는 기판으로 사용되고 있다.
ITO를 다양한 방식으로 패턴하여 산업계에 적용시키려는 연구가 많이 진행되어 왔으나 패턴 형성 시 저항이 급격하게 올라가 전도도가 떨어져 전극으로서의 기능을 수행할 수 없었다.
따라서 고분해능의 패턴 형성 후에도 전도도와 투과도가 유지되는 것이 큰 난제였다.

액정(Liquid Crystals) :
액체와 같이 유동성이 있으면서 고체적인 특성을 나타낸다. 전기적 특성이 매우 뛰어나 LCD 구동을 위한 핵심 물질로 사용된다. 자연계에는 네마틱, 스메틱, 콜레스테릭 등 다양한 종류의 액정이 존재한다.

고분자 배향막 :
액정 배향(配向)을 위해 투명전극위에 도포하는 얇은 고분자 필름

표시소자(indicating element) :
부호나 문자, 도형, 화상 등 또는 그 조합된 정보를 입력에 대응하여 표시하기 위한 소자

<연 구 개 요>

Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications (나노 패턴이 형성된 투명전극을 이용한 무배향막 액정 배향)

현재 세계의 평판 디스플레이 산업은 21세기 정보화 산업을 주도하는 핵심 산업으로 LCD(Liquid Crystal Display)를 중심으로 활발한 연구가 진행 중이며, 한국이 세계시장을 50% 이상을 점유하고 있는 세계선도 산업이다.
LCD는 대표적인 평판디스플레이 소자로서 경량, 저 전압 구동 등 차세대 디스플레이의 요구에 가장 잘 부합하고 있으며 대화면화와 고화질의 구현을 위해 세계 각국에서 기능과 품질향상을 위한 노력이 활발하다.
액정을 전기광학소자로써 구동시키기 위해서는 필수적인 기술은 균일한 액정배향기술이다.
그 동안의 액정 배향 기술은 모두 고분자 배향막에 의존하여 왔다. 하지만 고분자 배향막은 고분자 설계 및 합성부터 후처리 공정까지 많은 시간과 비용이 소비되며 고분자 안정화를 위한 고온 공정은 기판 선택의 자유도가 떨어지는 단점이 있다. 그리고 플렉서블 디스플레이 및 멀티도메인 모드와 같은 미래 디스플레이 모드에 고분자 배향막은 대응하기 힘들어 기술적 한계에 부딪히고 있다.
또한 액정배향막 시장은 현재 액정 소재를 독점하고 있는 일본이 독점하고 있으며 일본 기업과의 정보 공유를 통한 공동 연구만을 통해서 기술 발전을 이루고 있는 실정이다.
따라서 고분자배향막을 대체할 연구가 시급한 실정이며 궁극적으로는 고분자 막이 아닌 다른 공정을 통해서 액정의 거동을 제어할 수 있는 원천 기술의 확보가 향후 차세대 디스플레이 세계시장을 선점할 수 있는 중요한 연구이다.

