반응형

KAIST 전석우·김도경 교수팀이 휘어지는 디스플레이나 입을 수 있는 컴퓨터 등 미래 IT 기술에 핵심적으로 사용될 ‘유연전자소자’의 원천기술을 개발했습니다.

유연한 디스플레이, 입을 수 있는 컴퓨터 등 미래 IT 기술을 실현하기 위해서는 핵심적으로 이용되는 유연전자소자의 전기전도도 저하 없이 신축성을 늘여야 합니다.

기존의 소자 신축성 증대 방식은 아코디언의 주름처럼 소재에 미리 주름을 주거나 변형에 순응할 수 있는 2차원의 평면 기공(pore) 구조를 주는 것이 주로 사용됐습니다.

이 같은 2차원 구조는 신축성에 자체의 한계와 신축에 따라 전기 전도도가 낮아지는 한계가 있습니다.

대면적의 3차원 정렬 나노기공 구조 (좌측하단 2 프레임)로 제작된 10㎛ 두께의 3차원 나노네트워크 구조를 가지는 신축성 재료 (좌측 상단)와 신축성 증대 모식도 (우측)

연구팀은 다년간 개발된 3차원 나노 네트워크 소재 기술을 바탕으로 전자소자 구조를 개발해 이러한 한계를 극복했습니다.

3차원 나노 네트워크 형태의 소자는 신축성과 응력집중 회피의 여러 장점이 있지만, 개발 공정의 어려움으로 아직까지  실현되지 못한 기술입니다.

연구팀은 세계 최대의 대면적 3차원 나노 패터닝 기술을 이용해 1 평방인치의 면적에 10마이크론 정도의 두께를 가지는 3차원 정렬 나노기공 구조를 제작했습니다.

또  이 나노기공 구조를 주형으로 활용하여 기공에 탄성중합체를 침투시킨 후 템플레이트를 제거하여 역상의 3차원 신축성 나노소재를 제작했습니다.

이렇게 제작된 3차원 나노네트워크 소재 내부에 액체상의 전도성 물질을 침투시켜 고신축성 유연 전극을 개발할 수 있었습니다.

3차원 나노 네트워크 소재 내부에 액체상의 전도성 물질을 침투시켜 제작한 고신축성 전도체와 LED연결 모식도(좌측), 고신축성 전도체를 활용하여 고유 인장 한계치를 넘어 220% 인장시에도 정상 작동하는 LED 구동모습 (우측)



이 전극은 원래 크기보다 220% 늘어난 상황에서도 전기 전도성의 변화 없이 LED램프를 성공적으로 구동했습니다.

이는 기존 신축성 전극이 100% 이내의 변형한계를 가지며 신축상태에서 변형에 의해 전도성이 감소되는 점과 비교할 때 현존하는 어떠한 신축전극보다 성능이 우수한 것입니다.

이번 연구결과는 네이쳐 자매지인 '네이쳐 커뮤니케이션즈(Nature Communications)' 6월 26일자 온라인판에 리서치 하이라이트로 공개되었습니다.

 

<연 구 개 요>

소재가 가지는 신축성 (stretchability)은 소재의 고유 물성으로 제어하기 쉽지 않다는 기존의 이해를 넘어서는 혁신적인 연구결과가 보고되었다.
카이스트 신소재공학과 전석우 교수와 김도경 교수, 그리고 미국 노스웨스턴 대학과 일리노이 대학 연구팀은 세계 최대 대면적 3차원 나노패터닝 기술을 근간으로 3차원 나노네크워크화 된 소재를 제작하여 소재가 가지는 고유 신축성 한계를 크게 뛰어넘는 소재를 만드는데 성공하였다.
이렇게 제작된 소재의 3차원으로 연결된 기공구조 안에 전도성 액체금속을 채워 넣어 최근 각광받고 있는 유연소자 (flexible device)의 핵심기술인 신축성 전극 (stretchable electrode)를 구현하였는데 이 전극은 220%의 인장 상황에서도 전도성의 변화 없이 LED램프를 성공적으로 구동하였다.
이 연구결과는 전자책 (ebook), 유연 디스플레이 (flexible display), 웨어러블 컴퓨터 (wearable computer) 등 다양한 차세대 전자소자 실현을 앞당길 수 있는 신축성 전극 제작 원천기술이다.
미래 IT 시장의 주역으로 기대되는 유연전자소자는 단순한 경량화의 범주를 벗어나 사용자의 사용편의성을 극대화하기 위하여 쉽게 접고 구부릴 수 있어야 하는 것은 물론 옷이나 패치 형태로 인간의 생활환경하에서 불편함이 없이 늘어나며 쉽게 손상되지 않아야 한다.
대부분의 전도성 물질들은 조금만 잡아당기면 전도특성을 모두 잃게 되지만 이번에 개발된 신축성 전극은 이러한 특성을 만족하여 원하는 성능을 구현할 수 있을 것으로 예상된다. 

소재의 신축성을 결정하는 인자는 무엇일까?
신축성은 소재가 가지는 고유 특성으로 소재를 구성하는 성분과 성분 간의 결합특성에 의해 결정이 된다.
유연소자에 대한 관심이 커지면서 소재의 신축성 한계를 늘리는 것은 매우 중요한 연구 테마로 떠오르고 있다.
기존의 소재 신축성 증대 방식은 대부분 늘어나지 않는 재료에 미리 주름을 주거나 변형에 순응할 수 있는 2차원의 평면 기공 (pore) 구조를 통해 구현되었다.
이는 아코디언이 늘어났다 줄었다 하는 것이나 신축성이 없는 종이가 파티 장식을 만드는 기법으로 가위로 자국을 내주면 크게 늘어나는 것과 같은 원리이다.
이에 비해 3차원의 네트워크 형태의 기공 구조는 높은 신축성과 응력집중 회피의 여러 장점이 있으나 이미 얇은 두께를 가지는 유연소자에 3차원 정렬 나노기공 구조를 제작하는 것은 높은 비용과 공정의 어려움으로 아직까지 실현되지 못하였다.

교신저자인 전석우 교수 연구팀에서는 연구팀이 보유한 세계 최대의 대면적 3차원 나노패터닝 기술 (위상차 근접장 나노패터닝, Proximity field nanoPatterning)을 활용하여 1X1 인치의 면적에 10 마이크론 정도의 두께를 가지는 3차원 정렬 나노기공 구조를 제작하였고 이를 템플레이트로 활용하여 원하는 물질을 침투시킨 후에 템플레이트를 제거하는 방식으로 대면적 3차원 나노네트워크 소재를 제작하였다.
이렇게 제작된 3차원 나노네트워크 소재의 기공구조는 서로 완벽한 정렬 상태로 잘 연결되어 있고 이 연결된 기공에 액체상의 전도성 물질을 주입하고 봉합을 하게 되면 외부의 응력에 의한 큰 변형에도 높은 전도도를 유지할 수 있게 된다.
기존의 신축성 전극은 100% 이상의 신축성능을 보인다고 하더라도 변형에 의한 전도성의 저하가 일반적으로 보고되고 있다.
하지만 이번에 새로 개발된 신축성 전극은 220%의 인장상태에도 전도성의 저하가 나타나지 않으며 또한 소재의 전도도 역시 기존의 보고된 어떠한 신축성 전극보다 우수하다.

본 연구는 전석우 교수 연구실의 박준용, 안창의 대학원생과 현가담 연구교수가 주요 실험을 진행하였으며 김도경 교수 연구실의 김동석 대학원생이 측정부분을, 미국 연구진이 컴퓨터 계산을 도와 진행되었다.
연구팀은 이 기술이 신축성 전극뿐만 아니라 다양한 나노구조 관련 연구와 응용에 큰 파급효과를 줄 것으로 전망한다.
자연계에 존재하는 많은 물질들은 구성원소나 원자나 분자간의 결합뿐만 아니라 그 물질이 가지는 3차원의 나노구조에서 기인하는 우수한 기계적, 광학적, 전기적 물성을 가지게 된다.
이러한 물성을 본 연구를 통해 개발된 대면적 3차원 나노패터닝 기술을 통해 앞으로 계속적으로 구현하게 될 것이다.


 

<전석우 교수>

1. 인적사항
○ 성  명 : 전석우
○ 소  속 : KAIST 공과대학, 신소재공학과
○ 연락처 : 042-350-3342,   http://fdml.kaist.ac.kr

2. 학    력
○ 서울대학교 재료공학과, 학사, 2000
○ 서울대학교 재료공학과, 석사, 2003
○ University of Illinois at Urbana-Champaign(UIUC), Materials Science and Engineering, 박사, 2006

3. 경력사항
○ 2008. 8 ~ 현재 KAIST 조교수
○ 2007. 1 ~ 2008. 7 미국 Columbia University 박사 후 연구원
○ 2006. 6 ~ 2006. 8 삼성전자 글로벌 인턴
○ 2005. 5 ~ 2005. 7 Dupont R&D Center 방문 연구원

4. 주요연구실적
○ 2011 대한금속재료학회상 신진학술상
○ 2010 카이스트 이원조교수 선정
○ 2010 국방과학연구소 특화센터 최우수 연구상
○ 2005 Intel-Racheff award (우수 대학원 연구상)

5. 출판
○ 국외논문 40여편 게재
○ 11개의 국내 특허, 2개의 해외 특허 보유

<김도경 교수>

 1. 인적사항
○ 성  명 : 김도경
○ 소  속 : KAIST 신소재공학과
○ 연락처 : 042-350-4118,   http://mse.kaist.ac.kr/~ncrl

2. 학    력
○ 서울대학교 요업공학과, 학사, 1982
○ KAIST 재료공학과, 석사, 1984
○ KAIST 재료공학과, 박사, 1987

3. 경력사항
○ 2008. 06 ~ 2011. 01 KAIST, 입학처장
○ 2007. 08 ~ 2008. 06 University of California Berkeley, USA, 방문교수
○ 2005. 06 ~ 2007. 08 KAIST, 나노과학연구소 소장
○ 1998. 03 ~ 1999. 02 National Institute of Science and Technology, USA, 객원연구원
○ 1994. 03 ~ 현재 KAIST 신소재공학과 교수
○ 1992. 02 ~ 1993. 01 University of California San Diego, USA, 초빙연구원
○ 1987. 09 ~ 1994. 02 국방과학연구소 선임연구원

4. 주요연구실적
○ 2011 교과부 기초연구우수성과 50선 선정
○ 2010 제20회 과학기술 우수논문상
○ 2007 세라믹학회 학술진보상
○ 2007 SBS문화재단 교수 해외연구지원 선정
○ 2001 한국과학재단 30대 우수연구성과

5. 출판
○ 국외논문 130여편 게재
○ 13개의 국내 특허, 2개의 해외 특허 보유

 

반응형
반응형

한국원자력연구원이 방사선 육종 기술로 개발한 신품종 블랙베리로 만든 간 기능 개선 발효 음료 제조 기술이 ㈜헤베)에 이전됩니다.

