반응형

아침 산책길에 이슬을 머금어 영롱하게 빛나는 거미줄.잘 보이지도 않을 정도로 가는 거미줄이지만, 그 강도는 놀랄만합니다.

거미줄은 강철에 버금가는 강도는 물론 매우 높은 인성까지 있어 기계적으로 매우 우수한 섬유인데요. 이를 이용하면 방탄복, 초고장력 케이블 등의 제품을 만들 수 있구요. 게다가 생체적합성을 지녀 상처의 봉합, 인공장기 제장 등에서 매우 유용하게 사용될 수 있습니다.

하지만 자연산 거미줄을 배양하는 것은 사실상 불가능한데요. 거미는 누에처럼 고치를 만들지도 않을 뿐만 아니라, 양식을 하려 해도 영역을 이루고, 다른 거미와 싸우는 습성 때문에 경제성이 없기 때문입니다.

이에 따라 세계의 많은 연구진들은 거미줄과 유사한 조직을 만드는 자연모사 인공섬유 개발에 열을 올리고 있는데요.

하지만, 박테리아 유전자에 거미줄 단백질을 삽입해 생체 섬유를 만들려는 시도는 시행착오에 의존해 진행된 실험이 대부분인 실정입니다.
 

거미줄 모사 인공 생체섬유 개발 성공

KAIST 기계공학과 유승화 교수팀은 컴퓨터 모델링을 이용해 거미줄을 모사한 인공 생체섬유를 최근 개발했습니다.
 

KAIST 기계공학과 유승화 교수팀이 합성에 성공한 인공거미줄KAIST 기계공학과 유승화 교수팀이 합성에 성공한 인공거미줄

 

이번 연구로 앞으로 자연에서 생성되는 다양한 생체섬유의 합성과정에 대한 이해가 가능해져 거미줄에 버금가는 인공 생체섬유의 설계 제작을 앞당길 것으로 기대되는데요.

연구팀은 예측 가능한 모델링을 기반으로 다양한 단백질을 선제적으로 탐색하고, 인공 거미줄 설계 및 제작과정에 반영해 기존의 시행착오를 극복했습니다.

거미줄은 물속에서 안정성을 갖는 친수성과 반대로 물과 쉽게 결합되지 않는 소수성을 가진 영역이 교차로 존재하는 펩타이드 단백질이 가교를 이루며 결합한 구조인데요.

거미줄은 거미의 실 분비 기관인 실샘에 존재하는 단백질 용액이 실관을 통과하며 전단유동을 통해 고체화돼 형성됩니다.

연구팀은 새롭게 개발된 컴퓨터 모델을 이용해 다양한 종류의 단백질 용액의 전단유동 하에서의 변화를 조사, 이를 통해 단백질의 아미노산 체인이 충분히 길면서 적절한 비율의 소수성과 친수성 영역을 가질 때만 단백질 간의 연결도가 급격히 증가해 높은 강성과 강도를 갖는 생체섬유 합성이 가능하다는 것을 밝혔습니다.

전단유동 전후의 단백질 용액 모델링 결과 및 네트워크 연결도 분석 결과전단유동 전후의 단백질 용액 모델링 결과 및 네트워크 연결도 분석 결과 - 균일하게 연결되어 있던 단백질 네트워크가, 전단유동을 거치면서 유체 흐름 방향으로 정렬된 더 높은 밀도의 연결도를 가진 네트워크로 바뀌는 것을 볼 수 있으며, 이로 인해 더 높은 강성과 강도를 갖게 된다. 모델링을 통해 이러한 네트워크 연결도 증가는 적절한 친수성-소수성 아미노산 비율을 갖고 길이가 충분히 긴 단백질에 대해서만 관찰되는 것을 확인하고, 이를 실험에 반영하여 인공 거미줄 합성에 성공하였다.



이를 통해 연구팀은 모델링으로 제시된 단백질을 박테리아의 유전자 조작으로 합성, 실관을 모사한 방적과정을 통해 인공 거미줄을 제작하는 데 성공했습니다.

연구팀은 강한 거미줄 생성 원리가 밝혀지기 시작했기 때문에 향후에는 실제 거미줄 강도에 버금가는 생체 섬유 제작이 가능할 것으로 전망하고 있는데요.

또 생체 적합성을 갖기 때문에 인체 내에서도 부작용이 발생하지 않아 바이오메디컬용으로 사용이 가능할 것으로 보고, 궁극적으로는 부작용이 없는 바이오메디컬에 특화된 생체 섬유 제작을 목표로 하고 있습니다.

이번 연구는 체계적 설계를 통한 인공 생체섬유의 제작이 가능함을 증명한 것으로, 향후 인공 생체섬유 합성의 새 가능성을 열은 것으로 평가받고 있습니다.

한편, 이번 연구에는 미국 매사추세스 공대, 플로리다 주립대, 터프츠 대학 등이 참여했고, 연구 결과는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 28일자 온라인 판에 게재됐습니다.

 

 연 구 개 요


거미줄은 강철에 버금가는 강도와 Kevlar에 버금가는 인성(섬유가 끊어질 때까지 흡수하는 에너지)를 가지는 매우 뛰어난 기계적 성질을 지니고 있으며, 생체적합성을 지니고 있어서 상처봉합이나 인공장기 등 다양한 바이오메디컬 분야에 응용이 가능하다.

그러나 거미는 누에처럼 고치를 만들지도 않고 자기영역을 침범하면 싸우기 때문에 사육을 통한 거미줄을 생산 방법은 경제성이 없고, 유전자 조작을 통한 인공거미줄 제작이 많이 시도되어 왔다. 그러나 실샘에 있던 거미줄 단백질 용액이 실관을 따라 이동하며 자가조립을 통해 거미줄이 만들어지는 과정을 실험을 통해 밝히기 어려웠으며, 원자레벨의 시뮬레이션은 다수 거미줄의 상호작용을 모사하기에 충분히 효율적이지 않아서, 인공거미줄의 설계와 구현에 많은 어려움이 존재하였다.

본 연구에서는 다수의 거미줄의 상호작용을 모사할 수 있는 간단하지만 효율적인 컴퓨터 모델을 개발하여 거머줄의 조립에 영향을 미치는 인자들을 밝혀내었고, 박테리아에 유전자 조작을 통하여 실제와 유사한 재조합 거미줄 단백질을 합성한 후, 거미실관과 유사한 유체흐름(전단유동*)을 모사한 공정을 통해 인공거미줄을 제작하였다.

연구진은 컴퓨터 시뮬레이션을 이용하여 거미줄 단백질이 녹아있는 용액이 미세한 관을 통해 배출되는 방적과정을 통해 분자들이 한쪽방향으로 정렬되어 높은 강도의 섬유를 만드는 것을 알아내었다. 거미줄 단백질 분자는 친수성과 소수성 영역이 교차로 존재하는 고분자이고, 전단유동을 통해 유속 방향으로 정렬하며 서로 다른 분자들의 소수성 영역끼리 가교를 만들고 연결도가 좋아지면서 높은 강성과 강도를 갖게 된다. 소수성 영역의 비율이 너무 적으면 강성이 약해지고 너무 많아지면 거미줄이 생성되지 않고 뭉치기만 한다는 사실을 밝혀내어, 적절한 비율의 단백질 합성이 중요함을 밝혀내었다. 또한, 거미줄 단백질 길이가 충분히 길어야만 전단유동 과정을 통해 연결도가 좋아진다는 사실을 밝혀내었다.

박테리아 유전자 조작을 통한 단백질 합성 과정은 수개월이 걸리기 때문에, 시뮬레이션을 통한 다양한 친수성-소수성 영역 비율과 길이를 가진 단백질의 선제적 탐색은 매우 중요하다. 시뮬레이션을 통해 제시된 단백질은 박테리아 유전자 조작을 통해 합성되었고, 거미실관을 모사한 주사기를 이용한 간단한 방적과정을 통해 인공거미줄이 합성될 수 있었다. 상온의 단백질 수용액에 기반한 본 연구진의 제작방식은 추후 대량생산으로 전환되기에 용이할 것으로 보인다.

본 연구를 통해 생산된 인공거미줄의 강도와 탄성은 자연의 거미줄에 비해 아직 미흡하지만, 근본적인 거미줄 자가조립과정을 이해하기 시작한 것에 큰 의의가 있으며, 추후에는 원하는 대로 강도, 인성, 탄성을 조절할 수 있는 인공 거미줄 제작 공정 및 그 응용 방법을 개발하는 것이 궁극적 목표이다.


  용 어 설 명

전단유동
전단유동유체의 흐름방향과 수직하게 변하는 유속의 분포가 존재할 때, 유체 혹은 유체 내의 물질은 전단력을 느끼게 되는데, 이런 형태의 유체흐름을 전단유동이라고 한다. 유체와 고체의 마찰력 때문에 강물의 유속은 중앙부분이 가장자리보다 빠르고, 마찬가지로 주사기 바늘 속의 유체의 흐름도 가운데가 가장자리보다 빠른데, 이와 같은 유체의 흐름이 전단유동의 예이다. 

 

 유승화 교수 이력사항

□ 인적사항
KAIST 기계공학과 조교수
E-mail: ryush@kaist.ac.kr

□ 학 력
2000. 03 ~ 2004. 02 학사 KAIST 물리학과
2004. 09 ~ 2006. 01 석사 Stanford University 물리학과
2004. 09 ~ 2011. 09 박사 Stanford University 물리학과

□ 경 력
2011. 10 ~ 2012. 03 연수연구원 Stanford University 기계공학과
2012. 04 ~ 2013. 01 연수연구원 MIT 건설 및 환경공학과
2013. 07 & 2014. 07 방문교수 University of Trento 건설환경기계공학과
2013. 02 ~ 현재 조교수 KAIST 기계공학과

□ 연구 분야
물질의 강도와 어셈블리를 결정하는 근본적인 메카니즘을 나노부터 벌크까지 다양한 스케일의 이론과 모델링을 통해 이해하고, 기계적으로 강건한 신물질 합성에 적용하는 것이 핵심 연구 주제이다.
나노물질-고분자 복합재, 그래핀, 금속 유리, 나노결정 등 다양한 물질들의 합성과 기계적 성질에 대한 멀티스케일 모델링 연구를 진행하고 있다.

□ 수상 실적
2013-2014 University of Trento, Invited Professor Grant
2006-2008 Stanford Graduate Fellowship

반응형
반응형

최근 해안가를 뒤덮는 해조류 괭생이모자반의 확산이 골칫거리로 떠오르고 있는데요.

괭생이모자반은 길이 3~5m로 암초에 붙어 사는 해조류로, 양식장을 덮치고 선박의 스크류에 감기는 등 피해를 일으키고 있습니다.

굉생이모자반은 해류를 타고 여기저기로 옮겨다니는 데다 서식 범위가 방대해 기초 자료조사 수집부터 어려움을 겪고 있는 실정입니다. 

천리안 해양관측위성 괭생이모자반 이동 경로 추적 분석 

최근 한국해양과학기술원(KIOST, 이하 해양과기원)이 천리안 해양관측위성으로 괭생이모자반의 이동 경로와 우리나라 해안에서 서식지를 분석해 눈길을 끌고 있습니다.  

