반응형

유방암, 자궁암, 폐암 등 고형암 뿐만 아니라 림프성, 골수성 혈액암의 발병과 암세포 확산에 공통적으로 관여하는 효소(Akt)가 있다는 사실은 이미 1990년대 말에 밝혀졌습니다.

특히 정상세포와 달리 암세포에는 Akt가 비정상적으로 활성화되어 있는데, Akt의 활성화는 곧 암세포의 성장, 전이, 항암제 내성 및 재발과 관련된 모든 질병을 촉진하는 것으로 알려지고 있습니다.

따라서 전 세계 연구자들은 지난 수십 년간 Akt의 분해를 유발하는 효소를 발굴해 암을 정복하고자 노력하였지만, 애석하게도 가시적인 성과를 거두지 못했습니다.

□ 건국대 안성관 교수와 배승희 박사(제1저자) 연구팀은 '뮬란'이라는 효소가 Akt를 매우 강력하게 분해시켜, Akt와 관련된 모든 암세포의 진행을 억제한다는 사실을 규명했습니다.

또한 뮬란이 세포 내에 에너지 합성 및 세포의 생존과 사멸에 필수적인 미토콘드리아를 통해 Akt의 분해를 촉진한다는 세부 메커니즘도 밝혀냈습니다.

'뮬란(MULAN)'이라는 효소가 폐암 등의 고형암과 골수성 백혈병 등 혈액암의 진행단계를 억제하여 암세포의 사멸을 촉진하는 것입니다.

안 교수팀은 '뮬란'을 통해 향후 신개념 항암 치료제 개발에 새로운 돌파구를 마련할 것으로 기대하고 있습니다.

이번 연구결과는 네이처(Nature)에서 발간하는 생명과학 분야의 권위 있는 학술지인 '세포연구(Cell Research)'지에 온라인 속보(3월 13일자)로 게재되었습니다.
(논문명 : Akt is negatively regulated by the MULAN E3 ligase)

Akt는 암세포 성장, 전이, 내성 및 재발에 모두 관여 하고 있으며 (따라서 '마스터 스위치' 라고 불림), 특히 암세포에서는 Akt 효소가 비정상적인 수준으로 높게 활성화(Activation) 되어 있다. 이 활성화된 Akt를 뮬란(MULAN)이 유비퀴틴(Ubiquitin, Ub)화시켜, Akt 분해를 유도하여 암 발달 관련 모든 과정이 억제된다.

안성관 교수(가운데), 배승희 박사(왼쪽) 및 김가람 학생이 암세포에 인위적으로 뮬란을 넣은 후 나타나는 항암효과에 대한 실험을 하고 있다.


 용  어  설  명

단백질 분해(Protein degradation/Ubiqutination) :
우리 인간 세포 내 기능을 수행하는 것은 단백질이다.
이러한 단백질들은 각기 다른 수명을 가지고 있다.
하지만 그 단백질들의 수명이 달라진다면 세포의 행동 양식 및 증식력이 변화되며, 이러한 세포들이 체내에 많아진다면 질병으로 나타날 수 있다.
따라서 단백질의 분해는 세포의 정상적인 기능 유지에 매우 필수적이다. 세포 내에는 수많은 단백질들이 존재한다.
이러한 단백질들은 모두 개인이 가지고 있는 수명이 다르게 되는데, 이러한 수명을 조절하는데 가장 핵심적인 메커니즘이 '유비퀴틴화(Ubiquitination)'이다.
유비퀴틴은 매우 작은 크기의 단백질이며 특정 단백질에 유비퀴틴이 붙게 되면 세포내 단백질 분해 장소인 프로테아좀(proteasome)으로 이동하게 되어 그 단백질들이 분해되게 된다.
유비퀴틴화는 E1-E2-E3의 단계를 거쳐, 최종적으로 수명이 다한 단백질에 붙게 된다.
세포 내 수많은 단백질들의 수명을 일일이 계산하여 유비퀴틴을 붙이기는 여간 어려운 게 아니다.
하지만 세포내에는 특정 단백질에 해당하는 특정 유비퀴틴 접합효소가 존재하여서 이를 가능하게 한다.
이를 E3 ligase라 한다.
따라서 특정 단백질과 그 단백질에 유비퀴틴을 붙이는 E3 ligase를 발굴해 관련 메커니즘을 규명하는 것은 현대 분자세포생물학에 있어 큰 화두가 되고 있다.

Akt 효소 :
여기서 언급한 Akt는 세포의 성장, 발달 및 혈관신생 등 거의 모든 세포 과정을 조절할 수 있는 마스터(Master) 효소이다.
따라서 Akt 효소 활성의 적절한 조절은 정상적인 상태 유지를 위해 반드시 필요하다.
Akt 효소의 활성이 저하되면, 세포의 정상적인 기능 유지가 안 됨에 따라, 세포 사멸이 야기되며, 이로 인해 인한 수많은 질병 등이 나타난다.
반대로, 종양세포에서 Akt 효소 활성은 정상세포에 비해서 지나치게 활성화되어 있으며, 이로 인해, 암세포의 진행이 빨라지며, 암 전이를 가능케 하는 것으로 보고되어 있다.
거의 모든 암에서 정상세포와 비교해 높은 Akt 효소 활성을 보였으며, 이는 암세포가 정상세포와 달리 Akt 효소를 유전자 수준에서 많이 만들어내는 것이 아니라, 단백질 수준에서의 비정상적인 조절로 인해 Akt 효소 활성이 지나치게 높아진다는 것임을 알아냈다.
따라서 Akt의 활성을 조절하는 세포 내 메커니즘에 대한 연구가 핫 이슈로 현재까지 부각 받고 있다.
현재까지의 과학자들은 Akt의 활성을 조절할 수 있는 물질들을 발굴했지만, 지속적으로 Akt의 활성을 억제하지는 못한 가역적인 조절이 대부분 이였다.
따라서 Akt의 효소를 직접적으로 분해시켜 지속적으로 Akt의 활성을 억제하여 암을 비롯하여 여러 질병을 직접적으로 치료할 수 있는 물질 발굴에 대한 연구가 필요했다.
이러한 문제점의 해결로 본 연구는 Akt 효소를 직접적으로 분해할 수 있는 뮬란이라는 물질을 발굴한데 그 의의가 있다.
암 세포 내 뮬란의 양이 많아진다면 Akt 효소 자체가 계속적으로 분해되기 때문에, 암세포의 발달을 지속적으로 억제할 수 있게 되는 것이다.
 
세포연구(Cell Research)지 :
기초의학분야에서 인간의 질병에 관한 주제로 그 원인을 분자세포생물학적으로 접근하여 연구하는 세계적으로 권위 있는 학술지.
특히 아시아에서 발간되는 학술지 중에서 최상위에 있고, 피인용지수(Impact Factor)가 2010년 기준 9.417이다.
전 과학 분야에서 상위 6% 이내에 랭크되는 학술지로, 세포생물학(Cell Biology) 분야에서 8.4%(21위/177개) 이내에 든다.

<연 구 개 요>

우리 인간 세포 내 기능을 수행하는 것은 단백질이다.
이러한 단백질들은 각기 다른 수명을 가지고 있다.
하지만 그 단백질들의 수명이 달라진다면 세포의 행동 양식 및 증식력이 변화되며, 이러한 세포들이 체내에 많아진다면 질병으로 나타날 수 있다.
따라서 단백질의 분해는 세포의 정상적인 기능 유지에 매우 필수적이다.
대부분의 암 성장 및 종양 발달에 Akt의 기능은 매우 중요한 역할을 한다.
비록 Akt의 과활성화가 정상세포에 비교하였을 때, 암세포에서 많이 관찰되어 있어, 그 활성을 막고자 하는 연구가 지속되어 왔지만, Akt의 분해를 직접적으로 유발할 수 있는 효소를 발굴하고자 하는 연구는 아직 걸음마 수준에 있다.