본 연구는 액정 배향 연구의 일환으로 디스플레이용 투명 전극 (ITO) 자체를 나노 패터닝하여 고분자 배향막 없이 액정을 배향하고, 이를 이용한 디스플레이 소자로의 응용 연구이다.
본 연구진은 2차 증착 현상기반 새로운 리소그래피 방법으로 투명전극 표면을 패터닝하여 액정과 패턴 간의 순수한 물리적 결합에 의해 액정을  배향하였다.
주사전자 현미경 및 EDX 촬영을 통해 고분해능/고종횡비 ITO 패턴이 형성되었다는 것을 확인하였다.
기존의 투명전극 패턴기술은 저분해능/저종횡비의 패턴이 형성될 뿐만 아니라 패턴 형성시 저항이 급격하게 올라가 투명전극으로서의 역할을 더 이상 못하게 된다.
하지만 본 연구의 기법으로 제작한 투명전극은 1) 패턴 형성 후 투과도 및 전도도의 저하가 거의 없어 투명전극으로서의 기능을 유지하는 동시에 2) 고 종횡비 (aspect ratio, 10)를 갖는 고 분해능 (high resolution, 20 nm)의 패턴이 형성되어 액정 분자체와 높은 결합에너지 (anchoring energy)를 물리적으로 형성할 수 있어 매우 안정적이며 고른 액정 배향을 대면적에 구현할 수 있다.
이는 식각과 증착이 동시에 일어나는 2차 증착 현상에 기인한 것으로서 전자현미경 분석 결과 약 15nm의 ITO 층이 희생되어 150 nm 이상의 높이를 가지는 패턴을 형성되었다는 것을 확인하였다.
본 연구진은 1차원 선 패턴이 형성된 투명 전극기판을 이용하여 디스플레이의 범용모드인 ECB, TN 모드를 구현하였으며 패턴이 형성된 전 영역에서 액정 분자체들이 각 모드에 따른 배향을 매우 잘 보여주는 것을 확인하였다.
광전자 특성 평가 결과 낮은 구동전압 (< 0.7V)과 빠른 응답속도 ( < 5ms) 그리고 우수한 광전자 특성을 보여 디스플레이에 응용할 수 있음을 보였다.
또한 Berreman 이론에 입각하여 패턴의 높이와 간격을 세밀하게 조절함으로써 액정 배향에 필요한 critical anchoring 에너지를 실험적으로 확인하였다.
상기 연구결과들은 투명전극 고유의 물성을 유지하면서 배향막 역할을 동시에 하는 bifunctional alignment layer가 형성되었다는 것을 뒷받침해준다.
투과도 및 전도도 저하 없이 정교한 미세 나노 패턴이 형성된 투명전극을 이용하여 물리적으로 액정을 수평 및 수직배향 모드를 구현한 사례는 아직 학계에 보고된바가 없다.
또한 고분자 배향막 기술에 비해 경제적 효과 및 더욱 뛰어난 소자특성이 기대되 산업적으로도 매우 가치있는 연구이다.
더 나아가 본 기술은 디스플레이 분야 뿐만 아니라 투명전극이 쓰이는 다른 분야 (터치패널, 유기태양전지) 에도 다각적으로 활용될 수 있어 미래 전자제품 원천기술로서 의의가 크다.

<정희태 교수>

1. 인적사항
 
○ 주소: 대전시 유성구 대학로 (구성동 373-1),
      한국과학기술원 (KAIST) 생명화학공학과


2. 학력
 1987  학사, 연세대학교, 화학공학과
 1989  석사, KAIST, 생명화학공학과
 1998            박사, 미국 Case Western Reserve University, 고분자공학과
 

3. 경력사항 
1989 ~ 1994     삼성종합기술원, 선임연구원
1998 ~ 2000    미국 캘리포니아대학, 박사후 연구원
2000 ~ 현재     KAIST 생명화학공학과, 정교수
2003 ~ 2005    한국생명공학연구원, 초빙교수
2007 ~ 현재     KAIST 화학과, 겸임교수
2007 ~ 현재     KAIST 나노연구소, 겸임교수
2009 ~ 2010    미국 국가표준연구소, 방문교수
2010 ~ 현재     Macromolecular Research 부편집장
2011 ~ 현재     KAIST, 석좌교수


반응형
반응형

현재 원자력은 우리나라를 비롯한 대부분의 나라에서 주요 에너지원으로 활용되고 있습니다.

그러나 이 원자력 역시 연료인 우라늄 매장량 등을 토대로 볼 때 앞으로 약 60년 가량 밖에 사용할 수 없는 유한 에너지원입니다.

그럼에도 원자력에 대한 기대가 사라지지 않는 것은 현재 원자로 가동 방식과 다른 고속증식로에 대한 기대 때문입니다.

이는 고속중성자를 이용하여 핵분열반응을 일으켜 에너지를 생산함면서 동시에 비핵분열성 물질인 우라늄238을 핵분열성 물질인 플루토늄 239로 변환시키는 것이 핵심입니다.

기존 방식은 우라늄23를 분열시키는 것으로 중성자 속도가 저속이지만, 고속증식로는 중성자 속도가 고속인데다 우라늄238이 보다 많은 플루토늄239를 생성시키기 때문에 우라늄 이용 효율을 60~100배까지 높일 수 있습니다.

즉 현재 사용연한 60년인 매장 우라늄을 6000년까지 사용할 수 있는 것입니다.

그러나 고속로는 냉각재 등 기술적 난제가 있어 실용화를 위해 세계 원자력 선진국들이 연구 중에 있습니다.

이 제4세대 원자력 시스템은 현재 가동 중인 3세대 원전보다 지속가능성과 안전성, 경제성, 핵비확산성을 획기적으로 향상시킨 미래형 원자력 시스템으로, 각국이 2030년대 상용화를 목표로 개발 중입니다.