이 기술은 한국원자력연구원 첨단방사선연구소 방사선실용화기술부 정일윤 박사팀이 지난해 개발한 기술로,  정 박사팀은 방사선 돌연변이 육종 기술을 이용해 간 기능 보호 성분 함량을 높인 신품종 블랙베리(품종명 '메이플')에서 유효 성분을 손실 없이 추출할 수 있는 기술을 개발했습니다.


신품종 블랙베리 메이플은 간 기능 보호 성분인 C3G(cyanidine-3-Glucoside)가 기존 블랙베리의 약 2.3배, 오디의 약 3배, 블루베리의 1.2배 가량 높게 함유됐습니다.

정 박사팀은 대표적 급성 간 독성 유발 물질인 사염화탄소(CCl4 ; carbon tetrachloride)를 인위적으로 유도한 실험용 쥐에 메이플 추출물을 투여했을 때, 대조군보다 간 손상 수치인 AST와 ALT가 현저히 낮아지는 결과를 확인했습니다.

또 메이플 추출물을 먼저 투여한 후 사염화탄소를 인위적으로 처리 했을 때에도 대조군에 비해 간 손상 수치가 확연히 낮아지는 것을 확인했습니다.

정 박사팀은 이 유효 성분을 알코올 발효와 초산 발효 및 저온 숙성 과정 등을 통해 손실 없이 최대한 추출할 수 있는 기술을 개발해 일반인들이 쉽게 복용할 수 있도록 음료화했습니다.

㈜헤베는 이 기술로 간 기능 개선용 드링크제를 제조 판매할 예정이며, 숙취 해소 효능이 입증될 경우 숙취 해소 음료도 제품화할 계획입니다.

이번 기술이전으로 한국원자력연구원은 정액 기술료 1억 원, 5년간 매출액의 3.0%를 경상 기술료로 지급 받게 됩니다.

반응형
반응형

그래핀은 구리보다 100배 이상 전기가 잘 통하면서도 구부려도 전기전도성이 유지돼 실리콘 반도체를 대체할 차세대 전자소자는 물론 휘어지는 디스플레이, 입는 컴퓨터 등 다양한 분야에 활용될 수 있어 '꿈의 신소재'로 불립니다.

또 강철보다 200배 이상 강한 물성을 갖고 있어 기계 분야에도 응용가능성이 매우 높습니다.

그러나 마찰력과 접착력 등과 같은 기계적 성질이 미해결 과제로 남아있습니다.

■ KAIST EEWS대학원 박정영 교수가 나노과학기술대학원 김용현 교수와 공동으로 하나의 원자층으로 이루어진 그래핀을 불소화해 마찰력과 접착력을 제어하는 데 성공했습니다.

원자단위에서 그래핀에 대한 마찰력의 원리를 규명하고 제어하는 데 성공한 것은 이번이 세계 최초입니다.

이번 연구결과는 앞으로 나노 크기의 로봇 구동부 등 아주 미세한 부분의 윤활에 응용될 전망입니다.

연구팀은 그래핀을 플루오르화크세논(XeF₂) 가스에 넣고 열을 가해 하나의 원자층에 불소 결함을 갖고 있는 불소화된 개질 그래핀을 얻어냈습니다.

개질된 그래핀을 초고진공 원자력현미경에 넣고 마이크로 탐침을 사용해 시료의 표면을 스캔하는 방법으로 마찰력과 접착력 등의 역학적 특성을 측정했습니다.

불소화를 이용한 그래핀의 마찰력 제어를 보여줌

연구팀은 이번 실험 결과를 바탕으로 불소화된 그래핀은 기존보다 6배의 마찰력과 0.7배의 접착력을 나타내는 것을 밝혀냈습니다.

이와 함께 전기적인 측정을 통해 불소화를 확인하고 마찰력과 접착력의 원리를 분석해내 그래핀의 마찰력 변화에 대한 이론을 정립했습니다.

이번 연구결과는 나노과학분야 권위 있는 학술지 '나노레터스(Nano Letters)' 6월 21일자 온라인판에 게재됐습니다.


 용  어  설  명

그래핀 (graphene)
그래핀은 흑연의 탄소 원자 배열과 같은 모양(6각형의 벌집모양)을 가지면서 원자 하나 정도의 두께를 가진 2차원 탄소나노 구조체이다.
보통 흑연의 표면층을 가장 얇게 한 겹을 떼어낸 것이라 생각하면 이해가 쉽다.
그래핀은 실리콘이나 구리보다 100배 이상 전기가 잘 통하고, 강도도 강철보다 200배 이상 강하며 최고의 열전도성을 자랑하는 다이아몬드보다 2배 이상 열 전도성이 높다. 게다가 신축성이 뛰어나 늘리거나 구부려도 전기전도성이 유지된다.
그래핀의 이러한 특성으로 인해 많은 사람들이 그래핀을 전자소자와 휘어지는 디스플레이, 입는 컴퓨터에 적용하기 위해 연구를 진행 중에 있고, 산업적으로도 다양하게 활용될 수 있을 것으로 기대하고 있다.

원자힘 현미경 (Atomic Force Microscope)
극히 높은 배율의 현미경으로 마이크로 탐침을 사용하여 시료 표면을 스캔한다. 탐침 끝의 원자와 시료 표면의 원자들 사이에 작용하는 반발력을 이용하여 나노미터 이하의 표면을 스캔하여 촬영하거나 마찰력, 접착력 등의 역학적 특성을 측정할 수 있다.


 

<박정영 교수> 

1. 인적사항

 
○ 주소: 대전시 유성구 대학로 291 (구성동 373-1)
      한국과학기술원 (KAIST) EEWS 대학원
○ Homepage: http://scale.kaist.ac.kr

2. 학력
 1993  학사, 서울대학교, 물리학과
 1995  석사, 서울대학교, 물리학과
 1999            박사, 서울대학교, 물리학과
 
3. 경력사항 
1999 ~ 2002     미국 메릴랜드대학, 박사후 연구원
2002 ~ 2006    미국 에너지부 산하 로렌스버클리 국립연구소, 박사후 연구원
2006 ~ 2009    미국 에너지부 산하 로렌스버클리 국립연구소, 책임연구원
2009 ~ 현재     KAIST EEWS 대학원, 부교수
2011년          이달의 과학기술인상 (대전시)

<김용현 교수> 

1. 인적사항

 
○ 주소: 대전시 유성구 대학로 291 (구성동 373-1)
      한국과학기술원 (KAIST) 나노과학기술대학원
○ Homepage: http://qnmsg.kaist.ac.kr


2. 학력
 1997  학사, KAIST, 물리학과
 1999  석사, KAIST, 물리학과
 2003            박사, KAIST, 물리학과
 
3. 경력사항 
2003 ~ 2006    미국 에너지부 산하 국립 신재생에너지 연구소, 박사후 연구원
2006 ~ 2009    미국 에너지부 산하 국립 신재생에너지 연구소, 책임연구원
2009 ~ 2011    KAIST 나노과학기술대학원, 조교수
2011 ~ 현재     KAIST 나노과학기술대학원, 부교수

 

관련글 : 그래핀을 역학적으로 제어하는 법 http://daedeokvalley.tistory.com/520
            꿈의 신소재 그래핀 대량 생산의 길 http://daedeokvalley.tistory.com/453
            대면적 그래핀, 저렴한 대량생산 길 열었다 http://daedeokvalley.tistory.com/392
            그래핀 상용화 관건, 단결정 그래핀 관측 기술 http://daedeokvalley.tistory.com/234
            상온 그래핀 직접 합성법 개발 http://daedeokvalley.tistory.com/352

반응형
반응형

2012년 7월 1일 오전 9시부터 1초가 늘었습니다.

한국천문연구원(이하 천문연)은 이날 오전 9시를 기해 양(+) 윤초를 실시했습니다.

이번 윤초는 한국표준시(KST) 2012년 7월 1일 오전 8시 59분 59초와 9시 0분 0초 사이에 1초를 삽입하는 것으로, 국제지구자전좌표국(IERS) 통보에 따라 우리나라 뿐만 아니라 세계가 동시에 윤초를 실시한 것입니다.

 따라서 우리나라의 2012년 7월 1일 9시 정각이 윤초 실시 이전의 9시 00분 01초와 같고, 08시 59분 정각과 09시 정각 사이의 시간 길이는 61초가 되어 이전보다 1초가 길어지게 됩니다.

세계협정시(UTC)로는 2012년 06월 30일 23시 59분 59초에 윤초를 삽입했습니다.

이에 따라 휴대폰 내장 시계 등 표준시를 수신하는 기기는 윤초가 자동 적용 되지만, 그 밖의 시계는 인위적으로 1초를 늦춰야 합니다.

특히 정확한 시각을 필요로 하는 금융기관이 정보통신 관련 기업 등에서는 윤초 조정에 주의해야 합니다.

 

윤초는 천문현상을 기반으로 하는 천문시와 현재 일상 표준시의 기준이 되는 원자시계의 차이를 보완하기 위해 전 세계적으로 동시에 실시되고 있다.

지구 자전속도가 서서히 변하면서 원자시와 천문시 사이에 차이가 발생하는 데, 천문학계는 기존에 축적된 별들의 위치 자료와 초장기선전파간섭계(VLBI)로 관측된 자료를 이용해 지구 자전의 미세한 변화를 측정합니다.

원자시는 1967년부터 국제천문연맹(IAU)이 세슘-133 원자가 91억 9263만 1770번 진동하는 시간을 1초로 정의한 것으로, 지구 자전에 기본을 둔 실제 시간과 미세한 차이를 보입니다.

이에 따라 1972년 7월에 처음 윤초가 실시된 이후, 1973년부터 1980년까지 매년 1월에 윤초를 삽입했고, 이후 1~3년마다 윤초를 실시하고 있습니다.

현재까지의 윤초 실시현황을 보면, 1972년 7월에 처음 윤초가 실시된 이후 1973년부터 1980년까지 매년 1월에 윤초를 삽입했습니다.

또 1981년, 1982년, 1983년, 1985년, 1992년, 1993년, 1994년, 1997년에는 7월에, 1988년, 1990년, 1991년, 1996년, 1999년, 2006년, 2009년에는 1월에 윤초를 실시했습니다. 

이번 윤초는 2009년 1월 1일(한국표준시) 이후 3.5년 만에 실시되는 것입니다.

인류가 발견한 시간은 지구 자전과 공전에서 기초한 천문시입니다.

반면 오늘날 일상적으로 사용하는 시간은 일정한 시간간격을 알려주는 원자시계에 의한 원자시로써, 천문시와 상호보완적인 관계를 유지하고 있습니다.