천리안 인공위성이 관측한 우리나라 남해안 괘생이모자반 분포도 천리안 인공위성이 관측한 우리나라 남해안 괘생이모자반 분포도 / 해양과기원 제공

천리안 해양관측 위성은 일반적으로 수 km 반경의 좁은 범위를 관측하는 저궤도 위성과 달리 한 번에 수천 km 영역을 한 번에 관측할 수 있는 정지궤도위성이기 때문입니다.

해양과기원은 천리안 해양관측위성이 보낸 자료를 분석한 결과 괭생이모자반이 지난 1월 4일 동중국해 지역에서 처음으로 발견됐고, 이어 2~5월 사이에 동중국해 전 지역 및 제주도 주변, 대마도 인근, 동해해역으로 확산되는 것을 확인했는데요.

지난달에는 남서쪽 해역에서 추가로 관측되고, 신안군 등 우리나라 서쪽 연안 인근 해역까지 접근한 것으로 파악됩니다.

천리안 인공위성이 관측한 우리나라 서해안 괘생이모자반 분포도 천리안 인공위성이 관측한 우리나라 서해안 괘생이모자반 분포도 / 해양과기원 제공


해양과기원은 이 같은 위성자료 분석 정보를 관련 부처에 제공해 대처에 도움을 주고 있습니다.

세계 최초 정지궤도 해양위성이자 우리나라 최초 정지궤도 위성

천리안은 2003년부터 7년의 개발됐고, 2010년 프랑스 아리안 로켓에 실려 발사되었습니다.

천리안 위성 발사로 우리나라는 세계 7번째 독자 기상위성 보유국, 세계 최초 정지궤도 해양위성 보유국, 세계 10번째 통신위성 자체 개발국 등의 지위를 확보하였습니다.

천리안의 궤도진입 과정천리안의 궤도진입과정 / 한국항공우주연구원 제공



천리안은 목표 위치인 동경 128.2도, 고도 3만 5800
적도 상공에 성공적으로 안착, 약 7개월의 운용시험 기간을 거친 후 지난 해 4월부터 기상, 해양영상 서비스 및 방송통신서비스를 제공하고 있습니다.

천리안 인공위성천리안 인공위성

한국항공우주연구원은 1년 365일 천리안의 위성상태 및 궤도상태를 감시하며, 각 기관에서 위성영상을 활용할 수 있도록 위성에 촬영임무명령을 보내고 있습니다.

이 명령에 따라 천리안은 매일 170여 장의 기상영상과, 8장의 해양영상을 전송하고 있습니다.

■ 기상임무

천리안 위성 확보로 우리나라는 단시간에 발생하는 돌발성 호우나 접근하는 태풍의 감시 및 분석능력이 강화되었으며, 항공, 농업, 해양 등 각 분야의 요구사항에 맞는 특화된 형태의 자료를 군, 방송국, 재난안전기관 등 19개 유관기관에서 활용하고 있습니다.

또 5개 나라 기상청에서 시스템을 구축해 천리안 기상영상을 수신하고 있으며, 한국국제협력단(KOICA)과 협력하여 스리랑카 기상청에 천리안 기상영상 수신시스템을 지원하고 있습니다.

■ 해양감시임무

국토해양부와 한국해양연구원 해양위성센터에서는 천리안으로부터 실시간 자료를 수신해 우리나라 연안 해양환경 감시 및 연구 등에 활용 중입니다.

천리안 해양자료처리시스템은 우리나라가 세계 최초로 개발한 소프트웨어 입니다.

천리안을 통해 우리나라는 정지궤도 해양위성 종주국으로써 NASA, ESA, JAXA를 비롯한 세계 39개국의 사용자에게 다양한 자료를 제공하고 검·보정 표준화 및 활용 신기술 개발 연구를 추진 중입니다.

해양재해 발견 시에는 국립해양조사원, 해경, 해군 등 관련기관에 즉시 통보하여 자연 재해에 조기 대응하도록 하고 있습니다.

또 향후 해양위성자료의 현업 활용을 강화하기 위해 수치모델과 연계하여 어장정보, 해양이변 감시 등 실생활에 필요한 해양예측자료를 생산할 예정입니다.

■ 통신임무

방송통신위원회와 ETRI는 순수 국내기술로 개발된 천리안 통신 탑재체를 활용하여 그동안 이용되지 않았던 Ka대역(상향 29.6∼30㎓, 하향 19.8∼20.2㎓)의 주파수 이용 및 전송기술 검증시험을 2년에 걸쳐 실시해오고 있습니다.

이에 대한 정부부처, 공공기관, 산업체, 대학 등 8개 기관(소방방재청, 기상청, KBS, 스카이라이프, KT, 한세, 나노트로닉스, 넷커스터마이즈)의 기술검증 결과, 강우에 따른 전파신호 감쇠정도, 기상정보 및 재난 재해 정보전달, 영상정보 전달 등에서 만족할 만한 결과를 얻고 있습니다.

2017년 임무 종료, 후속 위성 제작 중

천리안은 2017년까지 우리나라 정지궤도 상공을 지키며 기상, 해양관측, 통신서비스를 지속적으로 수행할 예정입니다.

천리안의 수명이 종료되는 2017년 이후 후속 임무 수행을 위해 교육과학기술부를 비롯해 국토해양부, 환경부, 기상청이 공동으로 기상, 해양, 환경관측을 위한 정지궤도복합위성을 개발 중입니다.

이 중 기상청은 2호 위성을 기상전용으로 개발하고 있어, 향후 정지궤도 위성은 임무별로 복수 제작될 전망입니다.

후속 기상위성은 천리안 위성이 기상관련 5개 채널을 갖춘 것에 비해 총 16개의 채널을 갖춰 기상 관측 능력을 대폭 향상된다고 합니다.

반응형
반응형

보톡스, 피부를 탱탱하게 만드는 물질로 잘 알려졌지요.

그럼 왜 그럴까요?

보톡스가 몸 속으로 들어가면 에너지를 전달하는 단백질인 '스네어(SNARE)'를 절단해버립니다.

그러면 소포가 세포막과 융합하지 못하면서 신경전달물질의 방출을 막고요. 이는 근육의 수축을 방해하는 결과를 가져와 피부에 주름이 생기지 않도록 작용하는 것입니다. 

2013년 노벨상의 주인공 '스네어(SNARE)'

'스네어(SNARE)' 단백질은 생체막 융합 현상에 가장 기본적인 작동 기계로, 제임스 로스먼(James Rothman), 랜디 셰크먼(Randy Shekman) 등이 1980년 대에 발견했습니다.

스네어 단백질은 신경전달물질이나 호르몬 등의 주요 물질이 자루 모양의 지질막인 소포(vesicles)에 담아 마치 택배처럼 전달하는 역할을 하는데요.  소포의 막을 열어 세포막과 융합하고 물질을 분출하는 방식으로 에너지를 전달하는 것입니다.

그리고 여기에 'NSF 단백질'이 작용해 스네어 단백질을 재활용할 수 있도록 만듭니다.

우리 몸 안에서는 이런  작용이 쉴새 없이 일어나기 때문에 단백질 등의 물질이 공급되면서 정상적인 기능을 할 수 있는 것입니다.

제임스 로스먼, 랜디 셰크먼, 토마스 쥐트호프 등은 이 같은 사실을 발견한 공로로 2013년 노벨 생리의학상을 수상했습니다.

하지만, 스네어 단백질과 NSF는 발견된지 30여 년이 지났음에도 NSF 단백질이 스네어 결합체를 어떤 방식으로 분해하고 재활용하는지에 대해서는 명확히 밝혀지지 않은 상태입니다.  


※ 하버드 대학에서 만든 세포내부의 모습을 재현한 영상 'The inner life of the cell' 중 세포 내부 골격 구조, ATP 결합, 걸어가는 키네신 이동 등을 표현한 부분입니다.  풀 영상은 여기로!

세계의 가설 뒤집은 KAIST 윤태영 교수

KAIST 물리학과 윤태영 교수 연구팀은 NSF 단백질이 스네어 결합체를 분해해 세포수송을 지속시키는 원리를 세계 최초로 규명했습니다.

신경전달물질의 분비가 끝난 후 NSF가 SNARE 단백질 복합체를 한 번에 분해하는 모습. 분해된 SNARE들은 다시 신경전달물질 분비를 일으키는데 이용됨신경전달물질의 분비가 끝난 후 NSF가 SNARE 단백질 복합체를 한 번에 분해하는 모습. 분해된 SNARE들은 다시 신경전달물질 분비를 일으키는데 이용됨

지금까지 과학자들은 NSF가 스네어 결합체를 분해할 때 끈을 조금씩 푸는 것처럼 점진적인 과정으로 진행되고, 따라서 하나의 스네어 결합체를 분해하는 데 연료 역할을 하는 유기화합물인 ATP가 수십 개가 필요할 것이라는 가설을 제기했었습니다.

ATP는 생체 단백질들의 연료원이 되는 물질로, 구성된 인산이 떨어지면서 ATP가 ADP로 변하면서 화학 에너지가 발생시키는데요. 세포의 여러 단백질들은 이를 에너지원으로 삼아 맡은 기능을 수행하게 됩니다.

하지만 윤태영 교수는 단분자 형광 기법과 자기집게 기술(magnetic tweezers)을 사용해 위 가설을 반박했는데요.

윤태영 교수는 단백질에 형광 염료를 달아 분자에서 나오는 신호를 파악하고 움직임을 관찰한 결과, ATP를 주입하면 NSF가 마치 매듭의 양 끝을 잡고 당기면 한 번에 풀리듯 스프링처럼 에너지를 저장했다가 스네어 결합체 전체를 단번에 폭발적으로 풀어내는 것을 확인했습니다.

 

다양한 단분자 생물물리 기법을 이용한 NSF/α-SNAP 에 의한 SNARE 복합체 분해 연구. NSF가 SNARE 복합체를 풀어내는 모델. 다양한 단분자 생물물리 기법을 이용한 NSF/α-SNAP 에 의한 SNARE 복합체 분해 연구. NSF가 SNARE 복합체를 풀어내는 모델.

 

이 같은 연구 성과는 스네어 단백질이 신경세포 간 통신과 인슐린 분비 등에 중추적 역할을 하고 있어 알츠하이머와 같은 퇴행성 뇌질환, 당뇨병과 같은 대사질환 관련 연구는 물론 보톡스 등 피부미용 연구에도 큰 역할을 할 것으로 기대되고 있습니다.

특히, 이번에 규명된 NSF는 근육의 이동이나 단백질 분해, DNA의 복제 및 이동 등 신체에서 중요한 역할을 하는 AAA+ 단백질 그룹에 속해 있는 것으로 확인됐는데요.

이에 따라  NSF와 비슷한 구조의 AAA+ 단백질 그룹이 함께 동작할 것으로 예상되면서 향후 생물 현상 이해의 주춧돌이 될 것으로 전망됩니다.

또 이번 연구 성과는 생물물리 분야에서 우리나라가 최고수준의 기초과학 연구력을 보유하고 있음을 증명한 것으로, 여러 대사질환을 분자수준에서 이해할 수 있는 토대가 될 것으로 기대받고 있습니다.

한편, 이번 연구는 윤태영 교수 연구팀의 류제경 박사, 민두영 박사, 나상현 학생 등이 주도했고, 고등과학원의 현창봉 교수팀, 독일 막스플랑크연구소 라인하르트 얀(Reinhard Jahn) 교수팀, KAIST 의과학대학원 김호민 교수팀이 참여했습니다.