□ 소듐냉각고속로(SFR)는 제4세대 원자력 시스템 중에서도 가장 실현 가능성이 높은 것으로 평가되는 노형으로, 열 중성자를 이용하는 경수로와 달리 고속 중성자(fast neutron)를 이용해서 핵분열을 일으키고 이 때 발생하는 열을 물이 아닌 액체 소듐으로 전달해서 증기를 발생시키고 이 증기로 전기를 생산하는 원자로입니다.

소듐냉각고속로(SFR)는 경수로 사용후핵연료를 재활용하는 기술인 파이로프로세싱(pyroprocessing, 건식처리공정) 기술과 연계해서 독성이 높은 장수명 핵종을 반감기가 짧거나 안정된 핵종으로 변환시킴으로써 사용후핵연료의 방사성 독성 감소 기간을 1000분의 1로 줄이고, 소모한 핵연료보다 더 많은 핵연료 물질을 생산함으로써 경수로보다 100배 이상 우라늄을 활용할 수 있는 '꿈의 원자로'입니다.

□ 한국원자력연구원이 제4세대 소듐냉각고속로 기술을 실증하기 위한 종합효과시험시설(ITL) 1단계를 건설했습니다.

소듐냉각고속로(SFR; Sodium-cooled Fast Reactor)는 현재 사용되고 있는 원자로보다 우라늄 홀용도를 100배 이상 높일 수 있어 꿈의 원자로로 불리웁니다.

종합효과시험시설(ITL)은 실제 원자력 발전소의 주요 계통을 축소 모사한 것으로, 원자로에서 사고와 고장 발생시 일어날 수 있는 상황들을 시뮬레이션함으로써 신형 원전의 안전성을 실증하는 대형 실험시설입니다.

한국원자력연구원은 오는 2028년 원형로 건설을 목표로 개발 중인 소듐냉각고속로(SFR)의 성능을 종합적으로 실증하는 소듐 열유체 종합효과시험시설 STELLA-1(Sodium Integral Effect Test Loop for Safety Simulation and Assessment-1)을  최근 구축했습니다.

STELLA는 SFR 원형로의 원자로계통 및 핵심 안전계통인 잔열제거계통의 열용량을 1/9로 축소 제작한 것으로, 실제 원자로에서 일어날 수 있는 다양한 현상을 약 600 ℃이 실제 온도와 압력으로 모의할 수 있는 종합 효과시험 시설입니다.

STELLA는 실제 핵연료 대신 전기를 이용해서 고속로 내부와 같은 조건을 구현함으로써 방사성 물질의 유출 위험 없이 고속로에서 일어날 수 있는 각종 현상 및 사고들을 정밀하게 모의할 수 있습니다.

이번 소듐 열유체 종합효과시험시설(STELLA)의 구축으로 '제4세대 원자력 시스템'의 핵심 노형인 소듐냉각고속로(SFR)의 특정설계인가 획득에 필요한 실험 데이터를 생산, 그동안 설계 중심의 SFR 기술개발 능력을 하드웨어적인 검증 단계로 발전시킬 수 있게 됐습니다.

STELLA는 SFR 설계기술 및 전산체제, 소듐기술 등 지난 1997년 본격적으로 SFR 연구개발에 착수한 이래 축적해온 연구결과들을 종합적으로 실증함으로써 SFR 원형로 건설을 위한 경험과 기반기술의 수준을 향상시키는 역할을 수행하게 됩니다.

소듐 열유체 종합효과시험시설 STELLA-1 구성도


□ 1단계로 구축된 STELLA-1은 잔열제거 계통의 주요 열교환기기 성능 검증과 1차계통 기계식 펌프의 열유체 성능 시험 등 개별효과 실험을 수행할 수 있는 시험시설입니다.

한국원자력연구원은 이어 2단계로 STELLA-1을 확장한 STELLA-2를 2016년까지 구축하고 SFR 안전계통의 성능검증과 안전계통과 1차 열전달 계통과의 상호영향에 의한 잔열제거성능 종합효과시험을 수행할 예정입니다.

한국원자력연구원은 지난 2001년 고유 개념의 150 MWe 급 소형 소듐냉각고속로 KALIMER-150의 개념설계를 완료하고, 2006년 600 MWe 급의 중형  KALIMER-600 개념설계를 완료했습니다.