대표적인 예로 지구 자전속도가 서서히 변하여 원자시와 천문시 사이에 차이가 발생하는데, 이를 보완하기 위해 윤초를 시행합니다.

천문학자들은 기존에 축적된 별들의 위치자료와 초장기선전파간섭계(VLBI; Very Long Baseline Interferometer)로 관측된 자료를 사용하여 지구 자전의 미세한 변화를 알아냅니다.

1960년 이전에는 평균태양일을 기준으로 한 '평균태양초'(1일=24시간, 1시간=60분, 1분=60초→1일=86400초)가 쓰이다가 1967년까지는 좀 더 정밀한 '역표초'(Ephemeris Second)가 사용됐습니다.

이후 1967년 국제천문연맹(IAU)은 세슘 원자시계에 기본을 둔 '원자초'를 새로운 시간단위로 채택했고, 이 때부터 "원자시"(TAI; International Atomic Time)라는 말을 사용하게 됐습니다.

그러나 '원자시'는 세슘-133 원자의 진동수를 기준으로 정했기 때문에 지구자전에 기본을 둔 실제 우리가 사용하는 시간과 차이를 보이게 됩니다.

이에 따라 천문학자들은 각국 천문대의 망원경을 이용하여 별의 위치측정 자료를 바탕으로 지구자전주기를 정밀하게 측정해 그 차이를 보정하고 있습니다.

이 같은 방법으로 결정한 시간을 '세계시'(UT1; Universal Time)라고 부르며, 국제지구자전좌표국(IERS)에서 각국 천문대의 관측자료를 종합 분석해 결정합니다.

현재 국제적으로 사용 중인 '세계협정시'(UTC; Coordinated Universal Time)는 '세계시'(UT1) 1972년 1월 1일 0시를 기점으로 사용하는 것입니다.

이는 곧 이날 0시를 기준으로 '원자시'와 '원자초'를 적용, 시각 및 시간의 기준으로 삼고 있는 것입니다.

'세계협정시'(UTC)는 항상 '원자시'와 정수 배 만큼 차이가 나고, '세계시'(UT1)와의 차이는 0.9초 이내가 되도록 유지됩니다.

그리고 이 시간은 각국의 세슘원자시계 자료를 기준으로 하여 국제도량형국(BIPM; Bureau International des Poids et Mesures)에서 유지하고 있습니다.

만약 '세계시'(UT1)와 '세계협정시'(UTC)의 차이가 0.9초 이상이 되면, 국제지구자전-좌표국(IERS)은 '세계협정시'(UTC)의 정의에 따라 '세계협정시'(UTC)에 1초를 더하거나 빼주는 윤초를 발표합니다.

이 때 59초 이후 60초를 삽입하는 것을 '양(+)의 윤초'라고 하고, 58초 이후 59초를 삭제하고 0초를 만드는 것을 '음 (-)의 윤초'라고 합니다.

윤초를 실시하는 달은 한국표준시 기준으로 1월 첫날과 7월 첫날을 우선적으로 채택합니다.

<관련글  가장 정확한 대한민국 표준시계 http://daedeokvalley.tistory.com/217>
             가장 정확한 시간, 대한민국 표준시  http://daedeokvalley.tistory.com/141>

 

반응형
반응형

수소를 생산하는 미생물인 '해양 초고온 고세균'의 총체적 대사경로가 세계 최초로 규명됐습니다.

이에 따라 고효율 수소생성 균주 개발 및 대사공학(metabolic engineering)을 통한 고효율 수소생산의 기반이 마련됐습니다.

한국기초과학지원연구원 생명과학연구부 정영호, 김승일 박사팀은 한국해양연구원 이정현, 강성균 박사팀과 공동으로 해양 초고온 고세균인 '써모코커스 온누리누스 NA1(Thermococcus onnurineus NA1)'이 개미산 또는 일산화탄소를 먹고 수소를 생성함과 동시에 포도당, 구연산 등의 유기탄소화합물을 생성해 지속적인 증식이 가능하다는 사실을 세계 최초로 규명했습니다.

또 NA1이 갖고 있는 알코올 탈수효소(alcohol dehydrogenase, ADH)가 고온의 수소생성 조건에서 전분을 먹이로 공급할 때 발현이 증가하여 알코올이 보다 효율적으로 생산된다는 사실도 확인했습니다.

바이오수소 생성 초고온 고세균 NA1의 총체적 대사 경로

공동 연구팀은 개미산과 일산화탄소, 전분이 먹이로 포함된 배양조건에서 자란 'NA1'으로부터 단백질을 추출한 후, 수소생성조건에 따른 단백질체 분석을 통해 전체 대사경로를 규명했습니다.

특히 이를 통해 개미산과 일산화탄소가 'NA1'의 에너지원으로서 뿐만 아니라 효율적인 유기탄소원으로 이용될 수 있음을 입증했고, 주요 대사 작용 및 수소생성에 관련된 기능성 단백질들을 규명하는데도 성공했습니다.

초고온성 고세균 NA1의 전자현미경사진

이러한 단일 탄소원자(C-1)로 구성된 기질들이 고세균에서 유기탄소원으로 사용된다는 것은 이번 연구를 통해 최초로 확인된 것입니다.

또 연구팀은 'NA1'이 지금까지 알려진 고세균 미생물 중 최다인 8개의 수소화효소군을 보유하고 있다는 것을 확인했습니다.

이처럼 다수의 수소화효소군을 보유한 경우, 이를 조절함으로써 생산되는 수소의 순도나 효율을 높일 수 있습니다.

특히 이들 수소생성 기능성 단백질들은 향후 고효율 수소 생산 균주 개발에 유용한 단백질 타겟으로 사용될 수 있습니다.

이번 연구로 초고온 고세균 NA1의 총체적 대사경로가 규명됨에 따라, 개미산이 수소 생성을 위한 에너지원으로 이용될 수 있을 뿐만 아니라 일산화탄소와 함께 탄소동화 과정을 거쳐 효율적인 유기탄소원으로 이용될 수 있음을 확인했습니다.

이 같은 연구결과는 향후 고효율 바이오수소 생성 균주 개발에 이용될 전망입니다.

이번 연구결과는 미국 생화학·분자생물학회에서 발간하는 국제 프로테오믹스 분야 세계 최고 권위지인 'Molecular and Cellular Proteomics 지' 의 2012년 6월호에 게재되었습니다.
(논문명 : Proteome analyses of hydrogen-producing hyperthermophilic archaeon Thermococcus onnurineus NA1 in different one-carbon substrate culture conditions. Molecular and Cellular Proteomics (IF=8.354))


<Molecular and Cellular Proteomics 誌내 논문 표지>


'써모코커스 온누리누스 NA1'은 지난 2002년 우리나라의 종합 해양연구선인 온누리호를 이용한 남태평양 파푸아뉴기니 해역 심해 열수구 탐사를 통해 해양연구원 연구팀에 의해 분리됐다.
국토해양부 해양생명공학사업의 '해양 초고온 고세균 이용 바이오수소 생산 기술개발 사업'과 '해양극한생물 분자유전체 연구단의 지원으로 유전체 분석을 완료하였고, 새로운 생명현상인 바이오수소 에너지대사작용을 유전체 및 오믹스 연구를 통해 규명하여 세계적인 국제권위지인 네이처(Nature)에 2010년 9월 16일자로 논문이 게재된 바 있다.
초고온성 미생물 NA1은 고온에서도 파괴되지 않고 활동하는 내열성 효소를 만들 수 있기 때문에 관심이 높았으며, NA1이 산업적으로 응용이 가능한 효소 공급원으로서의 역할을 담당할 수 있을 것으로 기대되어 왔다.

반응형
반응형

그래핀은 탄소 원자들이 벌집처럼 육각형으로 연결된 얇은 막 구조로, 두께는 0.35㎚ 정도로 매우 얇지만 강도와 전기전도성이 매우 뛰어납니다.

최근 터치스크린, 트랜지스터, 광검출기, 화학 생물 검출기, 열전기 장치 등 그래핀의 우수한 물리적 특성을 활용한 다양한 응용연구가 진행되고 있습니다.

또 완벽한 2차원 구조를 구현할 수 있는 그래핀을 이용해 2차원 공간에서 발생하는 새롭고 다양한 물리적 현상을 규명하는 연구도 진행 중입니다.

KRISS(한국표준과학연구원)를 비롯해 미국 표준기관(NIST), 독일 표준기관(PTB) 등 각국의 표준기관에서는 그래핀의 2차원 구조로 인해 발생하는 양자홀 효과를 활용해 양자저항 표준개발을 목표로 연구를 수행하고 있습니다. 

정수용 박사

KRISS 나노양자연구단 정수용 박사가 포함된 미국 표준기술연구원(NIST) 연구팀이 꿈의 신소재 그래핀의 전기적 성질을 외부 역학적 힘으로 조절하는 연구 결과를 발표했습니다.

이번 연구의 공저자인 정수용 박사는 NIST 객원 연구원 재직 당시 실험 및 데이터 분석 등 관련 연구 성과에 주도적인 역할을 했고, 지난 4월부터 KRISS에서 그래핀 표준연구를 수행 중입니다.

기존 그래핀을 활용한 전자소자는 게이트 전극과 같은 외부 전기적 자극을 활용해 그래핀의 전기적 성질을 제어했습니다.

하지만 연구팀은 기존의 전기적 방법을 활용하지 않고, 역학적 방법으로 그래핀의 육각형 구조를 변형시켜 그래핀의 전기적 성질을 조절할 수 있음을 실험적으로 밝혀냈습니다.

탄소원자 한 층만으로 이뤄진 그래핀은 자체적 혹은 외부적 요인으로 탄소 육각형 구조에 변형이 생길 수 있습니다.

이로 인해 그래핀 격자 탄소 원자들 사이에 거리가 변하게 되고, 변형의 세기와 구조에 따라 다양한 전기적 특성이 나타날 수 있습니다.

이번 연구에서는 주사전자현미경(STM) 탐침과 그래핀 사이의 분자들이 서로 잡아당기는 반데르발스 힘, 기판 전극을 이용한 전기력 등을 이용해 그래핀 격자의 변형을 조절했습니다.

특히 그래핀이 원형 대칭 구조로 변형될 경우, 그래핀 내 전자들이 자유롭게 움직이지 못하고 한 지점에 양자점 형태로 모여 있게 된다는 기존의 이론적 예측을 실험적으로 직접 확인됐습니다.

이번 연구는 그래핀 성질을 외부적으로 조절 할 수 있는 방법이 전기적 방법만이 아니라 역학적 방법을 통해서도 가능하다는 것을 제시한 것으로, 늘어나는 전자시계, 휘는 가전제품 등 플렉서블 일렉트로닉스(flexible electronics) 등의 역학적 변형이 필요한 장치에 응용이 가능합니다.