이번 연구 결과는 사이언스지 3월 27일자에 게재됐습니다.

 

  용 어 설 명

세포 수송
세포 안에서 특정 물질이 세포 소기관 사이에 이동하기 위해서 그 물질들이 함유된 소포체가 전달되고, 타겟이 되는 소기관에 소포체의 생체막이 타겟 생체막과 융합이 되어 그 물질들이 전달되게 된다. 이 현상을 생체막 수송이라고 한다.

단분자 생물 물리 기법
단분자 생물물리 기법은 크게 단분자 형광 기법과 단분자 힘 분광계 기법으로 나눠 볼 수 있다. 단백질의 기능을 단분자 수준에서 관찰하기 위해 단백질에 형광 염료를 달아놓고, 형광 한 분자에서 나오는 신호를 읽어 들임으로 단백질의 움직임을 관찰하는 기법이다. 단분자 힘 분광계는 단백질에 DNA 핸들을 부착하고, 이 DNA 핸들에 큰 Bead를 부착하여 이 Bead 를 빛, 자기장 등으로 조절하여 단백질에 힘을 가해주거나 움직임을 주게 만드는 기법이다. 이 기법을 사용하면 단분자 수준에의 실시간 구조 변화를 예측할 수 있게 된다.

스네어(SNARE) 단백질 
스네어 단백질은 생체막 융합 현상에 가장 기본적인 작동 기계이다. 2013년 노벨상 수상자인 제임스 로스먼(James Rothman), 랜디 셰크먼(Randy Shekman)에 발견이 되었다. 스네어 단백질은 네 개의 스네어 모티프가 만나서 밧줄처럼 꼬여서 생체막 융합 현상을 일으킨다. 신경 전달에 관여하는 신경 스네어는 뱀프 (VAMP)와 스냅25(SNAP25), 신택신(Syntaxin) 이 있고, 이 중 뱀프(VAMP) 와 신택신(Syntaxin) 은 막단백질로 생체막에 투과된 부분이 있다.

NSF
NSF 는 AAA+ ATPase 단백질 그룹 중 하나이다. AAA+ 단백질들은 근육의 이동, 퇴행성 뇌질환을 막기 위한 단백질 분해 작용, DNA 의 복제 및 이동 등 아주 많은 기능들을 한다. 특별히 NSF 는 생체막 융합이 일어난 이후 스네어 복합체가 다시 재활용이 되도록 밧줄처럼 꼬인 스네어 복합체를 ATP 연료의 가수분해 되는 에너지로 풀어낸다. 하나의 NSF 에는 3 개의 구역인 N 말단 구역, D1 구역, D2 구역으로 되어 있고, 단일 유닛이 6개가 합쳐져서 육합체 NSF가 만들어지게 된다. D1, D2 구역에는 ATP 부착되는 곳이 있다.

ATP
ATP 는 생체 단백질들의 연료 원이 되는 것으로 인산 세 개와 리보오스, 아데닌으로 되어 있다. 하나의 인산이 떨어져서 ATP 가 ADP 가 되면 화학 에너지가 발생이 되는데 세포의 여러 가지 단백질들은 이 에너지 원으로 특정 기능을 수행해 내게 된다.

 

 윤태영 교수

1. 인적사항
 ○ 소  속 : KAIST 물리학과
 
2. 학    력
 ○ 서울대학교 공과대학 학사 1998
 ○ 서울대학교 공과대학 석사 2000
 ○ 서울대학교 공과대학 박사 2004

3. 경력사항
 ○ 2004~2005  서울대학교 반도체연구소, 박사후연구원
 ○ 2005~2006  어바나-샴페인 소재 일리노이 주립대학 하워드 휴즈       의학연구소, 박사후연구원
 ○ 2005~2006  어바나-샴페인 소재 일리노이 주립대학 물리학과,      박사후연구원
 ○ 2007~2010  KAIST 물리학과, 조교수 
 ○ 2010~2014  KAIST 물리학과, 부교수
 ○ 2011~현재  한국연구재단 미래창조과학부 창의적 연구 진흥사업,       단분자시스템생물학 연구단 단장
 ○ 2014~현재  삼성미래기술육성재단 기초과학부문 물리분야,
    연구책임자
 ○ 2014~현재  KAIST 물리학과, 영년직 부교수

4. 주요연구업적
 ○ Dynamic Ca2+-Dependent Stimulation of Vesicle Fusion by Membrane-Anchored Synaptotagmin 1: 생체막 단백질의 기능을 세포 밖에서 단분자 수준에서 관찰할 수 있는 연구방법을 개발.
 ○ Real-time single-molecule co-immunoprecipitation analyses reveal cancer-specific Ras signalling dynamics : 생체막 리셉터 단백질의 세포신호 전달을 정제하지 않고도 단분자 수준에서 관찰할 수 있는 연구방법을 개발.
 ○ Real-time single-molecule co-immunoprecipitation of weak protein-protein interactions: 위에서 개발된 방법을 많은 과학자들이 사용할 수 있도록 자세한 방법론을 설명한 논문. 기법에 사용되는 컴퓨터 프로그램을 패키지로 제작하여 동시에 배포함.
○ Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism: 자기집게를 이용하여 생체막 단백질에 pN 수주의 힘을 인가하여 그 역학적 특성과 반응을 측정할 수 있는 연구방법을 개발.
○ Programmed folding of DNA origami structures through single-molecule force control: 개발된 자기집게를 이용하여 DNA 나노구조를 프로그램하여 10분 안에 형성시킬 수 있는 연구방법을 개발.
○ 세포 환경 내에서의 단일 분자 수준의 단백질-단백질 상호작용 분석 방법: 개발된 단분자 연구방법을 바탕으로 개별 환자 조직에서 표적 단백질의 상호작용을 별도의 단백질 증폭이나 정제 없이도 측정하여 이를 개인맞춤형 암 진단에 사용하는 기술에 대한 특허.
○ 세포 환경 내에서의 단일 분자 수준의  단백질-단백질 상호 작용 분석 장치: 위의 특허와 연계하여 자세한 분석장치를 구현하는데 필요한 기술적 요소에 대한 특허.

류제경 박사

1. 인적사항                                               
 ○ 소  속 : 카이스트 물리학과 단분자 시스템 생물학 연구실
 
2. 학    력
 ○ KAIST 물리학과 학사 2006
 ○ KAIST 물리학과 박사 2014

3. 경력사항
 ○ 2007~2007 UIUC 방문 연구원 (Taekjip Ha Group)
 ○ 2014~현재  KAIST 물리학과 박사후 연구원

4. 주요연구업적
 ○ 생체막 융합과 관련된 NSF가 어떻게 SNARE 복합체를 풀어내는지 단분자 형광 기법을 이용하여 규명함.

반응형
반응형

한겨울에도 신선한 채소를 공급해주는 비닐하우스.

채소가 얼어 죽지 않고 성장할 수 있도록 실내온도를 높여야 하는데요.

어떻게 적정 온도를 유지할까요?

흔히들 보일러로 온도를 유지한다고 생각하는 경우가 많더라고요.

하지만 가장 보편적인 방법은 바로 ‘물’, 지하수입니다.

비닐하우스 지붕 사이로 지하수를 뿌려서 수막을 만들어 낮에 비닐하우스 안에 갇힌 열의 유출을 막는, 수막가온법입니다.

비싼 기름을 태우지 않아도 되니 시설재배 농민들에게는 아주 유용한 방법인데요.

지하수는 추운 겨울에도 평균 수온 15℃ 내외를 유지하기 때문입니다. 

그렇지만, 여기에도 문제가 있습니다.

우리나라는 연 강수량의 80~90%가 여름철에 집중되기 때문에 겨울은 극심한 갈수기를 겪기 일쑤, 지하수가 부족한 것입니다.

실제 우리나라 시설농가에서 수막가온을 위해 한 해 겨울동안 사용하는 지하수의 량은 무려 6억 9000만 톤, 우리나라 농업용 지하수 사용량의 40%를 차지하고요. 전체 지하수 사용량의 18%나 되는 양입니다.

때문에 매년 1월 경이면 지하수 부족으로 수막가온을 하기 어려워지고, 결국 보일러와 온풍기를 가동해야 하기 때문에 농민의 난방비 부담이 급증하게 됩니다. 

시설농가 물 걱정 더는 지하수 인공함양 수막재배법 개발

한국지질자연연구원 김용철 박사 연구팀은 최근 지하수위 복원 및 고갈을 방지하는 지하수 인공함양 기술인  ‘대수층 순환식 수막재배 시스템’을 개발했습니다.

대수층 순환식 수막재배 시스템대수층 순환식 수막재배 시스템


이 기술은 수막재배에 사용된 지하수와 수집한 빗물을 함께 지하로 환원, 지하수의 수위를 일정하게 보존해 재활용하는 것이 가능합니다.

게다가 지열을 안정적인 열원으로 사용해 주입된 물의 온도를 자연 지하수와 같은 15℃ 내외로 일정하게 유지할 수 있어 겨울철 시설농가의 난방비를 크게 절약할 수 있습니다.

대수층 순환식 수막재배 시스템 구조대수층 순환식 수막재배 시스템 단공 주입/양수 복합관 단면도


지질연은 이번 연구결과를 토대로 충북 청주시 가덕면 상대리 실증연구부지에서 실증시험을 성공적으로 진행했습니다.

연구팀은 실증시설을 통해 수집된 빗물을 수막재배에 사용한 지하수와 집수시설 사여과장치와 코일여과장치로 정화하고, 하우스 내에 설치된 지하열교환관으로 가온한 후 지하로 주입해 저장했다가 다시 활용하는 방식으로 구현했습니다.

대수층 순환식과 비순환식 기간 동안 지하수위 변화 비교대수층 순환식과 비순환식 기간 동안 지하수위 변화 비교


여기에는 연구팀이 개발한 ‘주입-양수 복합관’이 적용, 주입과 양수를 동시에 성공했는데요.

이 복합관을 적용하면 기존 농가가 사용하는 지하수관정을 활용할 수 있어 추가 시추로 인한 비용이 들지 않는 장점이 있고요.

또 관정 수위센서에 의해 지하수위 모니터링과 자동운전이 가능합니다. 

비용 편익 분석 결과비용 편익 분석 결과

시설농가 경제성 3배 향상

연구팀은 이번 연구결과와 기존 비순환식 수막시설과의 비용편익을 비교한 결과, 대수층 순환식 수막시설로 딸기를 재배할 경우 비순환식에 비해 경제성이 약 3배 높은 것으로 분석했습니다.

특히, 이 시스템을 사용하면 새벽에 갑작스런 급수 중단으로 인한 농작물 냉해 피해도 없어 농민이 안심하고 사용할 수 있을 것으로 기대됩니다.

연구팀은 이번 실증시험을 바탕으로 향후 기술표준화, 설치단가 절감, 보급형 시설 개발 등을 통해 상용화를 앞당길 계획입니다.

반응형
반응형

사물인터넷은 옷이나 책 등 모든 사물이 인터넷을 기반으로 서로 연결돼 사람과 사물 또는 사물과 사물 간의 정보를 주고 받을 수 있는 능력을 갖게 되는 것인데요.

이를 위해서는 무엇보다도 전자기기나 기판이 사물에 자연스럽게 장착될 수 있도록 웨어러블, 플렉서블 기술, 특히 가볍고 전력 소모가 적으면서도 유연성을 가진 소자 제작 기술이 필요합니다.