이어 2008년 12월 22일 제255차 원자력위원회에서 국가 정책으로 확정된 '미래 원자력 시스템 개발 장기 추진계획'에 따라 2020년까지 SFR 원형로의 특정설계인가를 획득하고, 2028년까지 원형로를 건설할 계획입니다.



 용  어  설  명

종합효과시험시설(ITL) :
실제 원자력 발전소의 주요 계통을 축소 모사, 원자로에서 사고와 고장 발생시 일어날 수 있는 상황들을 시뮬레이션함으로써 신형 원전의 안전성을 실증하는 대형 실험시설.
한국원자력연구원은 우리나라 상용 원전의 대부분을 차지하는 경수로의 종합효과시험시설인 '가압경수로 열수력 종합효과실험장치'(ATLAS)를 2007년 구축, 신형 경수로 APR1400의 안전성을 실증함으로써 APR1400의 UAE 원전 수출에 기여한 바 있다.

잔열제거계통 :
소듐냉각고속로(SFR)에서 원자로의 열을 식히는 기능이 상실되는 정상 열 제거 기능 상실사고 발생시 노심에서 발생하는 잔열을 자연순환 유동 특성을 이용해서 공기 중으로 제거하는 계통.
'노심→원자로 풀→잔열제거계통→대기'로 이어지는 비상 열 제거 경로를 통해 자연적으로 열을 공기 중으로 제거함으로써 SFR의 안전성을 획기적으로 향상시키는 핵심 안전계통이다.

개별효과실험(Separate Effect Test) :
단독 기기나 부품의 기능이나 성능을 검증하는 실험

종합효과시험(Integral Effect Test) :
다수의 기기와 부품으로 구성된 계통 내에서 기기나 부품 상호간의 영향이나 계통 차원의 성능을 검증하는 시험

반응형
반응형

노드(node)는 데이터를 전송하는 통로에 접속되는 하나 이상의 단위로, 통신망의 분기점이나 단말기의 접속점을 말합니다.

한 노드에 다수의 GPU를 장착하여 노드 당 계산 속도를 높이면 적은 수의 노드로도 많은 양의 계산을 한꺼번에 처리할 수 있는 장점이 있습니다.

만일 이것이 가능하면 슈퍼컴퓨터의 구축비용뿐만 아니라 소모되는 전력도 획기적으로 줄일 수 있습니다.

그러나 지금까지 다수의 GPU를 효율적으로 장착하는 소프트웨어 기술이 개발되지 못해 대부분의 슈퍼컴퓨터에는 각 노드 당 최대 2개의 GPU밖에 장착하지 못했습니다.

□ 서울대 이재진 교수팀은 일반 슈퍼컴퓨터와는 달리 노드 한 대에 최대 6개의 그래픽 처리장치(GPU)를 장착하는 방법으로 기존 슈퍼컴퓨터의 노드 당 계산 속도를 세계에서 가장 빠른 수준으로 끌어올리는데 성공했습니다.

이 교수팀이 개발한 소프트웨어 기술을 사용하면 노드마다 최소 3개 이상의 GPU를 장착하고 효율적으로 계산할 수 있습니다.

이재진 교수팀은 이번 연구결과를 바탕으로 16개의 노드(총 96개 GPU 장착)로 구성된 슈퍼컴퓨터 시작품 '스누코어(SnuCore)'를 자체 제작했습니다.

일반적으로 슈퍼컴퓨터의 계산 속도를 평가하는데 사용하는 프로그램인 린팩 벤치마크로 측정한 스누코어의 노드 당 계산 속도는 0.991테라플롭스(TFLOPS)로 이 수치는 현존하는 슈퍼컴퓨터 중에서 가장 빠릅니다.

게다가 전력효율 면에서도 와트당 871메가플롭스(MFLOPS)로 세계 20위권을 기록했습니다.

스누코어는 시중에서 흔히 구할 수 있는 부품(AMD의 CPU와 GPU, 타이안의 마더보드 및 멜라녹스의 인피니밴드 네트워크 장비 등)에 연구팀이 자체 설계한 냉각 시스템을 이용해 제작되었습니다.

서울대 매니코어 프로그래밍 연구단에서 자체 제작한 슈퍼컴퓨터 스누코어(SnuCore). 가운데 위치한 것이 자체 제작한 냉각 시스템이며, 좌우로 노드가 8개씩 위치하고 있다.