그래핀의 모양이 삼변형 대칭으로 변해서 전기적 성질이 바뀌면 양자홀 효과가 발생했을 때와 비슷한 성질을 나타냅니다.

이러한 원리를 이용하면 극저온 냉장고와 고자기장 없이도 양자홀 효과를 발생해 저항표준기를 개발 할 수 있습니다.

향후 정 박사는 그래핀 기반 양자홀 효과를 이용한 새로운 전기저항표준 개발과 그래핀을 이용한 융합연구 및 측정기술 개발에 집중할 예정입니다.


<원자 해상도 그래핀 주사탐침현미경 이미지>
주사탐침현미경(STM)을 활용해 그래핀을 원자 해상도로 관찰한 모습으로 육각형 모양으로 탄소 원자들이 나열되어 있는 것을 볼 수 있다. 외부 역학적 인자가 존재하지 않는 완벽한 그래핀의 경우 탄소 원자들 사이의 거리는 0.142 nm(나노미터) 이다. 하지만 외부 요인에 의하여 탄소-탄소 사이의 거리 값이 변하게 되면 그래핀의 전기적 성질도 바뀌게 된다.


<STM 탐침과 실리콘 게이트 전극을 이용한 그래핀 단일 막 형태 조절 실험에 대한 개요도>
실리콘 옥사이드에 사전에 제작된 나노 사이즈 구멍위에 올려진 그래핀은 기판과 붙어 있지 않아 외부 역학적 힘에 의하여 쉽게 그 형태가 변하게 된다. 따라서 STM 탐침과 그래핀 사이의 반데르발스 힘, 그리고 그래핀과 실리콘 게이트 전극사이의 전기적 힘을 이용하여 그래핀 막의 형태를 조절 할 수 있다(그림 1a).  이들 사이의 상관관계로 변형된 그래핀은 마치 핀셋으로 얇은 막을 잡아 당기는 경우처럼 국부적 변형이 일어나게 된다(그림 1b). 하지만 그래핀 막의 거시적 변형은 그림 2에서 볼 수 있듯이 STM 탐침과 그래핀 사이의 반데르 발스 힘이 우세한 경우 위쪽으로 잡아 당겨진 형태의 변형이 발생하며, 반대로 실리콘 전극과 그래핀 사이의 전기력이 우세하게 되면 나노 구멍쪽으로 다가가는 변형이 발생한다.       

 용  어  설  명

양자홀 효과 :
극저온, 고자기장 하에서 2차원적인 전자 시스템의 홀 저항이 물질에 무관하게 기본 물리상수의 비로 양자화 되는 현상, 전기저항표준으로 사용되고 있다.
 

반응형
반응형

암세포는 정상세포와 달리 성장에 필요한 적당한 환경이 주어질 경우 무한대로 증식하는 특징이 있습니다.
 
이 때 공간이 부족해지면 암세포는 기질금속단백질가수분해효소를 분비해 주변 조직을 제거해 공간을 확장합니다.

따라서 이 효소의 미세한 농도 차이를 감지하고 특성을 분석할 수 있는 기술이 개발되면 암세포와 정상세포를 쉽게 구분하여 암을 조기에 진단할 수 있게 됩니다.

또 왕성한 세포분열이 지속되면 혈관벽이나 조직을 파괴하여 내부로 침투하는데, 이 때 혈액 등을 타고 다른 장기나 조직으로 이동하는 '암 전이'가 발생합니다.

특히 이 효소는 암 전이에도 매우 밀접한 관련이 있어, 이 효소의 특성을 분자적 수준에서 규명하는 것이 매우 필요합니다.

연세대 윤대성 교수와 권태윤 교수 팀이 암 전이와 밀접한 관련이 있는 침습성 암세포의 표지단백질 효소를 정량적으로 검사하여 암세포와 정상세포를 구분하는 기술을 개발했습니다

연구팀은 원자힘현미경(AFM)으로 침습성 암세포 표면의 효소가 반응하는 현상, 특히 특정 펩타이드 서열이 가수분해되는 현상을 실시간 관측하는 방식으로 암세포와 정상세포를 구분했습니다.

연구팀은 AFM 캔틸레버가 공진하는 특성을 이용해 암세포 표면에 있는 효소에 의해 주변 조직을 구성하는 대표적인 펩타이드 서열이 가수분해되는 현상을 실시간으로 검지해냈습니다.

이 기술은 기존의 형광표지를 이용한 검지방법들과 달리 펩타이드가 가수분해된 양의 정량화가 가능하기 때문에 효소의 활성도를 쉽게 판단하는데 매우 효과적인 것이 특징입니다.

또한 암세포와 정상세포를 구분할 수 있을 뿐만 아니라 유전자 변형에 의해 돌연변이 효소를 발현하는 세포도 진단할 수 있습니다.
 
이번에 개발된 기술은 별도의 까다로운 MEMS(미세전자제어기술) 공정 없이 상용화된 장비(AFM)를 이용했고, 실험방법도 매우 간단하며 결과를 손쉽게 확인할 수 있는 점이 큰 특징입니다.

이 같은 센싱기술로 각 암세포의 특성과 세포 간의 신호전달 경로를 규명함으로써 암을 조기에 진단할 수 있을 뿐만 아니라 맞춤형 치료도 가능할 것으로 기대되고 있습니다.

이번 연구는  연세대 윤대성 교수와 권태윤 교수가 주도하고, 엄길호 교수와 이규도 박사과정생이 참여했습니다.

이번 연구결과는 화학분야의 권위 있는 학술지인 앙게반테 케미 6월 11일자에 속표지논문으로 게재되었습니다.
(논문명 : Real-Time Quantitative Monitoring of Specific Peptide Cleavage by a Proteinase for Cancer Diagnosis)

침습성 암세포의 표면에 막단백질 형태로 분포된 표지단백질(MMP)이 세포용해(Cell Lysis) 과정을 통해 구속에서 풀려나 자유롭게 이동하게 되면(미사일로 묘사), 캔틸레버 표면(인공위성 날개로 묘사)에 고정화된 펩타이드 서열의 일부를 단백질 가수분해 작용을 통해 절단시킨다. 시간이 지남에 따라, 절단되어지는 펩타이드의 양을 실시간으로 모니터링(신호를 전달 받는 우주비행사로 묘사)하게 됨으로써, 암세포와 정상세포와의 구분 및 암세포의 활성화 정도를 쉽게 진단할 수 있다.

<연 구 개 요>

세포로 구성된 생명의 출현과 함께 시작된 암세포와의 전쟁 역사는 지구상 가장 고등한 생명체인 인간에게 맡겨진 가장 큰 숙제 중 하나이다.
이 문제는 우리 인류 자신에게도 반드시 해결해야만 하는 숙원으로, 전 세계 의학·생명 분야의 연구자들이 해결책을 찾고자 주야불사(晝夜不舍)하고 있다. 

암세포 정복을 위해서는 암세포의 자체 특성 분석 및 암세포 기능에 중요한 역할을 하는 단백질의 특성을 규명하는 일이 필수적이다.
인체 내에 암이 발병했을 때 가장 위험한 요인 중 하나는 암 전이(metastasis) 여부이다. 암 전이에 밀접한 관련이 있는 표지 단백질 중 하나로 기질금속단백질가수분해효소 (matrix metalloprotease) 는 세포의 표면에 분포하거나 혹은 세포 밖으로 분비되어, 주변 조직을 분해시켜 암세포의 자가증식을 위한 공간 확보에 기여한다.
따라서 이 효소의 검지 및 특성 분석은 암세포의 조기진단 뿐만 아니라, 암 전이에 관련된 암세포의 활성도를 파악하는데 매우 중요한 역할을 할 것이다.
 
본 연구에서는 침습성 암세포의 표면에 발현된 기질금속단백질가수분해효소를 정량적으로 검지하고, 약물 반응성 테스트를 시행하여 암세포 조기 진단 및 맞춤형 치료를 위한 새로운 패러다임을 제시한다.
구체적으로, 나노역학적 방법으로 매우 높은 민감도로 센싱이 가능한 원자힘현미경(Atomic Force Microscopy)의 마이크로 캔틸레버의 공진특성을 이용하여, 해당 효소의 작용(단백질 가수분해)에 의해 특정 펩타이드 서열이 가수분해되는 현상을 실시간으로 검지하는데 성공하였다.
기존의 형광표지를 이용한 검지방법들과는 달리, 마이크로 캔틸레버의 공진특성을 이용하게 되면 펩타이드가 가수분해된 양의 정량화가 가능하고, 이를 통해 효소의 활성도를 판단하는데 매우 효과적임을 밝혔다.
또한 실제 암세포를 대상으로 수행된 실험을 통해 정상세포와 구별이 됨뿐만 아니라, 유전자 변형에 의해 돌연변이 효소를 발현하는 세포의 경우도 진단이 가능함을 확인하였다.
이번 연구를 통해 암세포의 조기 암 진단 기술에 새로운 방법을 제시하고, 다양한 암세포간 신호전달 체계 파악 및 암세포 맞춤형 치료의 목적에 있어 혁신적인 기술이 될 것으로 기대한다.



 용  어  설  명

원자힘현미경 (atomic force microscopy)
나노크기의 탐침이 있는 마이크로 캔틸레버를 이용하여, 나노 단위의 샘플 표면을 이미징할 수 있는 장비이다. 캔틸레버를 기본으로 구성된 장비이기 때문에, 단순히 이미징 뿐만 아니라, 캔틸레버를 이용한 생체분자 센싱, 분자간 상호작용 분석 등의 연구에 매우 유용하다.

암세포 전이 (metastasis)
암세포가 일정 수준이상 성장하게 되면, 주변 조직(혈관)을 궤사시키거나 분해하여, 림프액 또는 혈액을 타고 다른 조직 및 장기로 이동하게 된다. 이는 암세포가 정상세포에 비해 주변조직을 와해시키는 능력이 뛰어남을 의미한다.

단백질 가수 분해 (proteolysis)
단백질의 펩티드 결합을 분해하여 아미노산 또는 펩티드를 생성하는 화학반응을 의미한다. 일반적으로 산, 알칼리에 의해, 생리적으로는 단백질가수분해효소에 의해 반응이 촉매된다.

기질금속단백질가수분해효소 (matrix metalloproteinase, MMP)
금속이온에 의해 활성화되는 단백질가수분해효소의 한 종류로서, 세포에서 분비되거나, 세포막에 막단백질 형태로 분포하여 주변조직을 와해시킨다. 따라서 암세포의 경우 표지단백질로 인식되어진다.