개시제를 이용한 화학 기상 증착법(iCVD) 개발

KAIST 생명공학과 임성갑 교수, 전기 및 전자공학과 유승협, 조병진 교수 공동 연구팀은 최근 10㎚(나노미터) 이하의 얇고 유연하게 휘어지면서도 균일한 두께를 유지하는 고분자 절연막을 개발해 사물인터넷 실현을 한 걸음 앞당겼습니다.

연구팀은 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, iCVD)’을 이용한 고분자 절연막을 개발했는데요.

이 기술은 단량체(monomer)와 개시제(initiator)를 기화시켜 저진공의 반응기 안에 주입하고 열에너지로 활성화시켜 고분자를 필름 형태로 합성하는 방법으로, 기존 고분자 합성 방식과 달리, 용매나 첨가제가 필요 없어 고 순도 고분자를 쉽게 합성할 수 있고요. 또 낮은 공정 온도 특성으로 종이처럼 화학적, 물리적 자극에 약한 물질 위에도 도포할 수 있습니다. 

iCVD 공정의 모식도. (i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성iCVD 공정의 모식도. (i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성

연구팀이 iCVD로 구현된 박막은 절연 특성이 기존 고분자 박막으로는 구현할 수 없는 매우 높은 수준을 보이면서 플렉서블 전자 소자 등 차세대 전자 기술에 핵심적인 역할을 할 수 있을 것이로 기대됩니다.

기존 무기물 소재 절연막이나 전자소자 재료는 유연성이 부족하고, 고온에서만 공정이 가능해 열에 약한 다른 재료들과의 조합이 어려웠고요.

또 용액을 이용해 만든 기존 고분자 소재 절연막은 표면장력에 의한 뭉침 현상으로 균일도에 한계가 따르고, 잔류 불순물로 인해 절연 특성도 좋지 못한 경우가 많았습니다.

연구팀은기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법인 iCVD를 사용, 이 같은 문제를 극복했는데요.

연구 결과 액체 대신 기체 상태의 반응물을 이용해 균일도를 높이고 불순물을 최소화해, 10 이하의 얇은 두께에서도 무기물 기반 소재에 필적하는 절연성을 갖는 것으로 확인됐습니다.

연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자 (좌측)와 떼었다 붙였다 할 수 있는 전자소자 (우측) 이미지.연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자 (좌측)와 떼었다 붙였다 할 수 있는 전자소자 (우측) 이미지.

이에 따라 연구팀은 개발한 절연막을 유기반도체, 그래핀, 산화물반도체 등 차세대 반도체 기반 트랜지스터에도 적용, 우수한 이동도를 갖는 저전압 트랜지스터를 개발하는데 성공했습니다.

이를 바탕으로 연구팀은 우수한 유연성을 바탕으로 스티커 필름 형태의 전자 소자를 시연하는 데 성공했고, 또 동국대 노용영 교수팀과 협력해 iCVD 고분자 절연막이 대면적 유연 전자소자 기술에 적용할 수 있음도 확인했습니다.

이번 기술은 향후 다양한 미래형 전자기기 제작에 핵심 요소소재로 활용돼 기술경쟁력 우위 확보에도 큰 역할을 할 것으로 기대됩니다.

한편, 이번 연구 결과는 재료분야 국제 학술지인 ‘네이처 머티리얼스(Nature Materials)’ 3월 10일자 온라인 속보판에 게재됐습니다.

 

 용 어 설 명

개시제를 이용한 화학 기상 증착(Initiated chemical vapour deposition, iCVD)
단량체 (monomer)와 개시제 (initiator)를 기화하여 저진공의 반응기 안에 주입하고, 주입된 개시제를 열에너지로 활성화시켜 고분자를 필름 형태로 합성하는 방법. 기존의 고분자 합성 방식과는 달리, 용매 (solvent)나 첨가제 (additive)를 필요로 하지 않기 때문에 높은 순도를 가지는 고분자를 쉽게 합성할 수 있다는 장점을 갖고 있다. 또 낮은 공정 온도로 인하여 종이와 같은 화학적, 물리적 자극에 약한 물질 위에도 고분자를 도포할 수 있다.

절연막(insulator)
도체, 반도체와 달리 전자 또는 정공의 흐름을 막아 주는 역할을 하는 물질. 절연막은 소자 내부에서 가장 넓은 면적을 차지하면서도, 두께에 따라 그 절연 성능이 민감하게 변하는 특징이 있기 때문에 전자소자용 재료 중에서도 핵심 요소이다.

트랜지스터(Transistor) & 전계효과트랜지스터(Field effect transistor, FET)
트랜지스터는 전류의 증폭 작용과 스위칭 역할을 하는 반도체 소자로, IC 칩, 디스플레이와 같은 전자 기기의 핵심 구성 요소가 되는 중요한 소자이다. 트랜지스터는 구동 원리에 따라 다양한 종류로 나뉘는데, 이 중 전계효과트랜지스터 (FET)는 통상적으로 게이트, 소스, 드레인 전극과 반도체 (semiconductor), 절연막 (insulator)로 구성되며, 게이트 (gate) 전극에 전압을 걸어 반도체층 사이에 전자 (electron) 또는 정공 (hole)이 흐를 수 있도록 하는 원리로 전류를 제어하는 트랜지스터이다. FET의 저전력화를 위해서는 절연특성이 유지되는 한 절연막의 두께를 최대한 낮추는 것이 유리하다. 
 

임성갑 교수 

1. 인적사항
 ○ 소 속 : KAIST 생명화학공학과
 ○ e-mail : sgim@kaist.ac.kr

2. 학력
  1997: 서울대학교 (학사: 화학공학과)   
  1999: 서울대학교 (석사: 화학과학과)  
  2009: MIT (박사: 화학공학과)  
 
3. 경력사항
  1999 - 2002: LG화학 기술연구원 
  2002 - 2004: LG Display 연구소
  2009 - 2010: Harvard Medical school, postdoctoral fellow
  2010 - 현재: KAIST, 부교수

유승협 교수 

1. 인적사항
 ○ 소 속 : KAIST 전기 및 전자공학과
 ○ syoo_ee@kaist.ac.kr, http://ioel.kaist.ac.kr

2. 학    력
 ○ 서울대학교 물리학과, 학사, 1996 
 ○ 서울대학교, 물리학과, 석사, 1998
 ○ University of Arizona, 광과학부, 박사, 2005
 
3. 경력사항
○ 2006 ~ 현재 KAIST 전기 및 전자공학과 부교수
○ 2011 ~ 현재 삼성디스플레이-KAIST 디스플레이 연구센터장
○ 2011 ~ 2012 독일 University of Technology Dresden, 방문교수
○ 2005 ~ 2006 미국 Georgia Institute of Technology, 박사후 연구원

조병진 교수 

1. 인적사항
 ○ 소 속 : KAIST 전기 및 전자공학과
 ○ e-mail : elebjcho81@kaist.ac.kr

2. 학력
  1985: 고려대학교 (학사: 전기전자공학과)   
  1987: KAIST (석사: 전기 및 전자공학과)  
  1991: KAIST (박사: 전기 및 전자공학과)  
 
3. 경력사항
  1991 - 1993: IMEC, Research Fellow  
  1993 - 1997: Hyundai Electronics Ind. Co., Section Manager
  1997 - 2007: National University of Singapore, 교수
  2007 - 현재: KAIST, 교수

반응형
반응형

선박이나 항공기의 금속에 충격이 누적돼 발생하는 피로파괴는 육안으로는 확인하는 것이 불가능에 가깝기 때문에 비파괴검사기법이 주로 사용됩니다.

최근 비파괴진단법은 항공기나 선박의 크랙 탐지는 물론 반도체 기판의 결함 탐지 등으로 응용범위가 확대되고 있는데요.

하지만, 현재 비파괴진단 기술은 보다 선명한 화질 개선과 함께 넓은 영역을 빠른 시간에 분석하는 것이 요구되고 있습니다.

이런 비파괴진단 검사의 근본적인 요구사항을 해결하기 위해서는 기존 자연계 물질이 갖지 못하는 고 굴절률 및 고 임피던스를 갖는 음향메타물질을 구현해 음향신호가 감쇠되는 문제를 해결하고, 또 이를 뒷받침할 고성능 음향 송·수신 기술을 개발해야 합니다.

외부 전력 없이도 음향신호 10배 증폭하는 기술

한국기계연구원 나노자연모사연구실 송경준 박사와 허신 박사는 부경대 기계공학과 김제도 교수와 공동으로 전원 없이 음향신호를 최대 10배까지 증폭할 수 있는 기술이 개발해 주목받고 있습니다.

고성능 무전원 신호 증폭이 가능한 음향 증폭 구조물고성능 무전원 신호 증폭이 가능한 음향 증폭 구조물


공동 연구팀이 개발한 기술은 지그재그 형태의 인공구조물을 통해 음파의 경로를 제어함으로써,이 구조물을 통과하는 음향 신호를 증폭하는 것이 핵심인데요.

이를 응용할 경우 초음파, 의료기기, 비파괴검사 등 다양한 분야에서 획기적인 발전이 있을 것으로 전망됩니다.

연구팀은 작은 소리의 파장보다도작은 초소형 인공구조물을 지그재그 형상으로 설계하고, 외부 음파 신호가 이 구조물을 통해 센서에 전달되도록 했는데요.

이 경우 구조물을 통과하는 음파의 진행 경로가 증가돼 기존 공기나 물 등 신호를 전달하는 자연계 매질이 갖지 못하는 고 굴절률(Refractive Index)과 고 임피던스(Impedance)의 특성이 나타나는 것을 확인했습니다.

음향 증폭 구조물 실험 장치음향 증폭 구조물 실험 장치

고 굴절률과 고 임피던스를 동시에 구현하면 음파의 진행속도를 줄여 소리를 작은 공간에 집중시킬 수 있기 때문에 음압(Sound Pressure Level) 증폭이 가능해지 것에 주목한 연구팀은 별도의 전원 없이 인공구조물만 활용해 음압을 증가시켜 기존의 음향 시스템의 송·수신 감도를 10배 향상시키고, 기존에 감지가 불가능하였던 미세한 신호까지 감지하는 데 성공했습니다.

또 인공구조물의 형상을 변화시키는 방법으로 신호의 증폭률과 공진주파수도 자유자재로 조절할 수 있게 됐고요.

인공구조물이 신호 파장의 1/10인 구조물을 기반으로 제작되기 때문에 초음파 등 파장이 극히 짧은 송수신 시스템에는 기기장치의 초소형화도 가능해졌습니다.

이번 연구는 송수신 신호 파장의 1/10인 구조물을 기반으로 제작돼 기존 음향기술인 헬름홀츠 공명기가 가졌던 크기의 한계를 소리의 파장보다 작은 구조물로 구현한 것에 큰 의미가 있고요.

이는 향후 초음파, 의료기기, 비파괴검사를 비롯해 플랜트 안전진단 분야, 수중통신 분야 등에도 폭 넓게 활용될 것으로 기대됩니다.

이번 연구결과는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Reports)’  2014년 12월 11일 게재됐습니다.
   ※ 논문명 : Sound Pressure Level Gain in an Acoustic Metamaterial Cavity. 