Akt의 과활성화는 암세포의 성장, 전이, 항암제 내성 등과 같은 현상을 유발시킨다.
그리고 암세포에서 Akt의 활성을 억제 및 인위적으로 Akt 분해를 유발시키면 암세포의 사멸 및 전이 억제와 항암제 효과가 커지는 것이 보고되었다.
하지만 세포내에서 어떠한 효소가 Akt의 분해를 유발하여 활성을 억제시키는지와 그로 인해 암세포의 사멸을 촉진시킬 수 있는지에 대한 연구는 아직까지 보고되고 있지 않았다.
본 연구는 세포내에 존재하는 뮬란(MULAN)이라는 효소가 Akt라는 단백질을 강력하게 분해시켜, 암세포의 성장 및 발달을 매우 효과적으로 억제시킬 수 있다는 결과를 밝혀냈다.
본 연구수행 당시 뮬란이라는 효소는 전 세계에서 보고된 적 없는 신규 유전자였으나, 애석하게도 최근 타 연구그룹에 의해서 뮬란이 세포 내 신규 효소라고 보고되었다.
하지만, 뮬란의 구체적인 암세포 억제 기능에 대해서는 이번 연구결과를 통해서 전 세계 최초로 규명된 것이다.
특히, 뮬란은 활성화된 Akt만을 표적으로 하여 분해시키며, 분해되는 장소는 세포의 생존과 사멸에 매우 중요한 소기관인 미토콘드리아(Mitochondria)에서 뮬란과 Akt가 만나 Akt의 분해가 유발됨이 본 연구를 통해 규명되었다.

뮬란은 세포 내에 존재하는 유비퀴틴 E3 접합효소(Ubiquitin E3 ligase)이다.
뮬란에 Akt가 결합하게 되면 단백질 분해를 유도하는 신호물질인 유비퀴틴이 Akt에 계속적으로 결합하게 되어, Akt의 분해가 시작되게 된다는 결과도 얻었다.
뿐만 아니라, 아직까지 전 세계 과학자들이 못 밝힌 사실 중 하나인, Akt 단백질 어느 부분에 유비퀴틴이 결합되는지에 대해서 세계 최초로 관련 부분도 밝혀냈다.
즉, 유비퀴틴 E3 접합효소 뮬란은 Akt의 284번째 아미노산에 유비퀴틴을 연속적으로 결합시켜 Akt의 분해를 유발시키는 것이다.
Akt의 284번째 아미노산을 다른 것으로 돌연변이 시킨 결과, 뮬란에 의한 Akt의 분해가 억제되었으며, 따라서 뮬란에 의한 암세포의 성장 억제 효과도 제거됐다.
또한, 세포 내 인위적으로 뮬란의 발현을 siRNA을 이용하여 억제시킨 결과, 암세포 내 Akt 단백질 양 및 활성화가 증가되어 암세포의 성장 및 발달이 증가됨을 알아냈다.
따라서, 뮬란에 의한 암세포의 생존 및 발달 억제는 Akt를 통해서 이루어지며, 뮬란을 통한 Akt의 분해가 암세포의 억제에 매우 효과적임을 증명하였다. 


<안성관 교수>

1. 인적사항
 ○ 소 속 : 건국대학교 미생물공학과·향장학과
 
2.. 학력
  1988 - 1995    건국대학교 미생물공학과 학사
  1995 - 1998    영국 옥스퍼드대학교 생화학과 이학박사
                  (분자세포생물학 전공)
 
3. 경력사항
  1998 - 2000 미국 유타주립의과대학 박사후연구원
  2000 - 2003 미국 하버드의과대학 박사후연구원
  2003 - 현재 건국대학교 미생물공학과·향장학과 교수
  2003 - 현재 건국대학교 유전단백체 기능제어연구센터 센터장
  2007 - 현재 방사선생명과학회, 대한화장품학회 등 편집위원
  2010 - 현재 KISTEP 생명농림수산분야 자문위원
  2011 - 현재 방송통신심의위원회 광고특별위원회 위원
  2012 - 현재 대한피부미용학회 편집위원장
<배승희 박사>

1. 인적사항
 ○ 소 속 : 건국대학교 미생물공학과·생물공학과
 
2. 학력
  2000 - 2005    건국대학교 미생물공학과 학사
  2005 - 2007    건국대학교 생물공학과 석사
  2007 - 2012    건국대학교 생물공학과 공학박사
                 
 3. 경력사항
  2003 - 2005  건국대학교 유전단백체 기능제어연구센터 연구원
  2005 - 현재  건국대학교 유전단백체 기능제어연구센터 연구실장
  2007 - 2012 건국대학교 병역특례 전문연구요원
  2012 - 현재    건국대학교 미생물공학과·생물공학과 박사후연구원
  2012 - 현재 건국대학교 생물공학과 시간강사
  2012 - 현재  대한피부미용학회 상임이사
 
4. 수상실적
  2007. 11. 15  방사선생명과학회, 우수논문상 수상
  2009. 12. 01  대한암연구재단 '암연구 박사학위논문 저술지원사업' 수상

반응형
반응형

당뇨병은 알츠하이머병의 위험인자로, 특히 신경세포의 퇴행성변화와 신경염증을 촉진시켜 심각한 기억력 저하를 초래합니다.

특히 비만에 의한 당뇨병이 지방간, 지방세포의 염증 및 중추신경계의 신경염증을 유도하여 기억력을 감퇴시킨다고 합니다.

그러나 현재까지 당뇨병에 의한 중추신경계의 생태병리학적 메커니즘은 명확히 밝혀지지 않은 상태입니다.


이런 가운데 포도추출물(레스베라트롤)을 먹으면 기억력이 향상된다는 사실이 밝혀지면서 알츠하이머병과 같은 퇴행성뇌질환을 예방하고 치료하는 새로운 가능성이 열렸습니다.

레스베라트롤(resveratrol)은 식물이 곰팡이나 해충 등 나쁜 환경에 직면했을 때 만들어내는 식물성 천연 폴리페놀계 물질입니다.

□ 경상대 노구섭 교수팀은 장기간 고지방식을 먹은 비만쥐를 연구해 혈액, 간, 지방, 뇌에서 인슐린 저항성과 염증을 비롯해  대뇌의 해마에서 신경세포의 퇴행성변화를 관찰하여 기억력 손상 여부를 확인하고, 비만으로 인한 기억력 손상은 레스베라트롤에 의해 개선된다는 사실을 규명했습니다.

노 교수팀은 기억과 학습을 담당하는 해마에서 신경세포 인슐린 저항성이 증가하는 것은 에너지대사신호전달계, 신경전달물질(콜린아세틸전이효소)의 분비 감소 및 지질과산화와 타우(tau) 인산화의 증가를 유도하여 신경세포의 퇴행성변화를 일으킨다는 사실을 발견했습니다.

장기간의 고지방식이는 지방간과 간세포의 염증을 유발함. (A) 간세포사이에 지방망울이 축적됨. (B) 간세포에서의 지질과산화(lipid peroxidation; 4-HNE) 증가 (C) 간세세포에서 대식세포(macrophage; F4/80) 증가.

기억과 학습 중추인 해마부위에서의 인슐린 저항성 증가는 신경세포의 에너지대사 신호전달계의 감소와 TAU인산화 증가에 따른 신경퇴행성을 유도함.



특히 고지방식과 함께 레스베라트롤을 섭취한 쥐는 인슐린 저항성 등이 억제되어 학습효과와 기억력 감퇴가 회복되었음을 관찰할 수 있었습니다.

즉, 레스베라트롤이 비만에 의한 당뇨로 발생된 만성염증과 신경염증을 감소시킬 뿐만 아니라 기억력 손상도 개선하였음을 규명한 것입니다.

이번 연구는 알츠하이머병을 지연시키는 약물을 개발하는데 중요한 단서를 제공하고, 향후 당뇨병 등 난치성 또는 퇴행성 질환의 새로운 치료법을 개발하는데 단초를 제공할 것으로 기대받고 있습니다.

연구결과는 내분비와 대사분야의 권위 있는 학술지인 '미국당뇨병학회지(Diabetes)' 온라인 속보(2월 23일자)에 게재되었다. 
(논문명: Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in high fat diet-fed mice)

모리스수중미로검사(Morris water maze test)를 이용하여 기억력 손상유무를 확인함. 도피대를 찾아 올라갈때까지의 잠재기(latency), 수영거리, 그리고 도피대가 있었던 곳에 머무르는 시간을 비교 분석하였음. 고지방식이(HFD) 동물군에 비해 레스베라트롤(HFD+RES)을 섭취한 동물군의 기억력이 향상됨을 알 수 있음.