캔틸레버(Cantilever)
길이가 100μm(마이크로미터), 폭 10μm, 두께 1μm로 아주 작아 미세한 힘에 의해서도 아래위로 쉽게 휘어지도록 만들어짐

공진(resonance)
특정 진동수를 가진 물체가 같은 진동수의 힘이 외부에서 가해질 때 진폭이 커지면서 에너지가 증가하는 현상

침습(浸濕)성 암세포
스며들 듯 퍼져나가는 암세포

<윤대성 교수>(교신저자)

1. 인적사항
 ○ 소 속 : 연세대학교 의공학부
 
2. 학력
○ 1996     한국과학기술원 재료공학과 공학박사
○ 1991     연세대학교 세라믹공학과 공학사
 
3. 경력사항
- 2010.03 - 현 재 : 연세대학교 보건과학대학 의공학부 교수
- 2009.03 - 현 재 : BK21 의료공학신기술사업단 사업단장
- 2008.08 - 현 재 : 연세대학교 의료공학교육센터 센터장
- 2009.01 - 현 재 : 한국바이오칩학회 홍보이사
- 2006.04 - 2009.12 : 한국바이오칩학회 학술/교육, 기획이사
- 2003.08 - 현 재 : 산업자원부 전자부품개발사업 평가위원
- 2003.08 - 2007.02 : 한국과학기술연구원 선임연구원
- 1995.09 - 2003.08 : 삼성전자 종합기술원 책임연구원
- 1999.06 - 2000.08 : 펜실베니아 대학교 박사후 연구원

<권태윤 교수>(교신저자)

1. 인적사항
 ○ 소 속 : 연세대학교 의공학부

2. 학력 및 경력
 - 2009-현재 : 연세대학교 의공학부 연구교수
 - 2008-2009 : 매사추세츠 공과 대학 (MIT) 박사후 연구원
 - 2007-2008 : 고려대학교 기계공학과 박사후 연구원
 - 2002-2007 : 한국과학기술연구원 (KIST) 연수생
 - 2001-2007 : 연세대학교 신소재공학과 박사

<엄길호 교수>(공동 제1저자)

1. 인적사항

 ○ 소 속 : 연세대학교 의공학부

2. 학력
 ○ 2005    Univ. of Texas at Austin 응용역학 박사
 ○ 2003    Univ. of Texas at Austin 응용역학 석사
 ○ 2000    한국항공대학교 항공우주공학 학사
                  
3. 경력사항
 - 2011.12 - 현 재 : 프라운호퍼·연세대 공동연구센터, 연구교수
 - 2011.07 - 현 재 : ISRN Computational Mathematics 저널 편집위원  
 - 2008.11 - 2011.11 : 고려대학교 기계공학과 연구교수
 - 2008.03 - 2008.10 : 한국과학기술연구원(KIST) 선임연구원
 - 2005.09 - 2008.02 : 한국과학기술연구원(KIST) 연구원

<이규도 박사과정>(공동 제1저자)

1. 인적사항
 ○ 소 속 : 연세대학교 의공학부
 
2. 학력
 ○ 2008 ? 현재    연세대학교 의공학과 석·박사 통합과정
 ○ 2004 ? 2008    연세대학교 의공학과 학사

 

반응형
반응형

표적항암제는 종양세포 속에 있는 특정 신호전달 경로의 분자를 목표로 합니다.

최근에는 폐암, 유방암 등 일부 종양에서 기존 항암제와 달리 부작용이 적고 임상효능이 높아 세계 과학자들로부터 큰 주목을 받고 있습니다.

특히 표적항암제는 개인 맞춤형 항암치료제로 개발될 수 있습니다.

그러나 실제 임상 또는 전임상 단계에서 많은 표적항암제의 내성이 관찰되어 신약개발로 이어지지 못하는 경우가 많습니다.

게다가 효능이 있더라도 생존율이 낮거나 재발하는 경우가 빈번해 신약 개발에 걸림돌이 되었습니다.

실제 대표적인 종양세포 신호전달경로인 어크(ERK) 신호전달경로는 대부분의 종양에서 활성화되는 경로인데, 특히 피부암이나 갑상선암은 이 경로에 있는 비라프(BRAF)라는 물질의 변이로 활성화되어서 암으로 발전하는 사례가 많았습니다.
  
이 경우 어크 신호전달경로를 표적으로 하는 멕 억제제가 효과적인 치료법으로 알려져 있지만, 결국 내성이 발생하여 암이 다시 진행되게 됩니다.

KAIST 조광현 교수팀이 최근 항암치료법으로 주목 받고 있는 표적항암제(MEK inhibitor)의 근본적인 내성 원리를 밝혀냈습니다.

이는 향후 항암제 내성을 극복하고 암 생존률을 높일 수 있는 토대를 마련한 것으로, IT와 BT의 융합연구인 시스템생물학 연구로 진행됐습니다.

조광현 교수가 이끈 융합 연구팀은 어크 신호전달경로를 표적으로 하는 멕 억제제에 대한 내성과 그 근본원리를 수학모형과 대규모 컴퓨터 시뮬레이션을 이용해 분석, 그 결과를 분자생물학실험과 바이오이미징기술을 통해 검증하였습니다. 

연구팀이 종양의 다양한 변이조건을 컴퓨터 시뮬레이션과 실험을 수행한 결과 멕 억제제를 사용하면 어크 신호전달은 줄어들지만, 또 다른 신호전달경로(PI3K로의 우회 신호전달경로)가 활성화되어 멕 억제제의 효과가 반감됨을 입증하였습니다.

또한 이러한 반응이 신호전달 물질간의 복잡한 상호작용과 피드백으로 이루어진 네트워크 구조에서 비롯되었음을 밝히고, 그 원인이 되는 핵심 회로를 규명하여 이를 억제하는 다른 표적약물을 멕 억제제와 조합함으로써 표적항암제의 효과를 증진시킬 수 있음을 제시했습니다.

이번 연구는 멕 억제제에 대한 약물저항성의 원인을 시스템 차원에서 규명한 첫 사례로, 약물이 세포의 신호전달경로에 미치는 영향을 컴퓨터 시뮬레이션으로 예측함으로써 표적항암제의 내성을 극복할 수 있음을 보여주고 있습니다.

또한 신호전달 네트워크에 대한 기초연구가 실제 임상의 약물 사용에 어떻게 적용될 수 있는지와 표적항암물질의 저항성에 대한 근본원리를 이해하고, 그 극복방안을 찾아내는 새로운 융합연구 플랫폼을 제시한 것으로 평가받고 있습니다.

이번 연구는 조광현 교수가 주도하고 원재경 박사과정생, 신성영 박사, 이종훈 박사과정생, 허원도 교수 및 양희원 박사가 참여했습니다.

연구결과는 분자세포생물학 분야의 권위 있는 학술지인 분자세포생물학지(Journal of Molecular Cell Biology, IF=13.4)의 표지논문으로 선정돼 6월 1일자에 게재되었습니다.
(논문명: The cross regulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor)

표지설명원문 : "Cover: A systems biological approach based on mathematical modeling and biochemical experimentation revealed that MEK inhibitor disrupts the negative feedback loops from ERK to SOS and GAB1 while activates the positive feedback loop composed of GAB1, Ras, and PI3K, which induces the bypass of ERK signal to PI3K signal and ultimately leads to the emergence of resistance to MEK inhibitor. See pages 153?163 by Won et al. for details."
(수학모델링과 생화학실험에 기반한 시스템생물학 접근을 통해 멕 억제제가 어크로부터 에스오에스와 갭으로 이어지는 음성피드백을 차단하고 갭, 라스, 피아이쓰리케이로 구성된 양성피드백을 활성화함으로써 결과적으로 어크로부터 피아이쓰리케이로 신호가 우회하여 전달됨으로 인해 멕 억제제에 대한 저항성이 생기게 된다는 사실을 규명하였다.)


<연 구 개 요>

종양 신호전달경로를 타깃으로 하는 표적 항암물질에 대한 연구는 폐암에서의 상피성장인자수용체(EGFR) 효소 억제제(Gefitinib)의 경우와 같이 최근 일부 종양치료에서 효과가 입증됨에 따라 큰 주목을 받고 있으며, 항암 요법의 패러다임을 바꾸면서 개인 맞춤형 항암치료제 개발의 가능성을 열어줄 것으로 기대를 모으고 있다.
그러나 실제 임상 또는 전임상 단계에서 많은 표적 항암제에 대한 저항성이 빈번히 관찰되어 표적 항암물질의 보편적 사용에 큰 걸림돌이 되고 있다.
조광현 교수가 이끄는 융합 연구팀은 대표적 종양신호전달경로인 어크(ERK) 신호전달경로를 표적으로 하는 멕 억제제(MEK inhibitor)의 약물 저항성과 그 근본기작을 수학모형과 컴퓨터시뮬레이션을 이용해 분석하였고, 이를 분자생물학실험과 바이오이미징기술을 통해 검증하였다.
특히 다양한 변이 조건에 대해 대규모 컴퓨터 시뮬레이션을 수행한 결과, 멕 억제제를 처리하면 우회경로가 활성화되어서 어크 신호전달경로로부터 피아이쓰리케이(PI3K) 신호전달경로로 종양신호의 흐름(signal flux)이 옮겨진다는 것을 발견하였다.
더욱이, 멕 억제제에 의한 어크 신호전달경로의 음성피드백 회로 차단은 갭(GAB)에 의해 매개되는 피아이쓰리케이 신호전달경로의 양성피드백 회로를 더욱 활성화시킴으로써 결과적으로 멕 억제제의 암세포 증식과 생존을 억제하는 효과가 반감됨을 규명하였다.
이러한 분석으로부터 이 양성피드백 회로의 활성을 억제시키는 다른 약물을 멕 억제제와 조합함으로써 표적 항암제의 효과를 증진시킬 수 있음을 보였다.
멕 억제제의 경우 기존 연구에 의하면 비라프(BRAF) 변이가 있는 일부 암에서는 임상적으로 효능이 좋을 것으로 여겨져 왔지만 이 경우에도 마찬가지로 저항성이 존재한다는 것을 밝혔다.
또한 이 저항성이 신호전달 네트워크상의 복잡한 크로스톡(crosstalk)과 피드백들로 인한 네트워크의 구조와 멕 억제제의 상호작용으로부터 유래됨을 규명하였으며, 이를 보완하기 위해 다중 표적 항암제 치료를 도입함으로써 효능을 증가시킬 수 있음을 제시하였다.  
 