 용 어 설 명

임피던스(Impedance)
음파전달 매질의 고유한 물성으로 매질 내의 속도와 음압 사이의 비율

헬름홀츠 공명기(Helmholtz Resonator)
공명현상을 이용해 복잡한 음(音) 가운데서 특정한 음을 증폭시키는 장치

 

연 구  개 요

Sound Pressure Level Gain in an Acoustic Metamaterial Cavity
Kyungjun Song, Kiwon Kim, Shin Hur,Jun-Hyuk Kwak, Jihyun Park, Jong Rak Yoon & Jedo Kim


1. 연구배경

비파괴 검사를 적용한 IT 및 정밀 기계 생산 분야에서 초음파 이미징 기술은 결함 탐지에 이용된다.

이를 통해 항공기, 선박 등 크랙 탐지에 사용되었고 최근에는 반도체 기판 결함 탐지 등 응용범위가 확대되고 있다.

그러나 현재 비파괴 진단 기술의 문제점은 화질 개선이 필요하고 넓은 영역을 빠른 시간에 분석하는 것이 관건이다.

이러한 비파괴 검사의 근본적인 기술적 문제를 해결하기 위해서 본  연구에서는 기존 자연계 물질이 가지지 못하는 高 굴절률 및 高 임피던스를 가지는 음향메타물질 구현을 통해 음향 신호 감쇠 문제를 해결하고 이를 통해 고성능 음향 송·수신 기술에 대한 연구를 수행하였다.

본 연구는 최근 2014년 3월에 Scientific reports 논문 게재된 음향 메타물질 송신기술 (Emission Enhancement of Sound Emitters using an Acoustic Metamaterial Cavity)의 후속 연구로써, 동일한 구조체를 이용하여 음향 신호를 송신 감도 뿐만 아니라 수신 감도를 10배 이상의 이득을 얻을 수 있는 음향메타물질 원천기술에 대한 연구를 수행하였다.

2. 연구내용

본 연구에서는 알루미늄 재질로 만들어진 지그재그 형상 인공 구조체를 정교하게 설계하여 작동할 수 있는 초소형 음향 증폭 메타물질을 만들었다.

지그재그 형상을 사용한 이유는 음파의 경로를 증가시켜 기존 자연계 물질이 가지지 못하는 高굴절률과 高임피던스를 구현이 가능하기 때문이다.

음향 증폭률과 공진주파수도 메타물질 형상변화를 통해 자유자재로 조절되기 때문에 원하는 주파수에서 작동할 수 있는 음향증폭기가 설계가 가능하다.

예를 들어 실험적으로 메타물질을 이용하여 13dB 이상 음향 신호 증폭을 측정하였고, 이론적으로는 20dB 신호 이득도 가능함을 알 수 있었다.

본 구조체의 지그재그 형상은 高 굴절률을 기반으로 하기 때문에 현재 널리 사용되고 있는 헬름홀츠 공명기(Helmholtz Resonator)보다 매우 작게 설계가 가능하며 이로 인해 디바이스 초소형화가 가능하다.  

(a) 음향메타물질 구조체 (b) 3가지 메타물질 형상이 다른 샘플 (a) 음향메타물질 구조체 (b) 3가지 메타물질 형상이 다른 샘플 (c-d) 음향 증폭률 실험 및 해석 (e-f) 음향 증폭 시뮬레이션(공진주파수)


또한 연구진은 음향 증폭률이 공기에 국한되지 않고 수중에서도 음향 신호의 증폭을 증명하기 위해 수조 내에서 음향파가 발생 및 측정 하였으며 이를 통해 2배 이상의 음향 신호의 증폭을 확인하였다.

이 실험은 수중에서의 수많은 반사파에 의한 간섭현상을 극복하여 어디에서든지 음파를 이용한 수중통신을 가능하게 할 수 있는 핵심 기술이 될 수 있음을 보였다. 

(a-b) 수중실험 개략도 및 실험 (c-d) 음향 증폭률 실험 및 해석(a-b) 수중실험 개략도 및 실험 (c-d) 음향 증폭률 실험 및 해석


3. 기대효과
 

본 연구는 무전원 음향 증폭 디바이스 소형화뿐만 아니라 좋은 신호를 얻을 수 있는 음향 증폭 원천기술로써, 이를 통해 초음파 비파괴검사, 의료 이미징, 에너지 하베스팅(Energy Harvesting), 수중 통신 등의 다양한 응용분야에 크게 활용될 수 있다.

특히 초음파 비파괴 진단의 압전소자의 센싱 및 액츄에이팅 성능 향상을 통해 구체적으로 고속화 진단이 요구되는 항공기 부품 등의 크랙 탐지, 반도체 기판 결함 탐지에 활용 가능하다.

 

1문 1답

이번 성과가 기존과 다른 점은?(기존 기술과 차이 비교)

이번에 개발된 무전원 음향 증폭 메타물질은 기존의 음향 헬름홀츠 공명기보다 훨씬 작은 구조물을 이용하기 때문에 디바이스 초소형화가 가능하고, 10배 이상의 높은 증폭률을 얻을 수 있다.

어디에 쓸 수 있나?(활용 분야 및 제품)

무전원 음향 증폭이 필요한 고해상도 비파괴 초음파 진단, 고감도 수중통신, 고성능 음향 센서 등에 적용할 수 있다.

실용화를 위한 과제는?

초음파 영역에 적용하기 위해서는 마이크로미터 크기의 메타물질 구조체를 대면적으로 저렴하게 제작 할 수 있는 나노공정 기술과의 융합연구와 시작품 구현 및 성능평가 관련 연구가 필요하다.

실용화 가능 시기는?

현재 실용화 응용 가능성을 실험실 수준에서 규명한 상태이며, 대면적 제조 및 실용화 연구가 수행되면 고해상도 비파괴 초음파 진단 분야에서 향후 응용이 가능할 것으로 기대된다.

산업적, 경제적 파급효과는?

음향 엑츄에이팅/센싱의 원천기술과 밀접하게 연관된 플랜트 안전진단 및 수중 피탐지 구조체 관련 시장 규모는 2025년에 각 142억불, 176억불로 예상되고 있으며, 해당 기술개발 성과를 활용하면 관련 시장의 상당부분을 선점하고 새로운 시장을 창출할 수 있을 것으로 기대된다.

반응형
반응형

멀지 않은 미래에는 두루말이 모니터, 장갑이나 옷 겉면에 부착된 디스플레이, 접어서 보관하는 TV 등 플렉시블 전자제품이 상용화 될 것입니다. 

이를 실현 가능하게 하는 기술 중 하나가 유연한 기판에서 작동할 수 있는 소자를 개발하는 것인데요. 특히 인쇄형 전극의 경우 은나노입자가 우수한 전기적 기계적 성능을 갖고 있지만 생산 가격이 높다는 한계를 갖고 있습니다.  

이에 따라 은나노입자의 대안으로 구리나노입자 기반 기술이 제시돼 왔는데요.

하지만, 구리나노입자는 표면 산화막 형성에 따른 제어의 어려움으로 인해 전도성이 떨어지고, 열처리 공정에 한계가 있어 상용화에 어려움을 겪었습니다.

가격경쟁, 성능경쟁 가능한 구리나노입자 개발

한국화학연구원(이하 화학연) 최영민 박사와 정선호 박사팀, 조예진 연구원(주 저자)은 가격경쟁력과 전기전도성이 높은 구리나노입자로 플렉시블 디스플레이, 스마트폰 등에 쓰이는 전자회로를 만들 수 있는 전극 제조기술을 개발했습니다.

이번 연구는 터치스크린, 전자파 차단 필름 등에 쓰이는 연성회로기판의 전자회로를 보다 저렴하고 효율성이 높은 구리나노입자 기반 인쇄형 전극으로 제조할 수 있어 미래 플렉시블 전자산업에 획기적인 역할을 할 것으로 기대됩니다.

연구팀이 개발한 핵심은 산화막이 표면에 형성되는 것을 막아주면서 나노입자를 합성할 수 있는 구리나노입자  합성기술과 1000분의 1초 단위의 광열처리 기술을 통해 공기 중에서 인쇄형 구리배선을 연속으로 제조할 수 있는 기술인데요. 

[그림 1] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진[그림 1] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진
(a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진

구리나노입자 합성기술은 구리나노입자의 표면에 산화막이 형성되면 전기가 잘 흐르지 않기 때문에 전자배선에 쓰이는 구리나노입자의 표면 산화막을 방지하는 것으로, 연구팀은 구리나노입자의 산화막 형성을 방지하면서 나노입자를 합성할 수 있는 기술을 개발했습니다.

또 광열처리 기술은 기존의 열에너지를 이용하는 열처리 공정과 달리 순간적인 광 조사를 통해 나노입자기반 박막의 물리적 화학적 특성을 변화시키는 기술입니다.

이번 연구는 가격경쟁력이 우수한 구리나노입자 소재 활용의 한계점으로 작용했던 산화막 형성을 극복하고, 추가 공정 없이 공기 중에서 연속적으로 제조하는 기술을 제시해 미래 유연소자용 배선의 높은 전도성을 확보하면서도 저가로 간편하게 제조할 수 있어 파급효과가 클 것으로 전망됩니다.

또 이번 연구를 통해 제시된 공정기술은 생산성이 높은 롤투롤(roll-to-roll) 공정기술에 적용이 가능하고, 순간적인 광 조사를 통해 구리입자의 확산 움직임을 적층소자구조에서 효율적으로 제어, 우수한 성능의 소자를 제작할 수 있음을 규명했다는 평가를 받고 있습니다.

연구팀은 이번에 개발한 기술을 국내 전자소자 관련 기업 2곳으로 기술이전, 2~3년 내 상용화 될 전망이고요. 산업계 응용을 보다 확장하기 위해 추가 상용화 연구를 진행하고 있습니다.

아울러 연구팀은 구리 전자잉크를 바탕으로 섬유, 의류 등에 적용이 가능하도록 쉽게 늘어날 수 있는 회로를 3D 프린팅으로 인쇄하는 기술도 개발하고 있습니다.

향후, 구리나노입자 기반 유연 전도성 전극이 적용될 수 있는 플렉시블 전자소자 시장은 2018년까지 150억 달러(10조 6,000억 원)으로 성장할 것으로 기대되고 있습니다(출처: Conductive Ink Martket 2014-2024 (IDtechEx)).

이번 연구결과는 영국왕립화학회 나노스케일(Nanoscale)지 2015년 2월 21일 자 내부 표지논문으로 선정됐습니다. 
    ※ 영문 제명: Ambient Atmosphere-Processable, Printable Cu Electrodes for Flexible Device Applications: Structural Welding on a Millisecond Timescale of Surface Oxide-Free Cu Nanoparticles  


2015년 2월 Nanoscale 표지 (Inside back cover)


 용 어 설 명

표면 산화막 형성이 제어된 구리나노입자 
저온 소결 공정을 통해 금속나노입자 기반 전극을 형성함에 있어서 표면 산화막은 소결거동을 제약하는 동시에 전극의 전기적 특성을 제한함.
따라서, 쉽게 산화가 되는 구리나노입자의 경우 표면 산화막 형성이 제어된 구리나노입자를 합성하는 기술이 핵심적으로 필요함.  
 
광열처리
기존의 열에너지를 이용하는 열처리 공정과 달리 1/1000 초 단위의 순간적인 광조사를 통해 나노입자기반 박막의 물리적 화학적 특성을 변화시키는 기술

롤투롤
기판에 회로배선을 인쇄형으로 연속 제조할 수 있는 기술. 대면적 전도성 박막을 높은 생산성으로 제조할 수 있음. 