(왼쪽부터) 노구섭 경상대 교수, 신현주 박사과정생, 정은애 연구원, 전병탁 박사

 용  어  설  명

레스베라트롤 (Resveratrol) :
식물이 곰팡이나 해충 같은 안 좋은 환경에 직면했을 때 만들어내는 파이토알렉신으로서 폴리페놀계 물질.
인체의 여러 질병에 도움이 되는 것으로 알려져 있다.
예를 들어 항암, 항바이러스, 신경보호, 항노화, 항염, 수명연장 등의 효과가 보고되고 있다.
인체에 미치는 독성이나 부작용에 대한 것은 특히 장기 복용의 경우 아직까지 연구된 바 없다(출처: 위키백과)

모리스수중미로검사 (Morris water maze test) :
학습과 기억능력을 평가하기 위하여 많이 사용되는 검사법으로 동물이 숨겨진 도피대를 찾기 위해 단서를 이용하면서 수영을 해야 하는 공간 탐색 방법이다.

레스베라트롤(resveratrol) :
식물이 곰팡이나 해충 같은 좋지 않은 환경에 직면했을 때 만들어내는 식물성 천연 폴리페놀계 물질로, 포도껍질, 포도씨, 땅콩에 들어 있음

해마(Hippocampus) :
대뇌의 양쪽 관자엽(측두엽)안에 존재. 일화, 학습과 기억 등 인지기능 담당

다이아베테스 (Diabetes)지 :
미국당뇨병학회에서 매달 1회 발행하는 학술지로서, 내분비 및 대사분야에서 최고권위(인용지수 impact factor 8.889)를 갖고, 주로 당뇨병을 다룬다.

<연 구 개 요>

당뇨병은 알츠하이머병의 위험인자로 알려져 있으며, 특히 당뇨병은 신경세포의 퇴행성변화와 신경염증을 촉진시켜 심각한 기억력 저하를 초래하는 것으로 알려지고 있다.
그러나 현재까지 당뇨병에 의한 중추신경계의 생태병리학적 기전은 명확하게 밝혀져 있지 않다.
이번 논문은 비만에 의한 당뇨병이 지방간(fatty liver)과 지방세포의 염증(inflammation)뿐만 아니라 중추신경계의 신경세포염증(neuroinflammation)을 유발시켜 결국은 기억력 손상을 일으킬 수 있다는 것을 보여주었다.
기억과 학습의 중추인 해마 부위에서의 신경세포 인슐린저항성 증가는 에너지대사(AMPK/ACC)신호전달계와 신경전달물질(콜린아세틸전이효소)의 분비감소, 그리고 지질과산화(lipid peroxidation)와 tau인산화 증가를 유도하여 결국은 신경세포의 퇴행성변화를 일으켰다.
기억력 손상 유무는 행동실험(수중미로검사)을 통해 확인하였다. 마지막으로 이러한 기억력 손상이 포도 추출물인 레스베라트롤(식물성 천연 폴리페놀류)에 의해 향상되는 것을 처음으로 규명한 것이다. 
  
구체적인 실험내용은 다음과 같다.
C57BL/6 생쥐를 이용해서 저지방식이, 고지방식이, 고지방식이에 레스베라트롤을 넣은 식이 그리고 저지방식이에 레스베라트롤을 넣은 식이 이렇게 4개의 동물군으로 나누어 20주 동안 실험을 진행하였다.
20 주 후에 기억력 손상을 확인하기 위해서 모리스수중미로검사를 실행하였다. 대사인자(metabolic parameters)의 변화를 알아보기 위해서 ELISA를 실시하였다.
그 결과 일반적인 제2형 당뇨의 증상과 동일하게 고인슐린증, 고렙틴혈증 그리고 저아디포넥틴혈증 등이 발생하였고, 혈청내 TNF-α의 수치도 증가하였다.
고지방식이 동물군에서는 간과 지방세포에서의 대식세포(macrophage)의 침투와 인슐린저항성(insulin resistance)이 나타났으며 레스베라트롤이 이를 억제해주는 결과를 얻었다.
고지방식이 동물군의 해마(hippocampus)에서 TNF-α와 Iba-1(미세아교세포 표지자)의 발현이 증가하였지만 레스베라트롤에 의해 감소되었다.
또한 고지방식이 동물군에서 AMPK의 활성이 감소하였고, Tau 단백질의 인산화가 증가하지만 레스베라트롤을 처리한 동물군에서는 AMPK의 활성의 증가와 Tau단백질의 인산화가 감소하는 효과가 나타났다.
신경전달물질인 아세틸콜린(acetylcholine)을 합성하는 콜린아세틸 전이효소(ChAT)가 고지방식이군에서 감소되었으며, 레스베라트롤을 처리한 동물군에서 증가되었다.
그리고 모리스수중미로의 결과에서도 고지방식이 동물군에서 낮은 학습효과 및 기억력 감퇴를 보였지만 레스베라트롤을 처리한 군에서 회복되는 효과를 얻었다.
이상의 연구결과들에서 레스베라트롤이 고지방식이로 유발된 제2형 당뇨에 의해 발생한 만성염증을 감소시키고 신경염증을 감소시켜줄 뿐만 아니라 기억력손상도 향상시켰다.

<노구섭 교수>

1. 인적사항 
 ○ 소 속 : 경상대학교 의학전문대학원 해부학교실 부교수

2. 학력
  ○ 1998 : 경상대학교 학사  (의학과)
  ○ 2000 : 경상대학교 석사  (의학과)
  ○ 2002 : 경상대학교 박사  (의학과)
 
3. 경력사항
○ 2002 ~ 2003 : 국립과학수사연구소 법의학부 법의학과, 공중보건의사
○ 2003 ~ 2005 : 질병관리본부 국립보건연구원 유전체연구부, 공중보건의사
○ 2005 ~ 2007 : 경상대학교 의학전문대학원 해부학교실, 전임강사
○ 2007 ~ 2011 : 경상대학교 의학전문대학원 해부학교실, 조교수
○ 2011 ~ 현재 : 경상대학교 의학전문대학원 해부학교실, 부교수
                
4. 주요연구업적
1. Jeon BT, Jeong EA, Shin HJ, Lee Y, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in high fat diet-fed mice. Diabetes. 2012 (in press).
2. Jeong EA, Jeon BT, Shin HJ, Kim N, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Ketogenic diet-induced peroxisome proliferator-activated receptor-γ activation decreases neuroinflammation in the mouse hippocampus after kainic acid-induced seizures. Exp Neurol. 2011 Dec;232(2):195-202.
3. Roh GS, Yi CO, Cho YJ, Jeon BT, Tsoy Nizamudtinova I, Kim HJ, Kim JH, Oh YM, Huh JW, Lee JH, Hwang YS, Lee SD, Lee JD. Anti-inflammatory effects of celecoxib in rat lungs with smoke-induced emphysema. Am J Physiol Lung Cell Mol Physiol. 2010 Aug;299(2):L184-91.
4. Lee DH, Jeon BT, Jeong EA, Kim JS, Cho YW, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Altered expression of sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 in mouse hippocampus after kainic acid treatment. Biochem Biophys Res Commun. 2010 Mar 12;393(3):476-80.
5. Jeon BT, Shin HJ, Kim JB, Kim YK, Lee DH, Kim KH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Adiponectin protects hippocampal neurons against kainic acid-induced excitotoxicity. Brain Res Rev. 2009 Oct;61(2):81-8. 
6. Lee JY, Jeon BT, Shin HJ, Lee DH, Han JY, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Temporal expression of AMP-activated protein kinase activation during the kainic acid-induced hippocampal cell death. J Neural Transm. 2009 Jan;116(1):33-40. 