지금까지 멕 억제제에 대한 저항성은 단분자 수준에서 그 기작에 대해 보고되었을 뿐, 시스템 차원에서 그 근본기작이 설명되어지지 않았다.
조광현 교수의 융합연구팀은 멕 억제제에 대한 약물저항성의 원인을 시스템 차원에서 최초로 규명하였으며 약물이 세포의 신호전달경로에 미치는 영향을 예측함으로써 다중 표적 항암제 치료를 통해 단일 표적 항암제의 한계를 극복할 수 있음을 보였다.
이번 연구에서는 특히 신호전달 네트워크에 대한 기초연구가 실제 임상적인 약물 사용에 어떻게 적용될 수 있는지를 보여주었으며 이를 통해 표적항암물질의 저항성 기작을 이해하고 그 극복 방안을 찾아내는 새로운 연구플랫폼을 제시하였다.
이는 IT와 BT의 융합연구인 시스템생물학에 기반을 둔 생체시스템의 모델링 및 바이오시뮬레이션 연구가 표적신약개발과 임상 응용연구에 적용될 수 있는 새로운 가능성을 제시한 사례이다.



 용  어  설  명

시스템생물학(Systems Biology)
복잡한 생명현상이 단일인자에 의한 것이 아니라 여러 구성인자들의 복합적인 상호작용에 의한 것임을 이해하고 이를 IT의 수학모델링과 컴퓨터시뮬레이션, 그리고 BT의 분자세포생물학 실험을 융합하여 접근함으로써 시스템 차원의 근본적인 메커니즘을 규명하는 21세기 새로운 융합연구 패러다임

신호전달경로(Signal Transduction Pathway)
세포는 외부 자극 또는 환경의 변화를 세포막의 수용체 단백질과 외부 리간드(ligand)의 분자결합으로부터 인식하며 이러한 정보를 일련의 신호전달 분자들 간의 상호작용을 통해 전달함으로써 특정 유전자의 발현을 유도하여 세포반응을 만들어낸다.
이 때 이러한 일련의 분자 상호작용에 의한 정보전달과정을 신호전달경로라고 한다.

표적항암제
암 세포에 특이적인 변이(mutation)나 단백질을 차단하여 암 세포만을 선택적으로 죽이는 항암치료를 의미하며 기존의 항암제가 암 세포뿐만 아니라 정상 세포도 모두 공격하여 심한 부작용이 나타나는 것과 달리 독성이 적고 특이적인 변이를 가진 환자에게는 효능이 높아 개인 맞춤형 의료 시대의 선두주자로 평가받고 있다.

바이오이미징
세포 또는 분자 수준에서 일어나는 현상들을 영상을 통해 직접 확인하는 기술로서, 분자간의 상호작용과 생명현상들을 정량화하여 분석할 수 있게 해준다.

어크(ERK)
세포신호전달경로에서 세포의 증식과 생존을 담당하는 대표적인 신호전달 분자

멕(MEK)

어크의 활성화를 담당하는 상위 신호전달 분자

피아이쓰리케이(PI3K)
세포의 성장과 생존 등을 담당하는 신호를 매개하는 분자

갭(GAB1)
상피성장인자수용체(EGFR) 등의 하부에서 세포신호전달을 담당하는 어댑터 단백질

비라프(BRAF)
신호전달경로에서 멕의 바로 상위에 자리하고 있으며 멕을 활성화시키는 분자


 

<연구설명>

수학모델링과 컴퓨터시뮬레이션, 분자세포생물학실험을 융합한 시스템생물학 연구를 통해 멕 억제제에 대한 약물 저항성의 근본 메커니즘을 규명하는 과정.

A. 단일세포(HEK293세포) 실험을 이용하여 라스(Ras)와 피아이쓰리케이(PI3K) 신호전달경로 사이의 크로스토크가 존재함을 밝힘.
B. 어크-피아이쓰리케이 신호전달네트워크에 대한 수학모형은 136개의 동역학 파라메터와 58개의 상미분 방정식으로 구성됨 (그림에서는 수학모형의 일부 미분방정식만을 보여줌).
C. 정립된 수학모형의 컴퓨터시뮬레이션 분석을 통해 신호전달네트워크의 신호흐름(signal flux) 분석을 수행함(오른쪽). 붉은 색은 멕 억제제 처리 시 플럭스가 증가함을, 푸른색은 감소함을 나타냄. 선의 굵기는 멕 억제제 처리 시 플럭스의 변화량을 나타냄. 컴퓨터시뮬레이션 분석을 통해 멕 억제제는 어크 신호전달경로의 음성피드백 회로를 저해함으로써 피아이쓰키케이 신호전달경로의 활성을 촉진시킨다는 것을 규명함(왼쪽).
D. 다중 표적치료 전략 시뮬레이션. 멕과 에스오에스(SOS) 또는 갭1(GAB1)을 동시에 저해했을 때 억제 약물의 효과지표로 인신화된 에이케이티(Akt)의 농도를 측정함. 에스오에스와 달리 멕 억제제의 효과는 갭 억제제의 농도에 따라 매우 극적으로 달라진다는 것을 발견함.

어크(ERK)와 피아이쓰리케이(PI3K) 신호전달네트워크 재구성

그림 A는 본 연구의 대상인 어크와 파아이쓰리케이 신호전달경로를 재구성한 모식도를 보여주고 있다. 본 연구에서는 특히 라스(Ras)와 피아이쓰리케이(PI3K) 사이의 크로스토크를 포함하여 모델을 확장/보완하였고, 실험을 통해 이를 검증하였다.
그림 B는 상피세포성장인자(EGF)를 처리한 후 활성화된 에이케이티(AKT)(피아이쓰리케이 경로의 활성화 지표)가 세포막으로 이동하고, 활성화된 어크가 핵으로 이동하는 것을 보여주고 있다.
그림 C는 그림 B를 정량화한 것이다. 라스의 활성도를 감소시키면 에이케이티의 활성화도 감소하는 것을 알 수 있다. 

다양한 유전자 변이 조건에서 멕 억제제의 효능분석

그림 A는 다양한 유전자 변이 조건에서 멕 억제제 처리 전후 인산화된 어크와 에이케이티의 변화를 컴퓨터 시뮬레이션 한 것이다.
단일 라프 변이 조건에서 멕 억제제를 처리하면 에이케이티의 농도가 상대적으로 크게 증가하여 피아이쓰리케이 경로가 활성화되는 것을 알 수 있다.
그림 B는 시뮬레이션 결과에 대한 단일세포(HEK293세포) 검증실험 결과를 보여준다.
그림 C는 멕 억제제 처리 전후 활성화된 어크와 에이케이티의 이동을 바이오이미징 기술을 이용하여 측정한 것을 보여주고 있다. 

종양 세포를 이용한 다중 표적 약물 효과 분석

그림 A는 피부암 세포주를 이용하여 멕 억제제 처리 후 에이케이티의 양이 증가함을 보여주고 있다.
그림 B는 멕 억제제와 피아이쓰리케이의 억제제를 각각 사용한 경우와 동시에 사용한 경우의 효과를 실험한 결과를 보여주고 있다. 두 종류의 표적약물을 동시에 사용했을 때 생존하는 세포의 수가 크게 줄어드는 것을 확인할 수 있다.
그림 C는 두 가지 표적 약물인 멕 억제제와 피아이쓰리케이 억제제에 대한 세포군집의 생존과 사멸에 대한 실험을 보여주고 있다. 두 표적 약물을 동시에 처리했을 때 사멸하는 세포의 개수가 급격히 증가하는 것을 알 수 있다.
그림 D와 E는 그림 C의 실험결과를 정량화한 데이터를 보여준다. 

수학 모형과 컴퓨터 시뮬레이션을 이용한 종양신호전달경로의 신호흐름(signal flux) 분석

정립된 수학모형의 컴퓨터시뮬레이션 분석을 통해 신호전달 네트워크상의 신호흐름(signal flux) 분석 결과를 보여주고 있다.
오른쪽 그림에서 붉은 색은 멕 억제제 처리 시 신호흐름이 증가함을, 푸른색은 감소함을 나타낸다. 선의 굵기는 멕 억제제 처리 시 신호흐름의 변화량을 나타낸다.
컴퓨터 시뮬레이션 분석을 통해 멕 억제제는 어크 신호전달경로의 음성피드백 회로를 저해함으로써 갭을 중심으로 한 양성피드백 회로를 활성화시키게 되어 결국 피아이쓰리케이 신호전달경로의 활성을 촉진시킨다는 것을 발견하였다. 

다중 표적치료 전략 시뮬레이션

그림 A는 멕 억제제와 피디케이1(PDK1) 억제제를 동시에 처리했을 때의 시뮬레이션 결과를 보여주고 있다.
그림 B는 멕 억제제와 에스오에스(SOS) 억제제를 동시에 처리했을 때의 시뮬레이션 결과를 보여주고 있다.
그림 C는 멕 억제제와 갭1(GAB1)억제제를 동시에 처리했을 때의 시뮬레이션 결과를 보여주고 있다.
그림 D는 멕 억제제에 의한 어크 신호전달경로의 음성피드백 회로를 차단함으로써 갭(GAB)에 의해 매개되는 피아이쓰리케이 신호전달경로의 양성피드백 회로가 더욱 활성화된다는 것을 보여주고 있다.
그림 E는 단일세포 실험을 통해 가설을 검증한 결과를 보여주고 있다. 멕 억제제와 갭 억제제를 함께 처리하면 피아이쓰리케이의 활성화를 효율적으로 차단할 수 있음을 보여준다.

 

<조광현 교수>

1. 인적사항
 ○ 소 속 : KAIST 바이오및뇌공학과
 
2. 학력
● 1989. 03 - 1993. 02    KAIST 전기및전자공학과 학사졸업
● 1993. 03 - 1995. 02    KAIST 전기및전자공학과 석사졸업
● 1995. 03 - 1998. 08    KAIST 전기및전자공학과 박사졸업

3. 경력사항
● 1999 - 2004  울산대학교 전자공학과 조교수, 영국 UMIST 방문교수,                  
스웨덴 Royal Institute of Technology 초빙교수,                  
아일랜드 Hamilton Institute 초빙석학 등
● 2004 - 2007 서울대학교 의과대학 의학과 조교수, 부교수
● 2007 - 현재 KAIST 바이오및뇌공학과 부교수, 교수
● 2011 - 현재 KAIST 지정 석좌교수

4. 주요 전문 분야 및 연구 업적
● IT와 BT 융합연구: 시스템생물학 및 바이오영감공학 분야 117편 국제저널 논문, 12편의 저서/Book Chapter, 다수 국제학술대회 기조강연, 다수 국제저널 편집위원 등.
● 편집위원장(Editor-in-Chief), 'IET Systems Biology (영국)', 2010-현재
 
5. 수상 경력
● ICASE 젊은연구자논문상 (제어·자동화·시스템 공학회, 2003)
● 서울대학교병원 SCI우수논문상 (서울대학교병원, 2006)
● IEEE/IEEK Joint Award for Young IT Engineer (IEEE USA and IEEK Korea, 2008)
● 제13회 젊은과학자상 (교육과학기술부/한국과학기술한림원, 2010)
● E.T.S. Walton Fellow Award (Science Foundation of Ireland, 2012)