연구팀은 새로 개발한 소프트웨어 최적화 기술을 다양한 프로그래밍 언어 OpenCL과 MPI를 사용해 린팩 벤치마크에 적용하였고, 그 결과 스누코어의 각 노드에 장착된 6개의 GPU를 효율적으로 사용하여 세계에서 가장 빠른 노드 당 계산속도를 확보했습니다.

스누코어의 성능 대비 가격은 다른 세계 최상위급 슈퍼컴퓨터들과 비교해도 최대 8.3%(1/12)로 저렴합니다.

따라서 스누코어에 적용된 소프트웨어 기술을 사용하면 세계 최상급의 성능을 지닌 슈퍼컴퓨터를, 기성부품을 사용하여 저렴한 비용으로 구축할 수 있게 됩니다.

이 교수팀은 이번 연구결과를 서울대에서 개발하고 있는 OpenCL 기반의 프로그래밍 환경인 SnuCL에 적용해 추후 일반 국민에게도 공개할 예정입니다.

이재진 서울대 교수(오른쪽), 조강원 연구원(왼쪽), 나정호 연구원(가운데)이 슈퍼컴퓨터 SnuCore의 상태를 점검하고 있다.

 

 용  어  설  명

린팩 벤치마크 (LINPACK Benchmark) :
 벤치마크는 컴퓨터에서 실행시켜 처리시간과 같은 값을 측정해 컴퓨터의 성능을 평가하는 프로그램이다.
린팩 벤치마크는 컴퓨터의 계산 속도를 평가하는 벤치마크 중 하나로, 배정도(double precision) 부동소수점 연산(floating-point operation)이 필요한 선형 시스템의 해를 구하는데 걸리는 시간을 측정해 계산 속도를 측정한다.
린팩 벤치마크는 Top500에서 세계 500위권의 슈퍼컴퓨터를 선정하는 기준으로 사용되는 등 슈퍼컴퓨터의 성능 측정에 널리 사용되고 있다.

FLOPS (floating-point operations per second) :
 컴퓨터의 성능을 측정하는 단위로 초당 수행할 수 있는 부동소수점(floating-point) 연산의 수를 의미한다.
'FLOPS' 앞에 '킬로(K)', '메가(M)', '기가(G)', '테라(T)'의 접두사가 붙으면 각각 초당 10의 3승, 10의 6승, 10의 9승, 10의 12승회의 실수 연산을 수행함을 의미한다.
예를 들어 2 GFLOPS는 초당 2×109 회, 즉 20억 회의 부동소수점 연산을 수행할 수 있음을 뜻한다.

OpenCL(Open Computing Language) :
개방형 범용 병렬 컴퓨팅 프레임워크

노드(node) :
데이터를 전송하는 통로에 접속되는 하나 이상의 단위. 주로 통신망의 분기점이나 단말기의 접속점을 말함

<연 구 개 요>

최근 고성능 컴퓨팅을 위해 그래픽 처리 장치(GPU)를 그래픽 처리 대신 일반적인 계산을 위해 사용하는 GPGPU(General Purpose computing on GPU) 기술이 보편화되기 시작하였다.
GPU는 많은 계산을 한꺼번에 수행할 수 있어 기존의 CPU보다 계산 속도가 빠르고 계산량에 비해 전력소모가 상대적으로 적은 장점을 가지고 있다.
중국과 일본에서 각각 구축한 세계 2위와 5위의 슈퍼컴퓨터를 포함, 2011년 11월에 Top500 사이트(http://top500.org)에 의해 선정된 세계 500위권 내 슈퍼컴퓨터 중 37대가 GPGPU 기술을 사용하였으며 이는 2011년 4월에 비해 2배가량 증가한 수치이다.
슈퍼컴퓨터를 구성하는 각 노드에 다수의 GPU를 장착함으로써, GPGPU 기술이 가지는 장점인 고성능과 에너지?비용?공간 효율성을 극대화할 수 있다.
하지만 다수의 GPU를 효율적으로 사용하는 소프트웨어 기술이 없어서 기존의 슈퍼컴퓨터들은 노드 당 대개 1개 혹은 2개의 GPU만을 장착해 왔다.