적층소자구조
디스플레이 등에 쓰이는 전자회로 기판에는 여러 층의 소자들이 겹겹이 쌓인 구조를 이루고 있으며, 원하는 성능을 나타내기 위해서는 이 층 사이에 원자가 확산하는 것을 효율적으로 제어하는 것이 필요함

 

구 개 요

1. 연구배경

미래 전자소자의 발전방향은 대면적 기판의 적용이 가능한 저가의 소재/공정기술을 바탕으로 유연기판상에 다양한 기능성을 가지는 소자를 제작하는 흐름임.

소자의 제작을 위해 필요한 다양한 적층화 공정에서 가장 필수적인 소재는 전극소재이며, 기존의 증착 및 광학전사법이 배제된 신규 소재 및 공정기술의 개발이 필수적임. 최근 금속나노입자 기반의 인쇄형 전극을 개발하는 연구가 활발히 진행되어왔지만, 특성 및 공정성이 우수한 은나노입자는 높은 생산가격으로 인해 한계점을 가지고 있음.

이에 대한 대안기술로서 제시되어온 구리나노입자 기반의 전극형성 기술은 구리나노입자 표면의 산화막 형성 거동 제어의 어려움으로 인해 높은 전도성을 확보하기가 어려우며, 높은 열처리 온도 및 분위기 제어등의 공정상의 제약점이 수반되는 한계점을 지니고 있음.

따라서, 구리나노입자 기반의 인쇄형 전극을 형성함에 있어서 기존 한계기술을 극복할 수 있는 새로운 개념의 소재 및 공정기술의 개발이 필수적임.

본 연구에서는 산화막 형성이 제어된 구리나노입자 합성기술과 광열처리 기술을 기반으로 일반대기 하에서 인쇄형 고전도성 초저가 구리배선의 연속식 제조를 가능케 하는 기술을 개발하였음.


2. 연구내용

본 연구에서는 캡핑 고분자의 화학적 거동을 제어함으로서 구리나노입자 표면의 산화막 형성을 억제하였으며, 순간적인 광조사를 이용하여 구리나노입자간의 소결 거동을 제어함으로서 유연소자 적용이 가능한 인쇄형 구리 전도성 배선을 만들 수 있음.

[그림 1] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진[그림 1] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진
[그림 1] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진

그림 1에서 보듯이, 저온 소결공정시 일반 대기하에서 쉽게 산화가 되는 구리나노입자 기반의 패턴임에도 불구하고, 종이, PET, PES 및 PI 기판을 포함하는 다양한 기판상에서 우수한 전도성 패턴이 공기중에서 용이하게 제작됨을 알 수 있음.

특히, 고내열성이 부족한 PET 및 종이 기판상에서도 소재 및 공정 적합성이 우수함을 확인할 수 있음.

제작된 유연기판상 구리나노입자 기반 배선의 반복 벤딩특성을 평가한 결과, 10000회 동안의 반복벤딩후에도 비저항의 변화가 거의 없는 것을 알 수 있음.

또한, 이러한 유연특성이 우수한 고전도성 인쇄형 구리 배선의 대면적 적용 가능성을 평가함. 일반적인 열에너지를 이용한 열처리와 달리 광열처리의 경우 짧은 광열처리 구간으로 기판이 연속적으로 이송될 수 있으며, 이를 통해 높은 생산성을 가지는 대면적 전도성 박막을 제조할 수 있음을 보였음.


[그림 2] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선 기반 capacitor의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선 기반 capacitor의 반복벤딩 특성; (c) 인쇄형 유연 구리배선 기반 박막 트랜지스터의 모식도 및 전기적 특성

이렇게 제조된 유연 구리 전도성 패턴의 유연소자로의 적용성을 평가하기 위해 capacitor 및 In-Ga-Zn-O 박막 트랜지스터를 제작하였음(그림 2).

PI, PES 및 PET 기판 상에서 제작된 capacitor의 경우 10000회의 반복 벤딩 테스트 후 축적전하 및 누설전류를 측정하였을 때 소자 성능의 변화가 없음을 확인함.

또한, 구리 전도성 배선을 소스/드레인 전극으로 이용하여 박막 트랜지스터를 제작할 경우, 기존 급속열처리 (rapid thermal annealing)의 경우 산화물 반도체 내부로의 구리의 확산을 제어하기가 어려운 반면, 급속 광열처리의 경우 순간적인 광조사공정으로 인해 구리의 확산을 제어하여 우수한 성능의 소자를 제작할 수 있음을 규명하였음.

새로운 개념의 소재 및 공정기술은 그 연구의 가치를 인정받아  Nanoscale 최신호 (2015년 2월 21일)의 내부 표지 논문으로 선정되었음. (그림 3) 


[그림 3] 2015년 2월 Nanoscale 표지 (Inside back cover)

이번 연구는 한국화학연구원이 미래성장동력을 발굴하고 고유연구 역량을 심화시킬 수 있도록 추진하고 있는 “Top-Down 임무형 주요사업”의 지원을 받아 수행되었음.

3. 기대효과

이번 연구는 기존의 구리나노입자 기반의 인쇄형 유연전극에 대한 공백기술을 극복할 수 있는 소재 및 공정기술을 새로이 제시한 내용임.

금속나노입자 기반 전도성 배선이 요구되는 기존의 다양한 응용분야로의 확장된 적용이 기대되며, 이를 통해 고성능과 가격경쟁력을 동시에 확보할 수 있는 응용제품의 개발 및 시장의 개척이 기대됨.

또한, 평면기판상의 2차원 인쇄가 아닌 현재 많은 관심을 받고있는 3차원 프린팅 공정을 통한 다양한 구조의 소자 제작을 위한 기반기술로 적용될 수 있을것으로 기대함. 

 

최영민 박사

1. 인적사항
 ○ 소 속 : 한국화학연구원 그린화학소재연구본부
 ○ e-mail : youngmin@krict.re.kr

2. 학력
 ○ 1985 - 1989 연세대학교 세라믹공학과 학사
 ○ 1989 - 1991 연세대학교 세라믹공학과 석사
 ○ 1999 - 2003 KAIST 재료공학과 박사   
 
3. 경력사항
 ○ 1991 - 2005     한국화학연구원, 선임연구원
 ○ 2007 - 2011     한국화학연구원, 연구정책실장
 ○ 2008 - 현재     과학기술연합대학원, 교수
 ○ 2005 - 현재     한국화학연구원, 책임연구원

4. 전문 분야 정보
 ○ 용액공정용 나노소재 합성 및 소자응용, 웨어러블 소자용 화학소재

정선호 박사

1. 인적사항
 ○ 소 속 : 한국화학연구원 그린화학소재연구본부
 ○ e-mail : sjeong@krict.re.kr

2. 학력
 ○ 1998 - 2002 연세대학교 신소재공학부 학사
 ○ 2002 - 2007 연세대학교 신소재공학부 박사  
 
3. 경력사항
 ○ 2007 - 2008     연세대학교 신소재공학부, 박사 후 연구원
 ○ 2008 – 2009     Northwestern University, 박사 후 연구원
 ○ 2009 - 2014     한국화학연구원, 선임연구원
 ○ 2014 - 현재     한국화학연구원, 책임연구원

4. 전문 분야 정보
 ○ 프린터블 기능성 무기소재 합성, 에너지/전자 소자 제작

반응형
반응형

스마트폰 화면, PC모니터, TV 등은 단단한 틀을 유지하고 있습니다.

이를 휘어지게 만들면 신문지처럼 말아서 갖고 다닐수 있는 모니터, 옷 겉면을 자유자재로 표현하는 점퍼 등 그 활용도가 무궁무진한데요.

여기에 필요한 핵심 기술은 휘거나 접었을 때 깨지지 않는 디스플레이 구조입니다.

LCD 화면을 구현하는 액정은 유동성이 있으면서도 분자배열도가 우수한 고체적 특성을 동시에 갖고 있으며, 표면에너지나 전기장에 의해 쉽게 배향제어를 할 수 있기 때문에 널리 사용되고 있습니다.

하지만 유체의 특성상 압력이나 구부림 등 기계적 변형에 취약, 색 번짐 등의 불필요한 광학 특성을 나타나기 때문에 휘어지는 디스플레이를 만드는 데 큰 지장을 초래합니다.

이를 극복할 수 있는 방법으로는 액정을 안정적이고 균일한 크기의 3차원 구형 구조로 만들고서는 작은 사이즈의 얇은 막으로 둘러싸서 캡슐화하는 '3차원 액정 마이크로캡슐화 기술'이 있는데요.

대표적인 것이 콜레스테릭 액정입니다.

콜레스테릭 액정은 나선형의 분자배열을 갖고 고유한 반사특성을 나타내는 기능성 액정으로, 최근 액정 연구 분야에서 매우 활발하게 연구되고 있는 광학 재료입니다.

2013년 NanoMarkets 발표 자료를 보면 기능성 액정캡슐이 적용될 수 있는 플렉시블 액정디스플레이 및 플렉시블 스마트윈도우 시장은 2018년까지 각각 32억 달러(3조 5,000억 원), 7.5억 달러(8,000억 원)에 이를 것으로 전망되고 있습니다.

미세유체소자기술, 액정배향제어기술 개발

한국화학연구원 김윤호 박사와 KAIST 김신현 교수가 주도하고 이상석 KAIST 생명화학공학과 학생(주 저자)은 미세유체소자 기술과 액정배향제어기술을 통해 압력과 구부림 등의 기계적 변형에 강하면서도 모든 방향에서 균일한 색깔을 보이는 특성을 가진 액정 제조 기술을 개발했습니다.

미세유체소자 기술은 공정에 쓰이는 배관을 머리카락 굵기의 모세관으로 만들어 여러 물질의 흐름을 정교하게 제어할 수 있는 기술이고요. 액정배향제어기술은 화학반응으로 발생하는 표면에너지를 이용해 액정 분자를 원하는 방향으로 세우고 눕히는 기술입니다.

이번에 연구팀이 개발한 기술은 미래 유연 디스플레이나 기능성 스마트윈도우 등을 제조하는 데 매우 유용할 전망인데요.

이를 통해 연구팀은 그동안 LCD처럼 2차원 평면구조에만 적용되던 액정 소재를, 유연 디스플레이, 마이크로레이저, 3D 프린팅용 잉크 등 완전히 새로운 형태의 3차원 소자로 적용할 수 있는 가능성도 열었습니다.
 
또 연구팀은 콜레스테릭 액정이 분자의 주기적 배열 때문에 특정한 반사색을 구현할 수 있고,온도 변화에 따라 주기적인 구조에 변화가 생겨 반사 색상이 변화하는 특징에 주목했는데요.

캡슐환 된 기능성 액정 물질이 온도에 따라 색상을 다양하게 변화시킬 수 있는 고유한 특성을 갖고 있는 것에 착안, 색상 변환의 원리에 따라 플렉시블 LCD뿐만 아니라,  온도센서, 기능성 컬러 스마트윈도우 등에도 활용할 수 있을 것으로 기대하고 있습니다.

연구팀은 이번 연구가 물처럼 흐르는 특성을 지닌 액정을 안정적이고 균일하게 3차원 구형으로 제조할 수 있는 것으로, 유연한 디스플레이, 기능성 스마트윈도우, 마이크로레이저 등 미래 광학전자산업에 획기적인 역할을 할 것으로 보고 후속 연구를 계속할 예정입니다.