<허원도 교수>

1. 인적사항
 ○ 소속 : KAIST 생명과학과 
 
2. 학력
 ○ 1987. 03 - 1994. 02 경상대학교 농화학과 학사 졸업
 ○ 1994. 03 - 1996. 02 경상대학교 생화학과 석사 졸업  
 ○ 1996. 03 - 1999. 08 경상대학교 생화학과 박사 졸업

3. 경력사항
 ○ 2000. 05 ~ 2003. 10 박사후연구원, 스탠퍼드대 분자약리학과
 ○ 2003. 11 ~ 2008. 01 선임연구원 및 공동책임연구원, 스탠퍼드대 화학 및 시스템스생물학과
 ○ 2008. 02 ~ 2012. 02 조교수, KAIST 생명과학과
 ○ 2012. 03 ~ 현재  부교수, KAIST 생명과학과

4. 주요 발표논문
 ○ H. W. Yang, M.-G. Shin, S. Lee, W. S. Park, J.-R. Kim, K.-H. Cho, T. Meyer, and W. D. Heo, "Cooperative Activation of PI3K Signaling by Ras and Rho Small GTPases", Molecular Cell (In press), 2012.
 ○ W. S. Park*, W. D. Heo*(*Co-first author), J. Whalen, N. O'Rourke, H. Bryan, T. Meyer, and M. Teruel, "Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging", Molecular Cell, Vol. 30, Issue 3, pp. 381-392, 2008.
 ○ W. D. Heo, T. Inoue, W. S. Park, M.-L. Kim, B. O. Park, and T. Meyer. PI(3,4,5)P3 and PI(4,5)P2 second messengers jointly target Ras, Rho, Arf, and Rab GTPases to the plasma membrane. Science, Vol. 314, Issue 5804, pp. 1458-1461, 2006.
 ○ W. D. Heo and T. Meyer. "Switch-of-Function Mutants Based on Morphology Classification of Ras Superfamily Small GTPases", Cell, Vol. 113, pp. 315-328, 2003 (Featured Cover Paper).

<원재경 박사과정생>

1. 인적사항
 ○ 소속 : KAIST 의과학대학원, 서울대학교 암병원 분자병리센터 
 
2. 학력
 ○ 1995. 03 - 2001. 02 서울대학교 의과대학 의예과 및 의학과 졸업
 ○ 2002. 03 - 2004. 02 서울대학교 의과대학 병리학 석사 졸업  
 ○ 2004. 03 - 2006. 02 서울대학교 의과대학 면역학 박사 수료
 ○ 2009. 09 ? 현재   KAIST 의과학대학원 박사 과정 재학중

3. 경력사항
 ○ 2001. 03 ~ 2002. 02 서울대학교병원 인턴 과정 수료
 ○ 2002. 03 ~ 2006. 02 서울대학교병원 병리과 전공의 과정 수료 및 전문의 취득
 ○ 2006. 05 ~ 2007. 04 대통령자문 의료산업선진화 위원회 산하 의료산업발전 기획   단 전문 위원 (국방부 파견요원)
 ○ 2007. 05 ~ 2009. 04 국군서울지구병원 병리과 과장
 ○ 2011. 03 ~ 현재  서울대학교암병원 분자병리센터 진료조교수

4. 주요 발표논문
 ○ J.-K. Won*, H. W. Yang*, S.-Y. Shin*(*Co-first author), J. H. Lee, W. D. Heo, and K. -H. Cho, "The Cross Regulation Between ERK and PI3K Signaling Pathways Determines the Tumoricidal Efficacy of MEK Inhibitor", J Mol Cell Biol Vol. 4, No. 3, pp. 153-163, 2012 (Featured Cover Paper)
 ○ Y. S. Ju, W. C. Lee, J. Y. Shin, S. Lee, T. Bleazard, J.-K. Won, Y. T. Kim, J. I. Kim, J. H. Kang, J. S. Seo, "A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing". Genome Research Vol. 22, Issue. 3, pp. 436-45, 2012.

<양희원 박사>

1. 인적사항
 ○ 소속 : KAIST 생명과학과
 
2. 학력
 ○ 2001. 03 - 2008. 02 한동대학교 생명 식품학과 학사 졸업
 ○ 2008. 02 - 2012. 02 KAIST 생명과학과 박사 졸업

3. 경력사항
 ○ 2012. 02 ~ 현재  박사후연구원, KAIST 생명과학과

4. 주요 발표논문
 ○ H. M. Yang, H. J. Lee, K. S. Jang, C. W. Park, H. W. Yang, W. D. Heo, and J. D. Kim, "Poly(amino acid)-coated iron oxide nanoparticles as ultra-small magnetic resonance probes". Journal of Materials Chemistry, Vol. 19, pp. 4566-4574, 2009.
 ○ K. H. Lee, S. Lee, W. Y. Lee, H. W. Yang, and W. D. Heo, "Visualizing dynamic interaction between calmodulin and calmodulin-related kinases via a monitoring method in live mammalian cells", PNAS, Vol. 107, pp. 4312-3417, 2010.
 ○ S.-Y. Shin*, H. W. Yang*(*Co-first author), J. Kim, W. D. Heo, and K.-H. Cho, "A hidden incoherent switch regulates RCAN1 in the calcineurin-NFAT signaling network", Journal of Cell Science, Vol 124, pp. 82-90, 2011 (Featured Cover Paper).
 ○ H. W. Yang, M. K. Shin, S. Lee, J. Kim, W. S. Park, K.-H. Cho, T. Meyer, and W. D. Heo, "Cooperative activation of PI3K by Ras and Rho family small GTPases", Molecular Cell (In Press) 2012.
 ○ J.-K. Won*, H. W. Yang*, S.-Y. Shin*(*Co-first author), J. H. Lee, W. D. Heo, and K.-H. Cho, "The cross regulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor", J Mol Cell Biol Vol. 4, No. 3, pp. 153-163, 2012 (Featured Cover Paper)

<신성영 박사>

1. 인적사항
 ○ 소속 : KAIST 바이오및뇌공학과

2. 학력
 ○ 1997. 03 - 2000. 02 울산대학교 전자공학과 학사 졸업
 ○ 2000. 03 - 2002. 02 울산대학교 전기전자정보시스템공학부 석사 졸업 
 ○ 2002. 03 - 2007. 08 울산대학교 전기전자정보시스템공학부 박사 졸업

3. 경력사항
 ○ 2009. 04 ~ 현재  KAIST 바이오및뇌공학과 연구조교수
 ○ 2007. 09 ~ 2009. 03 KAIST 정보전자연구소 박사후 연구원

4. 주요 발표논문
 ○ J.-K. Won*, H. W. Yang*, S.-Y. Shin*(*Co-first author), J. H. Lee, W. D. Heo, and K.-H. Cho, The Cross Regulation Between ERK and PI3K Signaling Pathways Determines the Tumoricidal Efficacy of MEK Inhibitor. J Mol Cell Biol, Vol. 4, No. 3, pp. 153-163, 2012 (Featured Cover paper).
 ○ S.-Y. Shin*, H. W. Yang*(*Co-first author), J.-R. Kim, W. D. Heo, and K.-H. Cho, A hidden incoherent regulation switch coordinates the role change of RCAN1 in the calcineurin-NFAT signaling network. Journal of Cell Science, Vol. 124, Issue 1, pp. 82-90, 2011 (Featured Cover paper).
 ○ S.-Y. Shin, O. Rath, A. Zebisch, S.-M. Choo, W. Kolch, and K-H. Cho. The Functional Roles of Multiple Feedback Loops in ERK and Wnt Signaling Pathways that Regulate Epithelial-Mesenchymal Transition. Cancer Research, Vol. 70, Issue 17, pp. 6715-6724, 2010.
 ○ S.-Y. Shin*, O. Rath*(*Co-first author), S.-M. Choo, F. Fee, B. McFerran, W. Kolch, and K.-H. Cho, Positive and negative feedback regulations coordinate the dynamic behavior of the Ras/Raf/MEK/ERK signal transduction pathway. Journal of Cell Science, Vol. 122, Issue 3, pp. 425-435, 2009 (Featured Cover paper).
 ○ S.-Y. Shin, J. M. Yang, S.-M. Choo, K.-S. Kwon, and K.-H. Cho, System-Level Investigation into the Regulatory Mechanism of the Calcineurin/NFAT Signaling Pathway. Cellular Signalling, Vol. 20, Issue. 6, pp. 1117-1124, 2008

 

반응형
반응형

일반적으로 사람은 만 6세부터 나오는 영구치로 평생을 살아갑니다.

그런데 입 안에는 무수한 세균이 살고 있어 치아와 잇몸의 건강을 지키기란 쉽지 않습니다.

특히 치주염은 치아와 잇몸사이에 존재하는 다양한 세균에 대한 숙주의 염증과 면역반응의 결과로 일어나는데, 세포조직을 파괴해 치아를 잃게 만드는 주요 원인입니다.

우리나라 성인 가운데 70~80%가 치주염을 앓고 있다 합니다.

■ 서울대 최봉규 교수팀이 세포표면에 있는 당단백질(인테그린, integrin α5β1)의 새로운 기능을 규명해 치주염 발병원인과 새로운 치료법 개발 가능성을 열었습니다.

연구팀은 치주병원균인 구강나선균에 존재하는 표면단백질이 인테그린과 결합하여 염증성 사이토카인(인터루킨-1β)의 발현을 유도하고 활성화시켜, 결국 치주조직에 과도한 염증을 유발함을 밝혀냈습니다.
 
인테그린은 세포와 세포, 세포와 세포 외 기질간의 상호작용에 관여하는데, 세포의 증식이나 분화 및 이동에서 중요한 역할을 담당하며, 만성 염증과 종양의 원인에도 관여되어 있습니다.

다양한 미생물이 숙주세포에 결합하고 침투할 때 역시 직간접적으로 인테그린을 사용합니다.

또한 사이토카인은 면역반응과 염증반응을 일으키는 단백질로, 면역세포가 생산하는 분비단백질입니다.

대표적인 염증성 사이토카인인 인터루킨(IL)-1β는 숙주세포가 미생물 감염을 막기 위해 만들어집니다.

IL-1β는 먼저 비활성형(proIL-1β)으로 만들어진 후 단백분해 숙성과정을 통해 활성형으로 변해야만 세포 밖으로 분비되는데, 이 두 과정이 엄격히 분리 조절됨으로써 IL-1β의 과잉 분비가 통제됩니다.

인플라마좀은 세포질에 존재하는 복합단백질체로, IL-1β를 비활성형에서 활성형으로 전환시키는데 관여합니다.

연구팀은 구강나선균의 표면단백질이 인테그린을 이용해 인터루킨의 비활성형 발현과 인플라마좀 활성을 동시에 유발함으로써, IL-1β의 분비 통제시스템에 문제를 일으켜 치주조직에 IL-1β의 과잉분비가 일어나 과도한 염증을 유발할 수 있음을 규명했습니다.