<전병탁 박사>

1. 인적사항 
 ○ 소 속 : 경상대학교 신경기능장애연구센터

2. 학력
  ○ 2005 :  경상대학교 학사  (생화학)
  ○ 2009 :  경상대학교 석사 (의학과)
  ○ 2012 :  경상대학교 박사 (의학과)
 
3. 경력사항
 ○ 2012 ~ 현재 : 경상대학교 신경기능장애연구센터, Postdoctoral Associate

4. 주요연구내용
1.  Jeon BT, Jeong EA, Shin HJ, Lee Y, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS, Resveratrol Attenuates Obesity-associated Peripheral and Central Inflammation and Improves Memory Deficit in Mice Fed a High-Fat Diet. Diabetes. 2012 (IF=8.889)
2.  Jeong EA, Jeon BT, Shin HJ, Kim N, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS,Roh GS. Ketogenic diet-induced peroxisome proliferator-activated receptor-γ activation decreases neuroinflammation in the mouse hippocampus after kainic acid-induced seizures. Exp Neurol. 2011 Dec;232(2):195-202. (IF=4.436)
3.  Jeon BT, Shin HJ, Kim JB, Kim YK, Lee DH, Kim KH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Adiponectin protects hippocampal neurons against kainic acid-induced excitotoxicity. Brain Res Rev. 2009 Oct;61(2):81-8. (IF=7.39)
4.  Jeon BT, Lee DH, Kim KH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Ketogenic diet attenuates kainic acid-induced hippocampal cell death by decreasing AMPK/ACC pathway activity and HSP70. Neurosci Lett. 2009 Mar 27;453(1):49-53. (IF=2.605)


 

반응형
반응형

'이달의 과학기술자상' 3월 수상자로 자연의 광합성 현상을 모방하여 태양에너지로부터 최종적으로 화학물질을 생산할 수 있는 인공광합성 원천기술을 개발한 KAIST 박찬범 교수(43)가 선정됐습니다.

박찬범 교수는 바이오소재(Biomaterials) 분야의 석학으로, 인공광합성을 위한 고효율 나노바이오소재들을 개발하여 학계의 주목을 받아왔습니다.

광합성은 식물 등 자연계의 생물체가 태양광을 에너지원으로 하여 일련의 물리화학적 반응들을 통해 탄수화물과 같은 화학물질을 생산하는 현상입니다.

식물의 엽록소는 태양광을 받으면 전자를 방출하고(광반응), 이 전자는 주변으로 전달돼 연쇄적 화학반응을 일으키면서 환원에너지를 생산합니다.

또 햇빛이 없는 밤에는 낮에 재생했던 에너지를 이용해 이산화탄소를 탄수화물로 환원시킵니다.

박찬범 교수는 이러한 자연계의 광합성시스템을 모방하기 위하여 광반응의 엽록소 대신에 태양전지 등에서 사용되는 양자점 등 나노크기의 광감응 소재로 빛에너지로부터 화학적 환원에너지를 고효율로 재생하는데 성공했습니다.

또한 자연계의 연쇄적이고 복잡한 암반응 대신에 단순한 생체촉매반응을 이용하여 빛에너지로부터 최종적으로 메탄올 등 화학연료, 의약품 등 고부가가치 정밀화학물질을 생산하는 친환경 녹색생물공정 개발의 전기를 마련했습니다.

박 교수가 개발한 나노바이오소재 기반 인공광합성기술은 무한한 에너지원인 태양광을 사용해 화학연료, 정밀화학제품 등을 생체촉매반응으로 합성한다는 점에서 파급효과가 매우 큽니다.

박찬범 교수는 Advanced Materials, Angewandte Chemie 등 재료분야의 권위 있는 학술지에 2008년 이후 교신저자로서 48편의 논문을 발표하였고, 이 학술지들의 인용지수(IF)의 합계가 323(1편당 평균: 6.73)으로 매우 높습니다.

특히 인공광합성에 대한 연구결과로 지난해에만 총 6편의 표지논문을 발표하는 등 학계의 큰 주목을 받았습니다.

또 박 교수가 개발한 나노바이오소재 기반 인공광합성 기술은 2010년도 대한민국 10대 과학기술뉴스로 선정되기도 했습니다.

<박찬범 교수> 

● 인적사항

 ▶성명 : 박찬범 (朴燦範)
 ▶소속 : 카이스트 신소재공학과

● 학    력

▶1995 ∼ 1999    포항공과대학교 화학공학과, 박사
▶1993 ∼ 1995    포항공과대학교 화학공학과, 석사
▶1987 ∼ 1991    포항공과대학교 화학공학과, 학사

● 경    력

▶2008 ∼ 현재
▶2006 ∼ 2008
▶2002 ∼ 2006
▶1999 ∼ 2002
카이스트 신소재공학과, 부교수 (영년직)
카이스트 신소재공학과, 조교수
애리조나주립대학교, 조교수
UC Berkeley, 박사후연구원


● 주요업적 : 나노바이오소재 기반 인공광합성 기술개발
□ 자연의 광합성현상을 모방하여 태양에너지로부터 시작하여 최종적으로 메탄올 등 화학연료, 의약품 등 고부가가치 정밀화학물질을 태양에너지를 이용해 생산하는 친환경 녹색생물공정 원천기술 개발


반응형
반응형

노드(node)는 데이터를 전송하는 통로에 접속되는 하나 이상의 단위로, 통신망의 분기점이나 단말기의 접속점을 말합니다.

한 노드에 다수의 GPU를 장착하여 노드 당 계산 속도를 높이면 적은 수의 노드로도 많은 양의 계산을 한꺼번에 처리할 수 있는 장점이 있습니다.

만일 이것이 가능하면 슈퍼컴퓨터의 구축비용뿐만 아니라 소모되는 전력도 획기적으로 줄일 수 있습니다.

그러나 지금까지 다수의 GPU를 효율적으로 장착하는 소프트웨어 기술이 개발되지 못해 대부분의 슈퍼컴퓨터에는 각 노드 당 최대 2개의 GPU밖에 장착하지 못했습니다.

□ 서울대 이재진 교수팀은 일반 슈퍼컴퓨터와는 달리 노드 한 대에 최대 6개의 그래픽 처리장치(GPU)를 장착하는 방법으로 기존 슈퍼컴퓨터의 노드 당 계산 속도를 세계에서 가장 빠른 수준으로 끌어올리는데 성공했습니다.

이 교수팀이 개발한 소프트웨어 기술을 사용하면 노드마다 최소 3개 이상의 GPU를 장착하고 효율적으로 계산할 수 있습니다.

이재진 교수팀은 이번 연구결과를 바탕으로 16개의 노드(총 96개 GPU 장착)로 구성된 슈퍼컴퓨터 시작품 '스누코어(SnuCore)'를 자체 제작했습니다.

일반적으로 슈퍼컴퓨터의 계산 속도를 평가하는데 사용하는 프로그램인 린팩 벤치마크로 측정한 스누코어의 노드 당 계산 속도는 0.991테라플롭스(TFLOPS)로 이 수치는 현존하는 슈퍼컴퓨터 중에서 가장 빠릅니다.

게다가 전력효율 면에서도 와트당 871메가플롭스(MFLOPS)로 세계 20위권을 기록했습니다.

스누코어는 시중에서 흔히 구할 수 있는 부품(AMD의 CPU와 GPU, 타이안의 마더보드 및 멜라녹스의 인피니밴드 네트워크 장비 등)에 연구팀이 자체 설계한 냉각 시스템을 이용해 제작되었습니다.

서울대 매니코어 프로그래밍 연구단에서 자체 제작한 슈퍼컴퓨터 스누코어(SnuCore). 가운데 위치한 것이 자체 제작한 냉각 시스템이며, 좌우로 노드가 8개씩 위치하고 있다.



연구팀은 새로 개발한 소프트웨어 최적화 기술을 다양한 프로그래밍 언어 OpenCL과 MPI를 사용해 린팩 벤치마크에 적용하였고, 그 결과 스누코어의 각 노드에 장착된 6개의 GPU를 효율적으로 사용하여 세계에서 가장 빠른 노드 당 계산속도를 확보했습니다.

스누코어의 성능 대비 가격은 다른 세계 최상위급 슈퍼컴퓨터들과 비교해도 최대 8.3%(1/12)로 저렴합니다.

따라서 스누코어에 적용된 소프트웨어 기술을 사용하면 세계 최상급의 성능을 지닌 슈퍼컴퓨터를, 기성부품을 사용하여 저렴한 비용으로 구축할 수 있게 됩니다.

이 교수팀은 이번 연구결과를 서울대에서 개발하고 있는 OpenCL 기반의 프로그래밍 환경인 SnuCL에 적용해 추후 일반 국민에게도 공개할 예정입니다.

이재진 서울대 교수(오른쪽), 조강원 연구원(왼쪽), 나정호 연구원(가운데)이 슈퍼컴퓨터 SnuCore의 상태를 점검하고 있다.

 

 용  어  설  명

린팩 벤치마크 (LINPACK Benchmark) :
 벤치마크는 컴퓨터에서 실행시켜 처리시간과 같은 값을 측정해 컴퓨터의 성능을 평가하는 프로그램이다.
린팩 벤치마크는 컴퓨터의 계산 속도를 평가하는 벤치마크 중 하나로, 배정도(double precision) 부동소수점 연산(floating-point operation)이 필요한 선형 시스템의 해를 구하는데 걸리는 시간을 측정해 계산 속도를 측정한다.
린팩 벤치마크는 Top500에서 세계 500위권의 슈퍼컴퓨터를 선정하는 기준으로 사용되는 등 슈퍼컴퓨터의 성능 측정에 널리 사용되고 있다.