한편, 이번 연구결과는 세계적 권위의 어드밴스드 머티리얼(Advanced Materials)지 2015년 1월 27일자 내부 표지 논문으로 선정됐습니다. (영문 제명: Robust Microfluidic Encapsulation of Cholesteric Liquid Crystals Toward Photonic Ink Capsules)

 

 용  어  설  명

콜레스테릭 액정 
콜레스테릭 액정은 기존 액정디스플레이에 사용되는 액정은 네마틱 (nematic) 이라는 상을 가짐. 콜레스테릭 액정은 이러한 네마틱 액정상이 주기적인 나선형의 (helix) 꼬임 분자배열을 가지는 액정임.
액정분자의 주기적인 나선배열로 인해 광결정 (photonic crystal) 구조를 가지게 되어 고유한 반사 및 편광특성을 나타냄
 
미세유체소자 (Microfluidic device)
유리나 고분자 등의 다양한 소재를 이용하여 제작된 마이크로미터 수준의 모세관 채널을 이용하여 여러 종류의 유체의 흐름을 정교하게 제어할 수 있는 미세 소자
다성분의 유체의 흐름을 정확하게 제어할 수 있기 때문에, Lab on a chip 개념의 미세화학반응기 및 진단용 기구로 사용되고 있으며 또한 다양한 물질의 마이크로캡슐화에도 적용할 수 있음.

Advanced Materials
독일 Wiley-VCH사에서 발행하는 응용화학 재료 분야에서 권위 있는 국제학술지 (2014년도 SCI 피인용지수: 15.409)

 

 

 연  구  개  요

1. 연구배경
미래의 디스플레이 및 광학소자 기술의 발전방향은 깨지지 않고 휠 수 있는 저전력 소모의 플렉시블 광학소자라고 말할 수 있음.
우리나라는 세계 최고의 액정디스플레이 기술을 보유하고 있음. 하지만, 유체적인 성질을 가지는 액정의 고유한 특성 상, 기계적 변형 (압력, 구부림 등) 에 매우 취약하고 원하지 않는 광학특성이 나타나는 단점 때문에, 플렉시블 광학소재로 적용하는데 커다란 제약이 있음.
이를 극복하기 위하여 액정을 고분자에 분산하여 방울(droplet) 형태로 만들어 플렉시블 소재화 하려는 시도들이 있으나, 액정 방울의 크기가 불균일하고 액정 물질이 다른 재료에 포함되어 있는 형태이기 고유의 광학특성을 이끌어내는데 어려움이 있음. 이를 위해서는 안정적으로 캡슐화 된 액정 소재의 개발이 필요함.
본 연구에서는 고유한 광학특성을 가지는 콜레스테릭 액정을, 세계최고수준의 미세유체소자 기술을 이용하여 다양한 주변 환경에서도 안정적인 3차원 액정 마이크로캡슐을 균일한 크기로 제조할 수 있는 기술을 개발하였음.

2. 연구내용
본 연구에서는 유리 모세관으로 제작된 미세유체소자를 이용하여  유체의 유량을 정교하게 제어함으로써, 기름/물/액정의 이중액적 (double emulsion) 구조를 만들 수 있음.
이중액적의 가장 가운데에는 액정이 위치하고 물 층이 감싸고 있는 구조임. 물 층은 자외선에 의해 경화가 가능한 수용성 고분자를 포함하고 있기 때문에 이중액적 형성 후 자외선 조사를 통해 안정적인 액정 캡슐을 제작할 수 있음.(그림 1)

 
제조된 액정 캡슐은 액체와 같은 흐름성을 가지는 액정을 포함하고 있음에도 불구하고, 경화된 고분자 층으로 캡슐화 되어 있기 때문에, 공기 중에서도 매우 안정적이며 다양한 용액 상태에 분산도 가능하여 코팅 및 잉크소재로도 적용 가능함.
액정 마이크로캡슐의 크기는 미세유체소자를 통해 흐르는 물질들의 유량에 따라서 제어가능하며 ~100㎛ 수준의 마이크로캡슐을 제조할 수 있음.
캡슐화에 사용된 액정 물질은 규칙적인 주기를 가지는 나선형의 분자배열을 가지는 콜레스테릭 액정으로서, 주기에 따라 결정되는 파장을 선택적으로 반사하는 성질을 가지고 있기 때문에, 그림 1에서 보이는 녹색 파장의 (550㎚) 반사색을 확인할 수 있음.
이러한 반사색상은 액정에 회전성을 부여하는 물질의 함량을 제어함으로써, 가시광 및 기타 파장 영역으로 손쉽게 변환이 가능함. 또한, 캡슐화 공정으로 통해 3차원 적으로 캡슐화 되어 있기 때문에, 기존 LCD에서 나타나는 시야각 문제를 탈피하여 모든 방향에서 동일한 광학특성을 나타내는 큰 장점을 가지고 있음.

액정은 온도에 의해서 분자배열이 바뀌는 물질이기 때문에, 제작된 액정마이크로캡슐을 서로 다른 온도 환경에 놓았을 때, 액정분자의 나선 구조의 주기가 변화하게 되어, 액정 캡슐의 색은 온도에 따라 다양하게 변화함.(그림 2) 

온도에 따른 액정 마이크로캡슐의 색상 변화온도에 따른 액정 마이크로캡슐의 색상 변화


이러한 색상 변환 원리를 통해 온도센서, 스마트 윈도우용 소재 및 파장가변형 마이크로레이저 등으로 활용할 수 있음.

새로운 개념의 액정캡슐 제조기술은 그 연구의 가치를 인정받아  Advanced Materials 최신호 (2015년 1월 27일)의 내부 표지 논문으로 선정되었음. (그림 3)

2015년 1월 Advanced Materials 표지 (Inside back cover)2015년 1월 Advanced Materials 표지 (Inside back cover)


이번 연구는 한국화학연구원이 미래성장동력을 발굴하고 신진연구자의 연구역량을 고취시킬 수 있도록 추진하고 있는 “창의사업”의 지원을 받아 수행되었으며, 한국화학연구원 고기능고분자연구센터 (센터장: 원종찬 박사)와 KAIST 생명화학공학과의 공동연구팀이 수행한 결과임.

3. 기대효과
캡슐화 공정을 통해, 액정을 균일한 크기의 3차원 구형 구조로 만들면, 모든 방향에서 균일한 광학특성을 구현할 수 있으며, 기존 가루 형태의 도료 및 잉크와 같이 손쉽게 취급할 수 있는 소재로 적용할 수 있음.
그 결과 기존에 2차원 평면 구조로만 이용되던 액정을 이용하여 완전히 새로운 형태의 광학소자로의 응용이 가능함.
이번 연구를 통해, 선택적인 반사를 일으키는 기능성 액정 (콜레스테릭 액정)을 안정적으로 정확하게 캡슐화 함으로써, 플렉시블 액정 디스플레이 뿐만 아니라, 3차원 구조의 마이크로레이저, 기능성 컬러 스마트윈도우와 같은 새로운 연구 분야를 개척할 수 있을 것으로 기대됨.
또한, 최근 각광받고 있는 3D 프린팅의 광학잉크로도 적용할 수 있을 것으로 예상됨.

 

김윤호 박사

1. 인적사항
 ○ 소 속 : 한국화학연구원 그린화학소재연구본부 
 ○ e-mail : yunho@krict.re.kr 

2. 학력
 ○ 1999 - 2003 KAIST 생명화학공학과 학사
 ○ 2003 - 2006 KAIST 생명화학공학과 석사
 ○ 2006 - 2010 KAIST 생명화학공학과 박사   
 
3. 경력사항
 ○ 2007 - 2007     Kent State Univ. 액정연구소, 방문연구원
 ○ 2010 - 2011     Washington Univ. in St. Louis, 박사 후 연구원
 ○ 2011 - 현재     한국화학연구원, 선임연구원

4. 전문 분야 정보
 ○ 유/무기 나노소재 합성 및 미세구조제어, 차세대 유기광전자 소재

김신현 교수

1. 인적사항
 ○ 소 속 : KAIST 생명화학공학과
 ○ e-mail : kim.sh@kaist.ac.kr

2. 학력
 ○ 2000 - 2004 연세대학교 화학공학과 학사
 ○ 2004 - 2009 KAIST 생명화학공학과 박사  
 
3. 경력사항
 ○ 2009 - 2010     KAIST 생명화학공학과, 박사 후 연구원
 ○ 2010 – 2012     Harvard University, 박사 후 연구원
 ○ 2012 - 현재     KAIST 생명화학공학과, 조교수

4. 전문 분야 정보
 ○ 연성소재 물리적 거동 및 유체역학, 미세유체소자 기반 기술

 

 

반응형
반응형

실리콘웨이퍼는 메모리 반도체 제작의 핵심입니다.

실리콘웨이퍼는 모래나 규석에서 추출한 순도  99.9999%의 실리콘 원료를 가열시켜 둥근 막대형의 실리콘봉을 만들고 이를 다시 원판 모양으로 얇게 잘라낸 것입니다.

이렇게 만들어진 실리콘웨이퍼 위해 복잡한 공정이 더해져 메모리 소자가 만들어지는 것인데요.

KRISS(한국표준과학연구원) 나노소재평가센터 엄대진, 문창연, 구자용 박사팀이 기존 실리콘웨이퍼를 붕소(B)로 가공하는 방식으로 테라바이트(Tera Byte)급 비휘발성 메모리를 제작할 수 있는 원천기술을 개발했습니다.

*비휘발성메모리 : 전원이 공급되지 않아도 저장된 정보를 유지하는 메모리 형태. 플래시메모리, ROM, 자기저항메모리, 전기저항 메모리 등이 해당.

기본적으로 메모리의 구조가 간단해지면 보다 많은 디지털 정보 저장이 가능하겠지요.

연구팀은 간단한 공정으로 실리콘웨이퍼 표면 원자 각각에 ‘0’이나 ‘1’의 이진정보를 쓰고 지울 수 있는 초고집적 비휘발성 메모리 기술을 개발하고 그 동작원리를 밝혀냈습니다.

연구팀은 실리콘웨이퍼에 일정량의 붕소(B)를 주입한 후, 열처리하면 표면에 노출된 실리콘 원자들의 상호거리가 늘어나는 것을 확인했는데요. 이렇게 만들어진 표면의 원자 하나하나는 외부 전기 자극에 의해 두 가지 안정된 상태로 변형됩니다.

 

실리콘 표면 원자에 이진 정보를 순차적으로 기록하는 과정(좌) 실리콘 표면 원자에 이진 정보를 순차적으로 기록하는 과정(좌) 주사터널링현미경(Scanning Tunneling Microscope)을 이용해서 실리콘 표면 원자에 전기 자극을 주면 표면 원자의 높이가 높아진다. 이는 개별 표면원자에 이진(0,1) 정보를 성공적으로 저장할 수 있다는 것을 의미한다. 이때 제일원리계산법을 이용하면 실리콘 표면 원자가 갖는 두 가지 안정된 형상의 원자 구조를 알 수 있다.

 

실리콘 표면 원자가 변형되면 전류 공급이 끊어진 후에도 그 상태를 유지하는 비휘발성 특성을 보이는데, 이는 원자 하나하나가 디지털 정보를 저장할 수 있다는 것을 의미합니다.