본 연구팀은 다수의 GPU를 효율적으로 사용하는 소프트웨어 기술을 연구 개발하였는데, 이는 노드 내 다수의 GPU 간에, 또는 노드 간에 효율적으로 작업을 분배하여 작업량의 불균형이 발생하지 않도록 하는 기술, 노드 내 서로 다른 GPU 간, 또는 노드 간 통신을 최적화하는 기술, 실행 시의 환경에 적응하여 노드 내 계산 자원을 효율적으로 관리하는 기술 등을 포함한다.
또한 이 기술을 바탕으로 비용과 전력소모를 최소화한 슈퍼컴퓨터 시작품 SnuCore를 자체 제작하였다.
SnuCore는 16개의 노드로 이루어져 있고, Tyan의 마더보드를 장착한 각 노드는 AMD의 Opteron 12-core CPU 2개와 GPU 6개(Radeon HD6990 그래픽 카드 3장)를 가지고 있다. Mellanox의 인피니밴드(InfiniBand) QDR 네트워크 스위치가 노드 간 통신에 사용되었다.

한 노드에 다수의 GPU를 장착할 경우 열이 많이 발생하는데, 이것이 노드 내부의 온도를 증가시켜 슈퍼컴퓨터의 안정성을 떨어뜨린다.
이를 방지하기 위해 이재진 교수 연구팀은 냉각된 물을 순환시켜 GPU에서 발생한 열을 외부로 방출하는 수냉 시스템을 자체적으로 설계, 제작하였다.
이 시스템은 상용 수냉 시스템보다 훨씬 저렴하며 노드 내 GPU의 온도를 상온보다 낮은 수준(약 18℃)에서 안정적으로 유지시켜 준다.

본 연구팀이 새로 개발한 소프트웨어 기술을 OpenCL과 MPI를 사용하여 린팩 벤치마크에 적용하였으며, 이를 SnuCore에서 실행한 다음 Top500 및 Green500 사이트의 규정대로 SnuCore의 계산 속도 및 전력효율을 측정하였다.
Green500(http://green500.org)은 Top500에 들어갔던 슈퍼컴퓨터들을 대상으로 이들의 전력효율에 따른 순위를 집계하는 사이트이다.
SnuCore의 계산 속도는 15.86 TFLOPS, 전력효율은 Watt 당 871 MFLOPS로 측정되었다.
SnuCore의 각 노드는 0.991 TFLOPS의 린팩 벤치마크 성능을 가지는데, 이 성능은 2011년 11월에 발표된 Top500의 슈퍼컴퓨터들과 비교해 보았을 때 가장 높은 수준이다.
따라서 본 연구에서 개발된 기술을 사용하면 같은 수의 노드를 사용해 더 높은 성능을 낼 수 있다. SnuCore의 전력효율은 Green500에서 15위와 16위 사이에 위치하는 수준이다.
 
SnuCore를 제작하는 데는 1 TFLOPS 당 1,300만 원 정도의 비용이 소요되었다.
이는 현재 세계에서 가장 빠른 슈퍼컴퓨터인 일본의 K Computer의 약 12분의 1, 두 번째로 빠른 슈퍼컴퓨터인 중국의 TianHe-1A의 약 3분의 1, 세 번째로 빠른 슈퍼컴퓨터인 미국의 Jaguar의 약 5분의 1 수준이다.
 
현재 Top500에서 노드 당 최고 성능은 독일의 LOEWE-CSC로, 노드 당 1개의 GPU를 사용하였고, 총 682개의 노드를 사용하여 Top500의 33위이다. 노드 당 성능은 438.9 GFLOPS 인데, 같은 팀이 보고한 4개의 노드에서 측정한 노드 당 성능은 526.3 GFLOPS이다.
따라서 노드가 4개에서 682개로 증가할 때 16.6%의 성능 감소가 있다. SnuCore의 경우 더 나쁘게 잡아서 20%의 성능 감소가 있다고 가정하더라도, 1000개 정도의 노드를 가정할 때 노드 당 성능이 792 GFLOPS 가 나오며 이는 여전히 세계 최고의 노드 당 계산속도이다.
 
본 연구의 결과가 의미하는 바는 특별히 제작된 부품이 아니라 시중에서 흔히 구할 수 있는 기성부품과 소프트웨어 기술을 이용하여 전력효율이 좋은 고성능?저비용의 대규모 슈퍼컴퓨터를 제작하는 것이 가능하다는 것이다.
본 연구팀은 이번 연구 결과를 서울대에서 개발하고 있는 OpenCL 기반의 프로그래밍 환경인 SnuCL에 적용하여 일반에게 추후 공개할 예정이다.