FLOPS (floating-point operations per second) :
 컴퓨터의 성능을 측정하는 단위로 초당 수행할 수 있는 부동소수점(floating-point) 연산의 수를 의미한다.
'FLOPS' 앞에 '킬로(K)', '메가(M)', '기가(G)', '테라(T)'의 접두사가 붙으면 각각 초당 10의 3승, 10의 6승, 10의 9승, 10의 12승회의 실수 연산을 수행함을 의미한다.
예를 들어 2 GFLOPS는 초당 2×109 회, 즉 20억 회의 부동소수점 연산을 수행할 수 있음을 뜻한다.

OpenCL(Open Computing Language) :
개방형 범용 병렬 컴퓨팅 프레임워크

노드(node) :
데이터를 전송하는 통로에 접속되는 하나 이상의 단위. 주로 통신망의 분기점이나 단말기의 접속점을 말함

<연 구 개 요>

최근 고성능 컴퓨팅을 위해 그래픽 처리 장치(GPU)를 그래픽 처리 대신 일반적인 계산을 위해 사용하는 GPGPU(General Purpose computing on GPU) 기술이 보편화되기 시작하였다.
GPU는 많은 계산을 한꺼번에 수행할 수 있어 기존의 CPU보다 계산 속도가 빠르고 계산량에 비해 전력소모가 상대적으로 적은 장점을 가지고 있다.
중국과 일본에서 각각 구축한 세계 2위와 5위의 슈퍼컴퓨터를 포함, 2011년 11월에 Top500 사이트(http://top500.org)에 의해 선정된 세계 500위권 내 슈퍼컴퓨터 중 37대가 GPGPU 기술을 사용하였으며 이는 2011년 4월에 비해 2배가량 증가한 수치이다.
슈퍼컴퓨터를 구성하는 각 노드에 다수의 GPU를 장착함으로써, GPGPU 기술이 가지는 장점인 고성능과 에너지?비용?공간 효율성을 극대화할 수 있다.
하지만 다수의 GPU를 효율적으로 사용하는 소프트웨어 기술이 없어서 기존의 슈퍼컴퓨터들은 노드 당 대개 1개 혹은 2개의 GPU만을 장착해 왔다.

본 연구팀은 다수의 GPU를 효율적으로 사용하는 소프트웨어 기술을 연구 개발하였는데, 이는 노드 내 다수의 GPU 간에, 또는 노드 간에 효율적으로 작업을 분배하여 작업량의 불균형이 발생하지 않도록 하는 기술, 노드 내 서로 다른 GPU 간, 또는 노드 간 통신을 최적화하는 기술, 실행 시의 환경에 적응하여 노드 내 계산 자원을 효율적으로 관리하는 기술 등을 포함한다.
또한 이 기술을 바탕으로 비용과 전력소모를 최소화한 슈퍼컴퓨터 시작품 SnuCore를 자체 제작하였다.
SnuCore는 16개의 노드로 이루어져 있고, Tyan의 마더보드를 장착한 각 노드는 AMD의 Opteron 12-core CPU 2개와 GPU 6개(Radeon HD6990 그래픽 카드 3장)를 가지고 있다. Mellanox의 인피니밴드(InfiniBand) QDR 네트워크 스위치가 노드 간 통신에 사용되었다.

한 노드에 다수의 GPU를 장착할 경우 열이 많이 발생하는데, 이것이 노드 내부의 온도를 증가시켜 슈퍼컴퓨터의 안정성을 떨어뜨린다.
이를 방지하기 위해 이재진 교수 연구팀은 냉각된 물을 순환시켜 GPU에서 발생한 열을 외부로 방출하는 수냉 시스템을 자체적으로 설계, 제작하였다.
이 시스템은 상용 수냉 시스템보다 훨씬 저렴하며 노드 내 GPU의 온도를 상온보다 낮은 수준(약 18℃)에서 안정적으로 유지시켜 준다.

본 연구팀이 새로 개발한 소프트웨어 기술을 OpenCL과 MPI를 사용하여 린팩 벤치마크에 적용하였으며, 이를 SnuCore에서 실행한 다음 Top500 및 Green500 사이트의 규정대로 SnuCore의 계산 속도 및 전력효율을 측정하였다.
Green500(http://green500.org)은 Top500에 들어갔던 슈퍼컴퓨터들을 대상으로 이들의 전력효율에 따른 순위를 집계하는 사이트이다.
SnuCore의 계산 속도는 15.86 TFLOPS, 전력효율은 Watt 당 871 MFLOPS로 측정되었다.
SnuCore의 각 노드는 0.991 TFLOPS의 린팩 벤치마크 성능을 가지는데, 이 성능은 2011년 11월에 발표된 Top500의 슈퍼컴퓨터들과 비교해 보았을 때 가장 높은 수준이다.
따라서 본 연구에서 개발된 기술을 사용하면 같은 수의 노드를 사용해 더 높은 성능을 낼 수 있다. SnuCore의 전력효율은 Green500에서 15위와 16위 사이에 위치하는 수준이다.
 
SnuCore를 제작하는 데는 1 TFLOPS 당 1,300만 원 정도의 비용이 소요되었다.
이는 현재 세계에서 가장 빠른 슈퍼컴퓨터인 일본의 K Computer의 약 12분의 1, 두 번째로 빠른 슈퍼컴퓨터인 중국의 TianHe-1A의 약 3분의 1, 세 번째로 빠른 슈퍼컴퓨터인 미국의 Jaguar의 약 5분의 1 수준이다.
 
현재 Top500에서 노드 당 최고 성능은 독일의 LOEWE-CSC로, 노드 당 1개의 GPU를 사용하였고, 총 682개의 노드를 사용하여 Top500의 33위이다. 노드 당 성능은 438.9 GFLOPS 인데, 같은 팀이 보고한 4개의 노드에서 측정한 노드 당 성능은 526.3 GFLOPS이다.
따라서 노드가 4개에서 682개로 증가할 때 16.6%의 성능 감소가 있다. SnuCore의 경우 더 나쁘게 잡아서 20%의 성능 감소가 있다고 가정하더라도, 1000개 정도의 노드를 가정할 때 노드 당 성능이 792 GFLOPS 가 나오며 이는 여전히 세계 최고의 노드 당 계산속도이다.
 
본 연구의 결과가 의미하는 바는 특별히 제작된 부품이 아니라 시중에서 흔히 구할 수 있는 기성부품과 소프트웨어 기술을 이용하여 전력효율이 좋은 고성능?저비용의 대규모 슈퍼컴퓨터를 제작하는 것이 가능하다는 것이다.
본 연구팀은 이번 연구 결과를 서울대에서 개발하고 있는 OpenCL 기반의 프로그래밍 환경인 SnuCL에 적용하여 일반에게 추후 공개할 예정이다.


<이재진 교수>

1. 인적사항
 ○ 성 명 : 이재진(李在鎭, 44세)
 ○ 소 속 : 서울대학교 컴퓨터공학부

2. 학력
  1986 - 1991 서울대학교 물리학 학사
  1993 - 1995 Stanford University, Computer Science 석사
  1995 - 1999 University of Illinois at Urbana-Champaign, Computer Science 박사

3. 경력사항 
  1999.08 - 1999.12  University of Illinois at Urbana-Champaign
    Dept. of Computer Science
    Visiting Lecturer
  2000.01 - 2002.08  Michigan State University
    Dept. of Computer Science and Engineering
    Assistant Professor
  2002.09 ~ 2004.09 서울대학교 컴퓨터공학부, 조교수
  2004.10 ~ 2010.09 서울대학교 컴퓨터공학부, 부교수
  2010.10 ~ 현재  서울대학교 컴퓨터공학부, 교수
  2009.04 ~ 현재  교과부 연구재단 지정 매니코어 프로그래밍 연구단, 단장