연구팀은 결함이나 인공 구조물이 아닌 정상적인 표면 원자를 이용하여 실험을 성공시켰기 때문에 향후 상용화 하는데 제약이 크지 않을 것으로 기대되는데요.

이전까지는 불규칙하게 분포하는 결함 구조나 인공구조물을 이용하여 원자 스케일에서의 메모리 기능을 시연할 수 있었지만, 위치 제어 등의 어려움으로 응용 가능성이 매우 낮았습니다.     

하지만 KRISS 연구팀의 방법처럼 실리콘웨이퍼에 직접 디지털정보를 넣을 수 있다면 테라바이트(Tera Byte)급 비휘발성 메모리 제작이 가능해 지는 것입니다.

실제 메모리의 정보 저장능력이 집적도에 따라 크게 좌우되는 것에 비춰 현재 상용되고 있는 제품과 KRISS 연구팀의 방법을 비교하면 집적도 차이가 최고 300배, 아울러 현재의 플래시 메모리는 24~32개 층이 적층된 구조이기 때문에 동일한 층수로 환산하면 실제 저장 밀도는 약 7,000배 정도 증가하게 됩니다.

 

KRISS 엄대진, 문창연, 구자용 박사가 저온 주사터널링현미경 장비를 이용하여 실리콘 물질표면의 원자 및 전자 구조를 측정하고 있다. KRISS 엄대진, 문창연, 구자용 박사가 저온 주사터널링현미경 장비를 이용하여 실리콘 물질표면의 원자 및 전자 구조를 측정하고 있다.

이번 연구 결과는 원자스케일의 기억소자를  구현할 수 있는 원천기술로, 추가 응용연구가 진행되면 한 차원 높은 용량의 비휘발성 메모리 제작이 가능할 것으로 기대됩니다.

한편, 이번 연구 결과는 Nano Letters(impact factor: 12.94) 2015년 1월판 (1월 14일; 권 15, 페이지 308-402)에 게재되었습니다. 

연구요약

(111) 방향의 실리콘 웨이퍼에 붕소(B)를 많이 주입한 후 열처리하면 표면에 노출된 실리콘 원자들의 상호 거리가 원래보다 √3 (루트 삼) 배 늘어난다.

이렇게 만들어진 표면의 원자 하나하나는 외부 전기 자극에 의해 원래와는 다른 또 하나의 안정된 상태로 변형될 수 있다는 것을 실험적으로 발견하였다.

이 변형된 상태는 실리콘 표면 원자에 두 개의 전자가 추가로 결합된 소위 바이폴라론(bipolaron) 상태임을 실험과 이론분석을 통해 밝혔다.
 
한편 표면 원자의 두 안정된 상태 사이의 천이(transition)는 여러 번 반복해도 손상이 없는 가역과정이었으며, 각각의 상태는 외부의 전기 공급이 끊어져도 그 상태를 그대로 유지하는 비휘발성 특성을 보였다.

이러한 특성 때문에 웨이퍼 표면의 원자 하나하나가 디지털 정보를 저장할 수 있는 비휘발성 메모리로 사용될 수 있다.


연구팀은 실리콘 웨이퍼 표면의 원자 하나하나에 ‘0’ 이나 ‘1’의 이진(binary) 정보를 쓰고 지울 수 있는 초고집적 비휘발성 메모리 기술을 개발하고, 그 동작 원리를 밝혔다.

이 연구 결과는 Nano Letters (impact factor: 12.94) 2015년 1월판 (1월 14일; 권 15, 페이지 308-402)에 게재 되었다.

 

 연구팀 프로필

 

엄대진 박사

○ 성 명 : 엄대진 (선임연구원)
 ○ 소 속 : 한국표준과학연구원 산업측정표준본부 나노소재평가센터

 ○ 1995 서울대학교 물리교육과 이학사
 ○ 1997 서울대학교 물리학과 이학 석사
 ○ 2005 The University of Texas at Austin 물리학과 이학 박사

경력사항
 ○ 1997 – 1999, ㈜LG반도체 연구원
 ○ 2005 – 2005, The University of Texas at Austin 박사후 연구원
 ○ 2006 – 2010, Columbia University 박사후 연구원
 ○ 2010 – 2011, Brookhaven National Laboratory 박사후 연구원 
 ○ 2011 – 현재, 한국표준과학연구원 선임연구원

학회활동
 ○ 미국물리학회 회원
 ○ 미국진공학회 회원
 
전문 분야 정보
 ○ 표면 물성, 저온 물성, 원자 및 전자 구조 측정
 
발표논문 및 특허
 ○ “Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces” ACS Nano, 2014년 5월 등 다수
 ○ "붕소가 도핑된 실리콘(111)-표면에서 √3x√3 단위 격자가 가지는 두 가지 안정된 형상을 이용하는 메모리 소자 및 이의 동작방법" 국내 특허 출원

 

문창연 박사

○ 성 명 : 문창연 (선임연구원)
 ○ 소 속 : 한국표준과학연구원 산업측정표준본부 나노소재평가센터

 ○ 1999 KAIST 물리학과 이학사
 ○ 2001 KAIST 물리학과 이학 석사
 ○ 2005 KAIST 물리학과 이학 박사

경력사항
 ○ 2005 – 2007, 미국 National Renewable Energy Lab. 박사후 연구원
 ○ 2007 – 2008, KAIST 물리학과 박사후 연구원
 ○ 2008 – 2011, 연세대학교 물리학과 박사후 연구원
 ○ 2011 – 2012, 포항공대 화학과 박사후 연구원 
 ○ 2012 – 현재, 한국표준과학연구원 선임연구원

학회활동
 ○ 미국물리학회 회원
 ○ 한국물리학회 회원
 
전문 분야 정보
 ○ 반도체, 나노구조, 강한 전자상호작용물질의 전자구조 이론계산
 
발표논문 및 특허
 ○ “Antiferromagnetic exchange interactions among dopant electrons in Si nanowires” Physical Review B, 2014년 12월 등 다수
 ○ "붕소가 도핑된 실리콘(111)-표면에서 √3x√3 단위 격자가 가지는 두 가지 안정된 형상을 이용하는 메모리 소자 및 이의 동작방법" 국내 특허 출원

 

구자용 박사

○ 성 명: 구자용 (책임연구원)
 ○ 소 속: 한국표준과학연구원 산업측정표준본부 나노소재평가센터
 
 ○ 1981 서울대학교 물리학과 학사
 ○ 1983 KAIST 물리학과 석사
 ○ 1987 KAIST 물리학과 박사

경력사항
 ○ 1987–현재: 한국표준과학연구원 근무
 ○ 1999–2008: 과학기술부 창의적 연구진흥사업 이종성장제어연구단 단장
 ○ 2008: 표준연 영년직 연구원 선정
 ○ 2012: 교육과학기술부 과학기술훈장 도약장 제111호

학회활동
 ○ 미국물리학회 회원
 ○ 한국물리학회 회원
 ○ 한국진공학회 회원
 
전문 분야 정보
 ○ 정밀측정장비 개발, 표면원자 구조 측정
 
발표논문 및 특허
 ○ “Adsorption of CO Molecules on Si(001) at Room Temperature”J. Phys. Chem. C 118, 21463 (2014) 등
 ○ 특허 제10-0798468호 "공기부양식 운송시스템" 등

 

 

반응형
반응형

한국원자력연구원(이하 원자력연)이 한국형 신형 경수로에 적용될 원자로냉각재펌프(RCP; Reactor Coolant Pump) 성능 실증에 성공했습니다.

원자로냉각재펌프(RCP)는 원자로의 냉각수를 강제로 순환시켜 원자로에 장전된 핵연료에서 발생한 열을 증기발생기로 전달하는 역할을 담당하는 대용량의 수직 원심형 펌프인데요. RCP는 원전의 핵심 설비인 1차 계통 구성을 위한 핵심 기기에 속합니다.

원자력연 열수력안전연구부 조석 박사팀은 최근 2017년 준공 예정인 '신한울 1호기'에 적용된 원자로냉각재펌프(RCP)에 대한 성능검증시험을 완료했는데요.

로써 국내 원전 기술 중 미자립 분야였던 원자로냉각재펌프 성능실증시험 기술을 보유하게 됐습니다.

 

RCP 시험설비를 점검하는 한국원자력연구원 열수력안전연구부

 

원전 비정상 원인 규명 등 현안 해결능력 강화

원자력연의 RCP 시험설비는 온도 343℃, 압력 172기압, 유랑 11.7㎥/s의 성능을 갖춰 상용 원전의 정상 운전은 물론 과도 운전 상태를 모의할 수 있도록 설계됐는데요.

시설 규모가 바닥 면적 2,300㎡, 높이가 30m(지하 1층, 지상 3층)에 이르는 초대형 고온-고압 설비입니다.

 

한국원자력연구원이 개발한 RCP 시험설비

원자력연은 시험설비 구축과 함께 실제 원전의 고온-고압 운전 조건에서 대유량을 정확하게 측정하고 제어할 수 있는 열유체 시험기술과 RCP 회전체 부품의 진동 등을 측정할 수 있는 측정 기술을 동시에 개발했는데요.

이를 통해 실제 원전 가동 중 예상할 수 있는 고온-고압의 정상 운전 조건은 물론 다양한 사고 상태에서 RCP 성능이 제대로 발휘할 수 있음을 검증했습니다. 

우리나라는 이번 RCP 시험설비의 성공 운용으로 해외기술 종속에서 탈피, 수출 원전에 장착될 RCP의 성능 검증시험을 주도적으로 실시해 해외 시장 공략에도 기여할 전망입니다.

이번 RCP 성능시험기술은 APR+ 등 후속 원전의 RCP 개발에 활용되고, 아울러 현재 가동 중인 RCP의 비정상 원인 규명 등 운전 신뢰성 확인 시험에 활용될 수 있어 우리나라의 원전 1차 계통 현안 해결능력을 높일 것으로 기대됩니다.

뿐만 아니라 축적된 시험결과는 산업 현장에서 다양한 형태의 고유량 고온-고압 펌프 개발에 활용 가능하고요.

시험설비를 일부 보완하면 높은 차압과 고유량 조건에서 운전되는 다단 오리피스, 밸브류 등 대형 유체기기 시험과 대유량 시설의 안전 현안 규명에도 활용될 수 있습니다.

신형 경수로 APR1400 적용 목표

이번 연구는 신형 경수로 'APR1400' 적용을 목표로 두산중공업㈜이 설계·제작 및 핵심기술 개발의 주관기관을 담당하고, 원자력연이 시험설비 구축 및 성능 검증시험 주관기관을 맡아 RCP 국산화를 추진했습니다.

원자력연이 수행한 RCP 성능시험은 기계, 열유체, 재료, 제어, 계측, 화학 등 여러 분야를 집약한 대용량, 고정밀 시험기술인데요.

세계 최고 수준의 미국 웨스팅하우스(Westinghouse)와 유럽연합 아레바 등 글로벌 원자로 설계기업만 보유하고 있는 전략 기술입니다.

원자력연은 RCP 국산화를 목표로 2007년부터 실험설비를 구축, 설계, 시험적용 기술 개발 등을 수행한데 이어 2012년에는 시험설비 건설과 시운전을 완료하고 성능검증 시험을 수행했습니다.

 

반응형

+ Recent posts