<이재진 교수>

1. 인적사항
 ○ 성 명 : 이재진(李在鎭, 44세)
 ○ 소 속 : 서울대학교 컴퓨터공학부

2. 학력
  1986 - 1991 서울대학교 물리학 학사
  1993 - 1995 Stanford University, Computer Science 석사
  1995 - 1999 University of Illinois at Urbana-Champaign, Computer Science 박사

3. 경력사항 
  1999.08 - 1999.12  University of Illinois at Urbana-Champaign
    Dept. of Computer Science
    Visiting Lecturer
  2000.01 - 2002.08  Michigan State University
    Dept. of Computer Science and Engineering
    Assistant Professor
  2002.09 ~ 2004.09 서울대학교 컴퓨터공학부, 조교수
  2004.10 ~ 2010.09 서울대학교 컴퓨터공학부, 부교수
  2010.10 ~ 현재  서울대학교 컴퓨터공학부, 교수
  2009.04 ~ 현재  교과부 연구재단 지정 매니코어 프로그래밍 연구단, 단장

4. 주요연구업적
1. Sangmin Seo, Gangwon Jo, and Jaejin Lee. Performance Characterization of the NAS Parallel Benchmarks in OpenCL, IISWC '11: Proceedings of the 2011 IEEE International Symposium on Workload Characterization, pp. 137 ? 148, Austin, Texas, USA, November 2011.
2. Seungkyun Kim, Kiwon Kwon, Chihun Kim, Choonki Jang, Jaejin Lee, and Sang Lyul Min. Demand Paging Techniques for Flash Memory Using Compiler Post-pass Optimizations, ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 40,  November 2011.
3. Sangmin Seo, Junghyun Kim, and Jaejin Lee. SFMalloc: A Lock-Free and Mostly Synchronization-Free Dynamic Memory Allocator for Manycores, PACT '11: Proceedings of the 20th ACM/IEEE/IFIP International Conference on Parallel Architectures and Compilation Techniques, pp. 253 ? 263, Galveston Island, Texas, USA, October 2011.
4. Jun Lee, Jungwon Kim, Junghyun Kim, Sangmin Seo, and Jaejin Lee. An OpenCL Framework for Homogeneous Manycores with no Hardware Cache Coherence, PACT '11: Proceedings of the 20th ACM/IEEE/IFIP International Conference on Parallel Architectures and Compilation Techniques, pp. 56 ? 67, Galveston Island, Texas, USA, October 2011.
5. Jungho Park, Choonki Jang and Jaejin Lee. A Software-Managed Coherent Memory Architecture for Manycores, Poster presentation in PACT '11: Proceedings of the 20th ACM/IEEE/IFIP International Conference on Parallel Architectures and Compilation Techniques, Galveston Island, Texas, USA, October 2011.
6. Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee. OpenCL as a Programming Model for GPU Clusters, LCPC '11: Proceedings of the 24th International Workshop on Languages and Compilers for Parallel Computing, Fort Collins, Colorado, USA, September 2011.
7. Junghyun Kim, Sangmin Seo, and Jaejin Lee. An Efficient Software Shared Virtual Memory for the Single-chip Cloud Computer, APSys '11: Proceedings of the 2nd ACM SIGOPS Asia-Pacific Workshop on Systems, Shanghai, China, July 2011.
8. Choonki Jang, Jungwon Kim, Jaejin Lee, Hee-Seok Kim, Dong-Hoon Yoo, Sukjin Kim, Hong-Seok Kim, and Soojung Ryu. An Instruction-Scheduling-Aware Data Partitioning Technique for Coarse-Grained Reconfigurable Architectures, LCTES '11: Proceedings of the ACM SIGPLAN/SIGBED 2011 International Conference on Languages, Compilers, and Tools for Embedded Systems, pp.  151 ? 160, Chicago, Illinois, USA, April 2011.
9. Eunbyung Park, Bernhard Egger, and Jaejin Lee. Fast and Space Efficient Virtual Machine Checkpointing, VEE '11:  Proceedings of the 2011 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp. 75 ? 85, Newport Beach, California, USA, March 2011.
10. Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. Achieving a Single Compute Device Image in OpenCL for Multiple GPUs, PPoPP ?11: Proceedings of the 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp.  277 ? 288, San Antonio, Texas, USA, February 2011.

반응형

+ Recent posts