4. 주요연구업적
1. Sangmin Seo, Gangwon Jo, and Jaejin Lee. Performance Characterization of the NAS Parallel Benchmarks in OpenCL, IISWC '11: Proceedings of the 2011 IEEE International Symposium on Workload Characterization, pp. 137 ? 148, Austin, Texas, USA, November 2011.
2. Seungkyun Kim, Kiwon Kwon, Chihun Kim, Choonki Jang, Jaejin Lee, and Sang Lyul Min. Demand Paging Techniques for Flash Memory Using Compiler Post-pass Optimizations, ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 40,  November 2011.
3. Sangmin Seo, Junghyun Kim, and Jaejin Lee. SFMalloc: A Lock-Free and Mostly Synchronization-Free Dynamic Memory Allocator for Manycores, PACT '11: Proceedings of the 20th ACM/IEEE/IFIP International Conference on Parallel Architectures and Compilation Techniques, pp. 253 ? 263, Galveston Island, Texas, USA, October 2011.
4. Jun Lee, Jungwon Kim, Junghyun Kim, Sangmin Seo, and Jaejin Lee. An OpenCL Framework for Homogeneous Manycores with no Hardware Cache Coherence, PACT '11: Proceedings of the 20th ACM/IEEE/IFIP International Conference on Parallel Architectures and Compilation Techniques, pp. 56 ? 67, Galveston Island, Texas, USA, October 2011.
5. Jungho Park, Choonki Jang and Jaejin Lee. A Software-Managed Coherent Memory Architecture for Manycores, Poster presentation in PACT '11: Proceedings of the 20th ACM/IEEE/IFIP International Conference on Parallel Architectures and Compilation Techniques, Galveston Island, Texas, USA, October 2011.
6. Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee. OpenCL as a Programming Model for GPU Clusters, LCPC '11: Proceedings of the 24th International Workshop on Languages and Compilers for Parallel Computing, Fort Collins, Colorado, USA, September 2011.
7. Junghyun Kim, Sangmin Seo, and Jaejin Lee. An Efficient Software Shared Virtual Memory for the Single-chip Cloud Computer, APSys '11: Proceedings of the 2nd ACM SIGOPS Asia-Pacific Workshop on Systems, Shanghai, China, July 2011.
8. Choonki Jang, Jungwon Kim, Jaejin Lee, Hee-Seok Kim, Dong-Hoon Yoo, Sukjin Kim, Hong-Seok Kim, and Soojung Ryu. An Instruction-Scheduling-Aware Data Partitioning Technique for Coarse-Grained Reconfigurable Architectures, LCTES '11: Proceedings of the ACM SIGPLAN/SIGBED 2011 International Conference on Languages, Compilers, and Tools for Embedded Systems, pp.  151 ? 160, Chicago, Illinois, USA, April 2011.
9. Eunbyung Park, Bernhard Egger, and Jaejin Lee. Fast and Space Efficient Virtual Machine Checkpointing, VEE '11:  Proceedings of the 2011 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp. 75 ? 85, Newport Beach, California, USA, March 2011.
10. Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. Achieving a Single Compute Device Image in OpenCL for Multiple GPUs, PPoPP ?11: Proceedings of the 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp.  277 ? 288, San Antonio, Texas, USA, February 2011.

반응형
반응형

암세포 생물학의 풀리지 않은 숙제 중 하나인 '염색체 불안정성'의 비밀이 밝혀졌습니다.

가족력을 갖는 유방암 환자의 1/3은 BRCA2의 돌연변이에 의해 발병됩니다.

이 BRCA2와 관련된 암은 유방암 이외에도 췌장암, 남성 유방암, 난소암이 있는데, 이들은 매우 빠르게 발생하고 악성의 정도가 극심한 것이 특징입니다.

□ 서울대  이현숙 교수팀은 세포분열 체크포인트를 조절하는 유방암 억제인자 'BRCA2'가 돌연변이가 되어 제 기능을 하지 못하면, 염색체 분리조절 메커니즘도 잘못되어 염색체의 불안정성을 초래하고, 이로 인해 염색체 숫자에 이상을 일으켜 유전정보가 대규모로 빠르게 변형되어 결국 암을 유발한다는 사실을 밝혀냈습니다.
 
세포는 유전정보를 정확히 전달하기 위해 세포분열 체크포인트를 진화시켰는데, 이 교수팀은 지난 2009년에 단백질 BubR1이 아세틸화되면 세포분열 체크포인트 기능을 수행하는데 필수적인 역할을 하게 된다는 사실을 밝혀낸바 있습니다(EMBO Journal 28권).

이번 연구는 그 후속으로 BRCA2가 BubR1의 아세틸화를 강화시키면서 정확한 유전정보 전달도 조절한다는 새로운 사실을 밝힌 것으로, 세포분열조절 메커니즘과 암 발생과의 연관성을 규명한 것입니다.

이 교수팀은 세포, 동물실험, 환자 샘플 등 다양한 방법으로 BRCA2가 세포분열 조절에 관여한다는 사실을 규명했습니다.

이것은 기초세포생물학으로 암의 발생과정을 설명하는 모범적인 사례로 평가 받고 있습니다.

BRCA2 에 의한 세포분열 조절 기작 모식도



□ 연구팀은 세포이미징 등 최첨단 기법을 이용하고 유전자 조작 마우스로 세포학적 연구를 유전학적으로 확인했습니다.

또한 서울대병원 노동영 교수팀과의 공동연구로 환자병리샘플에서 임상으로 응용할 수 있는 가능성도 확인했습니다.

이번 연구성과는 BRCA2 돌연변이가 유발하는 암의 특징을 분자적으로 설명한 결과로서, BRCA2 돌연변이 여부에 따른 치료법 선택과 예후인자발굴 등에도 응용될 전망입니다.
  
이번 연구는 이현숙 교수가 주도하고 최은희 박사후연구원, 박필구 박사과정생, 이혜옥 박사후연구원이 공동 제1저자로 참여했습니다.

연구결과는 세계 최고 권위의 과학전문지 Cell의 자매지인 'Developmental Cell'지 2월 14일자에 게재되었습니다.
(논문명 : BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation) 

Developmental Cell 논문의 제1저자 최은희 박사와 이혜옥 박사가 이현숙 교수(왼쪽)와 TIme-lapse 현미경을 보면서 토의하는 장면



 용  어  설  명

세포 분열 체크포인트 (Spindle assembly checkpoint, SAC) :
세포 분열 체크포인트는 모든 염색 분체의 동원체 (kinetochore)에 미세소립자로 구성된 방추사 (microtubule)가 양극 방향으로 결합할 때까지 염색체 분리를 막는 체크포인트이다.
SAC은 염색체 분리를 일으키는 Anaphase promoting complex/cyclosome (APC/C)라는 E3 ligase의 활성을 저해한다. 모든 염색 분체의 동원체에 양극방향의 방추사가 결합하면, APC/C의 활성이 증가하여 세포분열 카이나아제 (CDK1)의 조효소인 Cyclin B와 염색분체 분리를 일으키는 세퍼라아제 (separase)의 억제자인 Securin 등이 분해되면서 염색 분체 분리가 시작된다.

BRCA2 (Breast cancer susceptibility gene 2) :
대표적인 암억제인자로 가족력이 있는 유방암 환자에서 돌연변이가 발견되어 동정된 유전자이다.
BRCA2 의 돌연변이는 여성 유방암뿐만 아니라 췌장암, 남성 유방암과 난소암에서도 발견되며 빠른 발병과 악성 정도가 심하다는 것이 특징이다.
BRCA2가 망가진 세포는 염색체 구조 이상과 염색체 수가 불안정한 이수배수체 (aneuploidy) 를 보인다. 

BubR1 (Budding uninhibited by benzimidazole 1 homolog beta, Bub1b 혹은 BubR1) :

APC/C의 활성을 직접 억제하여 정확한 유전정보의 전달에 필수적인 SAC 단백질이다.
세포분열기에 라이신 250번 잔기가 acetyltransferase, PCAF에 의해 아세틸화되고, 이는 SAC 기능을 강화한다. 


<연 구 개 요>

가족력을 가지는 유방암의 1/3은 BRCA2 암억제인자의 돌연변이에 기인한다.
BRCA2 와 연관된 암은 유방암 외에 췌장암, 남성 유방암, 일부의 난소암이 있는데 이들의 특징은 매우 빠르게 발명하며 악성의 정도가 심하다는 것이다.
BRCA2 유전자의 암억제기능에 대한 연구는 세계적으로 활발히 진행되고 있으며, 대표적으로 손상된 DNA 복구 기작인 homologous recombination (HR) 조절자로서의 기능이 보고된 바 있다.