이번 연구는 구강나선균의 표면단백질이 인테그린을 사용해 IL-1β 분비에 필요한 비활성형 발현과 인플라마좀 활성을 동시에 수행함으로써, 치주조직의 염증반응을 증폭시키고 치주염의 특징인 만성 염증 상태를 유지하는데 중요한 역할을 한다는 사실을 밝힌 것입니다.

이를 통해 이 단백질과 인테그린의 결합은 치주염 억제를 위한 새로운 표적이 될 수 있음을 알 수 있습니다.

이번 연구결과는 면역학 분야에서 세계적으로 권위 있는 학술지인 Immunity 지(IF=24.221) 5월 25일자에 게재되었습니다.
(논문명: Integrin α5β1 activates the NLRP3 inflammasome by direct interaction with a bacterial surface protein)


<연 구 개 요>

IL-1β는 병원균감염에 의해 유도되는 사이토카인으로서 면역과 염증반응을 조절하여 숙주방어에 관여한다.
IL-1β는 먼저 병원체유래의 물질에 의한 자극으로 전사수준의 발현유도에 의해 비활성형(proIL-1β)으로 생산된 후 단백분해의 숙성과정을 통해 활성형으로 전환되어야 세포 밖으로 분비되며, 이 두 과정이 엄격히 분리되어 조절 받음으로써 IL-1β가 과잉으로 분비되는 것이 통제된다.
인플라마좀은 세포질에 존재하는 복합단백질체로서 caspase-1을 활성시킴으로써 proIL-1β의 숙성에 관여하며, 대표적으로 NLRP1, NLRP3, NLRC4, AIM2 인플라마좀이 있다.

 
치주염은 성인의 대표적 구강질환으로서, 치은연하에 형성된 복합세균의 바이오필름에 의해 야기되는 숙주의 염증 및 면역반응 결과로 조직파괴를 동반하며, 치아상실의 주된 원인이 된다.
IL-1β는 치주조직의 염증반응과 치조골흡수를 야기함으로써 치주조직의 면역병리와 밀접한 관계가 있다.
다양한 Treponema 종으로 이루어진 구강나선균은 치주염 병변에서 빈번히 검출되며 치주염 중증도의 표지인자이다.
세균의 표면단백질은 숙주세포와 가장 먼저 반응함으로써 병인기전에 중요한 역할을 한다. 따라서 구강 Treponema 종에 공통으로 존재하는 표면단백질은 IL-1β의 발현과 활성에 대한 연구 대상으로 적합한 분자이며 치주염의 병인기전을 이해하는데 매우 중요하다.
본 연구팀은 선행연구에서 구강나선균에는 매독의 원인균인 Treponema pallidum의 표면단백질인 Tp92와 상동성이 매우 높은 표면단백질이 존재한다는 것을 밝혔다.

구강나선균인 Treponema denticola 표면에  존재하는 Tp92 유사단백질인 Td92가 대식세포에서 proIL-1β의 발현을 유도하고, 비활성형의 IL-1β를 활성형으로 전환시키는데 관여하는 세포수용체와 인플라마좀의 규명 및 관련 메카니즘에 대한 연구를 수행하였다.
Td92는 세포수용체인 integrin α5β1과 직접 결합하여 proIL-1β의 발현을 유도할 뿐만 아니라 NLRP3 인플라마좀을 통해 caspase-1을 활성시키고 이에 의해 proIL-1β를 활성형으로 전환시켜 세포로부터 IL-1β의 분비를 유도하였다.
Td92는 세포로부터 ATP 방출을 유도하고, 세포밖의 ATP가 P2X7 수용체를 자극하여 칼륨이온을 세포 밖으로 유출시킴으로써 NLRP3를 활성시켰다.
뿐만 아니라 Td92는 NLRP3의 발현도 증가시켰다. Td92에 의해 유도되는 proIL-1β의 발현, NLRP3 발현 및 활성에는 전사인자인 NF-κB가 결정적 역할을 하는 것을 확인하였다.

세균표면단백질인 Td92는 integrin α5β1과 결합하여 proIL-1β 발현을 유도하는 '제 1신호'와 인플라마좀을 활성시키는 '제 2신호'를 동시에 나타냄으로써 IL-1β를 과도하게 분비시키기 때문에 치주염 병인에 중요한 역할을 함으로써 치주염억제를 위한 표적분자가 될 수 있으며, 인테그린의 IL-1β 분비와 관련된 새로운 기능은 세균감염, 염증성 질환, 자가면역질환에서 그 역할과 공통기전을 찾는 연구의 기반이 될 것이다.



 용  어  설  명


인테그린(integrin α5β1)
인테그린은 α 소단위체(18종류)와  β 소단위체 (8종류)의 조합으로 구성된 이종이중체의 당단백질이며, integrin α5β1은 α5와 β1의 조합으로 이루어진 인테그린이다.

구강나선균
구강에 존재하는 나선형 모양의 세균으로서 Treponema 속(genus)으로 분류된다.

인터루킨-1β (IL-1β)
면역세포에서 분비되는 사이토카인으로서 주 기능은 선천면역에서 숙주염증반응을 매개한다.
혈관내피세포에 작용해 중성구와 단핵구의 부착인자 및 케포카인(chemokine) 생산촉진, 간에서 급성기 반응체의 합성, 발열 등의 활성을 갖는다.

인플라마좀
세포질에 존재하며 선천면역수용체, 어뎁터, caspase-1으로 이루어진 단백질복합체로서 proIL-1β를 활성형으로 전환시키는데 관여한다.

당단백질(糖蛋白質)
올리고당이 공유결합으로 결합된 단백질

 

<최봉규 교수> 

1. 인적사항 

○ 소 속 : 서울대학교 치의학대학원

2. 학력
○ 1980 : 연세대학교 생화학과 졸업 (학사)
○ 1991 : 독일 Albert-Ludwigs 대학 생물학과 미생물학전공 졸업 (석사)
○ 1994 : 독일 Albert-Ludwigs 대학 생물학과 미생물학전공 졸업 (박사)
 
3. 경력사항
○ 2000 ~ 2003 : 연세대학교 BK21 의과학사업단, 계약교수
○ 2009 ~ 2010 : University of California, San Diego, 의과대학, Visiting Scholar
○ 2003 ~ 현재 : 서울대학교 치의학대학원 구강미생물학교실, 교수

4. 주요 논문 업적
1) Jun HK, Lee SH, Lee HR, Choi BK. 2012. Integrin α5β1 activates the NLRP3 inflammasome by direct interaction with a bacterial surface protein. Immunity 36, 755-768.
2) Lee SH, Choi BK, Kim YJ. 2012. The cariogenic characters of xylitol-resistant and xylitol-sensitive Streptococcus mutans in biofilm formation with salivary bacteria. Archives of Oral Biology 57:697-703.
3) Lee HR, Jun HK, Kim HD, Lee SH, Choi BK. 2012. Fusobacterium nucleatum GroEL induces risk factors of atherosclerosis in human microvascular endothelial cells and ApoE-/- mice. Molecular Oral Microbiology 27:109-123.        
4) Kim YC, Shin JE, Lee SH, Chung WJ, Lee YS, Choi BK, Choi Y. 2011. Membrane-bound proteinase 3 and PAR2 mediate phagocytosis of non-opsonized bacteria in human neutrophils. Molecular Immunology 48:1966-1974.
5) Choi J, Lee SY, Kim K, Choi BK. 2011. Identification of immunoreactive epitopes of the Porphyromonas gingivalis heat shock protein in periodontitis and atherosclerosis. Journal of Periodontal Research 46:240-245
6) Lee HR, Rhyu IC, Kim HD, Jun HK, Min BM, Lee SH, Choi BK. 2011. In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum. Molecular Oral Microbiology 26:164-172.
7) Kim M, Jun HK, Choi BK, Cha JH, Yoo YJ. 2010. Td92, an outer membrane protein of Treponema denticola, induces osteoclastogenesis via prostaglandin E2-mediated RANKL/osteoprotegerin regulation. Journal of Periodontal Research 45:772-779.
8) Ryu JI, Oh K, Yang H, Choi BK, Ha JE, Jin BH, Kim HD, Bae KH. 2010. Health behaviors, periodontal conditions, and periodontal pathogens in spontaneous preterm birth: a case-control study in Korea. Journal of Periodontology 81:855-863.
9) Lee SH, Jun HK, Lee HR, Chung CP, Choi BK. 2010. Antibacterial and lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial peptides against periodontopathogens. International Journal of Antimicrobial Agents 35:138-145.

반응형
반응형

5월 18일 일본 다네가시마 우주센터에서 발사된 다목적실용위성 3호(아리랑 3호)가 정상궤도에 진입하고 첫 영상을 성공적으로 촬영했습니다.


한국항공우주연구원(이하 항우연)은 아리랑 3호가 촬영한 해상도 0.7m 급 영상을 공개했습니다.

촬영된 아리랑 3호 영상은 아리랑 2호(해상도 1m 급)와 비교할 때 지상 물체가 더욱 선명해졌고, 물체 모서리가 명확히 구분되며, 명암도 개선된 것이 특징입니다.

필라델피아 공항 아리랑 3호 영상(왼쪽)과 아리랑 2호 영상(오른쪽)

울릉도 아리랑 3호 영상(왼쪽)과 아리랑 2호 영상(오른쪽)

이번 시험 영상 촬영 성공으로 우리나라는 본격적인 서브미터 급 인공위성 영상을 확보할 수 있게 됐습니다.

아리랑 3호는 자세 제어를 통한 급속 기동 촬영 기능을 갖고 있어 능동적으로 원하는 지역의 영상을 확보할 수 있습니다.

항우연은 아리랑 2호가 먼저 광역대를 먼저 촬영한 영상을 분석해 이를 다시 아리랑 3호로 정밀 촬영하는 방식으로 운영해 영상정보 활용 능력을 더욱 높일 계획입니다.


<관련글>

아리랑 3호 발사 연속 촬영 사진 (http://daedeokvalley.tistory.com/495)

아리랑 3호 발사대로 이동하는 모습 (http://daedeokvalley.tistory.com/490)

아리랑 3호 개발 과정 (http://daedeokvalley.tistory.com/493)

서브미터급 관측 능력 아리랑 3호 (http://daedeokvalley.tistory.com/482)

대한민국 아리랑 위성 시리즈 라인업 (http://daedeokvalley.tistory.com/51)

 

<아리랑 3호 영상 모음>(한국항공우주연구원 제공)

2012.6월 12일 촬영된 아리랑 3호 두바이 제벨알리항

2012년 5월 29일 아리랑 3호가 촬영한 필라델피아 공항


 

<아리랑 3호>


반응형

+ Recent posts