BRCA2 가 망가진 세포의 대표적인 특징은 HR 부재로 인한 염색체 구조의 이상과 염색체 단위의 수의 이상, aneuploidy 이다.  Aneuploidy 는 염색체 분리 조절 기작이 잘못되어 초래되는데, 세포는 이를 막기 위한 spindle assembly checkpoint (SAC) 를 진화적으로 보존하고 있다.
SAC은 모든 염색분체의 kinetochore 에 bipolar microtubule 이 결합할 때 까지 Anaphase promoting complex/cyclosome (APC/C) 라는 E3 ligase 의 활성을  억제함으로써 염색체분리를 막는다.
BubR1 은 SAC 기능에서 핵심적인 인자이다.
본 연구진은 선행 연구에서 BubR1 이 prometaphase 에 acetyltransferase 인 PCAF 에 의해 아세틸화되고, 이러한 BubR1 아세틸화가 SAC 기능에서 중요함을 밝혔다. 

그림 1. BRCA2 에 의한 세포 분열 조절기작 모식도. BRCA2 는 BubR1 아세틸화를 강화하고, 이를 통해 정확한 세포분열을 조절한다.  

본 연구진은 세포, 유전자 조작 마우스, 유방암 환자 샘플 등 다양한 시스템에서 BRCA2 가 BubR1 아세틸화를 강화함으로써 세포분열 조절에 관계한다는 새로운 사실을 밝혀내었다 (그림 1).
지금까지 BRCA2 의 기능 연구는 BRCA2 를 특이적으로 인지하는 항체가 부족하고, 커다란 BRCA2 단백질 크기의 문제로 생화학적 접근에 많은 어려움이 있었다.

그림 2. A) BRCA2 (빨강)와 BubR1 (초록) 이 prometaphase 의 kinetochore 에서 결합함 (노랑). 염색체 (파랑)를 슬라이드에 스프레드 한 후, 면역 형광염색법을 이용하여 관찰한 결과; B) BRCA2 가 망가진 세포 (siBRCA2)에서 BubR1 (초록)과 PCAF (빨강) 의 세기가 감소함. PCAF가 망가진 세포 (siPCAF)에서 BubR1 세기가 감소함. 
            
본 연구팀은 이를 극복하기 위하여 BRCA2 를 특이적으로 인지하는 항체를 개발하고, 형광단백질이 달린 BRCA2 를 안정적으로 발현하는 세포주를 도입하여 최첨단 세포 이미징 기법을 이용한 BRCA2 연구를 진행하였다. 
BRCA2 는 prometaphase 에 BubR1과 직접 결합하여 PCAF 와 BubR1 의 결합을 도와주는데 BRCA2가 망가져 기능하지 못하는 경우, BubR1 아세틸화가 감소하고 그로인해 염색체 분리 조절 기작이 잘못됨을 확인하였다 (그림 2).
즉, BRCA2 는 모든 염색분체의 kinetochore 에 microtubule 이 양극으로 정확하게 부착될 때 까지 BubR1 아세틸화를 강화함으로써 APC/C의 활성을 억제하여 유전정보의 안정성을 유지한다.

그림 3. BRCA2 가 망가진 유방암 환자 샘플에서 BubR1 레벨 (갈색) 이 감소함. A) 정상 조직; B) BRCA2 가 정상인 유방암 조직; C) BRCA2 가 돌연변이된 정상 조직; D) BRCA2 가 돌연변이된 유방암 조직.

BRCA2 와 BubR1의 결합을 망가뜨린 유전자 조작 마우스 (mB2-9 TG) 를 제작하여, BubR1 아세틸화가 현저히 감소하고, 이로 인해  SAC 의 기능이 약화되어 aneuploidy가 증가함을 관찰하였다.
이 마우스는 생후 1년이 되었을 때 다양한 조직에서 spontaneous cancer가 발생하였는데, 이는 BRCA2 의 세포분열 조절 기능의 이상으로 인한 암의 발병을 개체수준에서 증명한 것으로 그 의의가 크다.
한편, BRCA2가 망가진 유방암조직에서 BubR1 염색이 감소하는 상관관계를 증명함으로써 BRCA2-BubR1 사이의 연관성을 이용한 임상 응용 가능성을 제안하였다.

본 연구에서 제안된 BRCA2 의 새로운 세포분열 조절 기능은 BRCA2 가 돌연변이 되어 제대로 기능하지 못 하는 경우 염색체 분리 조절 기작의 약화를 초래하며 이는 염색체 단위의 유전정보의 손상을 야기하고, 빠르게 악성 종양의 발생을 유발하게 됨을 설명한다.
Aneuploidy 는 대표적인 암의 특징이나 암과 관련되어 보고된 SAC 유전자의 돌연변이는 매우 드물다.
BRCA2 를 통한 세포분열 조절 기작은 SAC 유전자의 돌연변이 없이 염색체 수의 불안정성을 초래하는 분자적 기작을 설명하는 연구로 이 연구를 확대하여 세포 분열 이상과 암발생 기작 연구를 선도적으로 풀어낼 수 있을 것으로 기대한다.
또한 병원과의 협력 연구를 통하여 BRCA2-BubR1 사이의 연관성을 이용한 임상적 응용 가능성을 타진함으로써 항암 치료법의 선택, 예후 인자 발굴 등 광범위하게 적용이 가능할 것으로 기대한다.  


 <이현숙 교수>

1. 인적사항 
 ○ 소 속 : 서울대학교 자연과학대학 생명과학부
 
2. 학력
  ○ 1986 - 1990: 이화여자대학교 학사 (생물학)
  ○ 1990 - 1992: 서울대학교 석사 (생물학)
  ○ 1996 - 1999 : 캠브리지대학 (MRC-LMB) 박사 (분자세포생물과학)
 
3. 경력사항
○ 1992.3 - 1996. 8 : 목암연구소, 연구원/선임 연구원.
○ 1999.9 - 1999.12 : 캠브리지대학 (MRC-LMB), 박사후 연구원
○ 2000.1 - 2000. 8 : 하버드대학, 박사후 연구원, Wellcome Trust Traveling fellow
○ 2000.9 - 2002. 2 : 워싱턴 대학, 박사후 연구원, Wellcome Trust Traveling fellow
○ 2002.9 - 2004. 2 : 이화여자대학교 분자생명과학부, 연구 교수
○ 2008.8 - 2009. 7 : 서울대학교 기초 교육원, 부원장
○ 2004.3 - 현재    : 서울대학교 생명과학부, 조교수/부교수

4. 주요연구업적
1. Choi E., Park P-G., Lee H-O., Lee Y-K., Kang K.H., Lee J.W., Han W., Lee H. C., Noh D-Y., Lekomtsev S., Lee H. (2012). BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev. Cell.  22:  (in press).
2. Min J., Choi ES., Hwang K., Kim J., Sampath S., Venkitaraman AR., Lee H  (2011). The breast cancer susceptibility gene BRCA2 is required for the maintenance of telomere homeostasis. J. Biol. Chem. Doi:10.1074/jbc.M111.278994. epub ahead 2011 Dec. 20th.
3. Choi E., Choi H., Min J., Choi, J-Y., Kim J., and Lee H. (2009). BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing in mitosis. EMBO J. 28: 2077-2089.
4. Lee Y., Choi E., Park P-G., Kim M. A., Park N-H, and Lee H. (2009) BubR1 as a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers. Brit. J. Cancer. 101: 504-510.
5. Jeong K., Jeong J-Y., Lee H-O., Choi E., and Lee H. Inhibition of Plk1 Induces Mitotic Infidelity and Embryonic Growth Defects in Developing Zebrafish Embryos (2010). Dev. Biol. 345: 34-48.
6. Hur E. M., Son M. Y., Lee O. H, Choi Y. B., Park C. W., Lee H., and Yun Y. (Co-corresponding author) (2003). Lime, a novel transmembrane adaptor protein associates with p56lck and mediates T cell activation. J. Exp. Med. 198(10):1463-1473. (cited 43)
7. Lee H., and Kimelman D. (2002). A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev. Cell. 2, 607-616. (cited 124)
8. Lee H., Trainer A. H., Friedman L. S., Thistlethwaite F. C., Evans M. J., Ponder B. A., and Venkitaraman A. R. (1999). Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell. 4, 1-10. (cited 134)




 

 

 

 

 

 

 

 

 

최은희 연구원 이력사항


1. 인적사항 
 ○ 소 속 : 서울대학교 자연과학대학 생명과학부
 ○ 전 화 : 02-886-4339
 ○ e-mail : eh0803@snu.ac.kr

2. 학력
  ○ 2000 - 2004 : 이화여자대학교 학사 (생명과학)
  ○ 2004 - 2010 : 서울대학교 박사 (생명과학)
 
3. 주요연구내용
1. Choi E., Park P-G., Lee H-O., Lee Y-K., Kang K.H., Lee J.W., Han W., Lee H. C., Noh D-Y., Lekomtsev S., Lee H. (2012). BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev. Cell.  22:  (in press).
2. Jeong J-Y., Jeong K., Lee H-O., Choi E., and Lee H. (2010) Inhibition of Plk1 Induces Mitotic Infidelity and Embryonic Growth Defects in Developing Zebrafish Embryos. Dev. Biol. 345(1): 34-48
3. Choi E., Choi H., Min J., Choi, J-Y., Kim J., and Lee H. (2009). BubR1 acetylation at prometaphase is required for modulating APC/C activity and timing in mitosis. EMBO J. 28: 2077-2089.
4. Lee Y., Choi E., Park P-G., Kim M. A., Park N-H, and Lee H. (2009) BubR1 as a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers. Brit. J. Cancer. 101: 504-510.  
5. Choi E. and Lee H. (2008). Chromosome damage induces BubR1 activation and prometaphase arrest. FEBS Letters 582:1700-1706
6. Min J., Park P-G., Kho E., Choi E., and Lee H. (2007). Identification of Rad51 regulation by using C. elegans BRCA2 and Bimolcular fluorescence complementation analysis. Biochem Biophys Res Commun. 362 (4): 958-964.

 

 

박필구 박사과정생 이력사항

 

1. 인적사항 
 ○ 소 속 : 서울대학교 자연과학대학 생명과학부
 ○ 전 화 : 02-886-4339
 ○ e-mail : ppkmtg81@snu.ac.kr

2. 학력
  ○ 2001 - 2005 : 서울대학교 학사 (생명과학)
  ○ 2005 - 2012 : 서울대학교 박사 취득 예정 (생명과학)
 
3. 주요연구내용
1. Choi E., Park P-G., Lee H-O., Lee Y-K., Kang K.H., Lee J.W., Han W., Lee H. C., Noh D-Y., Lekomtsev S., Lee H. (2012). BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev. Cell.  22:  (in press).
2. Lee Y., Choi E., Park P-G., Kim M. A., Park N-H, and Lee H. (2009) BubR1 as a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers. Brit. J. Cancer. 101: 504-510.
3. Park P-G. and Lee H. Development of thymic lymphomas in mice disrupted of Brca2 allele in the thymus. Exp. Mol. Med. 40: 339-344.
4. Min J., Park P-G., Kho E., Choi E., and Lee H. (2007). Identification of Rad51 regulation by using C. elegans BRCA2 and Bimolcular fluorescence complementation analysis. Biochem Biophys Res Commun. 362 (4): 958-964.

 

 

 

 


이혜옥 연구원 이력사항

 

1. 인적사항 
 ○ 소 속 : 서울대학교 자연학대학 생명과학부
           (현)고려대학교 의과대학 병리학교실
 ○ 전 화 : 02-920-6144
 ○ e-mail : haeockl@korea.ac.kr

2. 학력
  ○ 2001 - 2005 : 서울대학교 학사 (미생물학과)
  ○ 2005 - 2012 : 노스웨스턴대학 박사 (면역미생물학)
 
3. 경력사항
○ 2000 - 2002 : 워싱턴 대학, 박사후 연구원
○ 2002 - 2004 : 국립암센터, 박사후 연구원
○ 2004 - 2006 : 서울대학교 생명과학부, 박사후 연구원
○ 2006 - 2010 : 서울대학교 유전공학연구소, 연구 조교수
○ 현재 : 고려대학교 의과대학 병리학교실, 연구 강사

4. 주요 연구 내용
1. Choi E., Park P-G., Lee H-O., Lee Y-K., Kang K.H., Lee J.W., Han W., Lee H. C., Noh D-Y., Lekomtsev S., Lee H. (2012). BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev. Cell.  22:  (in press).
2. Lee H-O., Choe H., Seo K., Lee H. and Kim J. (2010). Fgfbp1 is essential for the cellular survival during zebrafish embryogenesis. Mol. Cells. 29;501-507
3. Jeong J-Y., Jeong K., Lee H-O., Choi E., and Lee H. (2010) Inhibition of Plk1 Induces Mitotic Infidelity and Embryonic Growth Defects in Developing Zebrafish Embryos. Dev. Biol. 345(1): 34-48
4. Nam S., Min K., Hwang H., Lee H-O., Lee JH., Yoon, J., Lee H., Park S., Lee J. (2009). Control of Rapsyn stability by the CUL-3-containing E3 ligase complex. J. Biol. Chem. 284(12):8195-206.
5. Lee H-O., Cho M., Lee J-H., Kim H-S., Yun Y., Lee H. (2007). SuPr-1-mediated desumoylation regulates the repressor activity of △Np63a. FEBS Letters. 581 (29): 5640-5644
6. Lee H-O., Lee J-H., Kim T-Y., and Lee H. (2007). Regulation of △Np63a by TNF-alpha in Epithelial Homeostasis. FEBS J. 274 (24): 6411-6522.
7. Lee H-O, Lee J-H., Choi E., Seol J., Yun Y., and Lee H. (2006). A dominant negative form of p63 inhibits apoptosis in a p53-independent manner. Biochem Biophys Res Commun. 344(1):166-72.

반응형
반응형

진단과 치료용 약으로서 펩타이드의 장점은 생산 단가가 낮고, 안전성과 반응성이 높으며, 특허 사용료가 상대적으로 저렴하고, 원하지 않는 면역시스템에 덜 노출되어 펩타이드 자체에 대한 부작용이 적고, 합성하여 쉽게 변형할 수 있는 것 등이 있습니다.

그럼에도 대부분의 펩타이드는 항체에 비해 특정 단백질 타깃에 대해 친화력과 특이성이 낮기 때문에 다른 분야에 활발히 응용되지 못하고 있는 실정입니다.

□ 항체처럼 질병 타깃과 잘 결합하면서 생산성과 안정성도 갖춘 새로운 펩타이드 플랫폼이 개발됨에 따라 차세대 진단 치료제 개발에 새 가능성을 열었습니다.


광주과기원 전상용 교수팀은 기존 펩타이드의 단점인 낮은 친화력과 특이성을 해결한 '앱타이드(Aptide)'라는 새로운 펩타이드 플랫폼 개발에 성공했습니다.

이 플랫폼은 펩타이드의 장점인 생산성 안전성과, 항체의 장점인 고친화력과 고특이성의 장점을 모두 갖췄습니다.

연구팀은 기존 펩타이드의 단점을 극복할 수 있는 새로운 개념의 펩타이드인 앱타이드를 개발해 다양한 단백질 타깃에 항체처럼 매우 잘 결합하는 고친화도, 고선택성 등을 동물실험을 통해 밝혀냈습니다.

또한 암 바이오마커에 특이적인 앱타이드를 이용해 생체 내에서 암만을 선택적으로 진단할 수 있다는 사실도 확인했습니다.

이번에 개발된 앱타이드는 항체처럼 결합력이 강해 다양한 바이오의약품으로 응용될 수 있어, 항암 표적치료제뿐만 아니라 다양한 질병에 대한 의약품으로 활용될 수 있을 것으로 기대받고 있습니다.

연구결과는 화학분야의 최고 권위의 학술지인 '앙게반테 케미(Angewandte Chemie)'지 1월호(1월 24일)에 게재되었습니다.
(논문명 : Bio-Inspired Design and Potential Biomedical Applications of a Novel Class of High-Affinity Peptides)


 용  어  설  명

앱타이드 (Aptide) :
항체나 압타머와 같이 타켓물질에 고친화도와 선택성을 가지고 결합할 수 있는 펩타이드로서 Aptamer-like Peptide 의미

펩타이드 (Peptide) :
단백질과 구성 성분은 같으나 크기가 훨씬 작은 일종의 단백질의 조각에 해당하는 것으로 2개 이상에서 대략 50개 이내의 아미노산이 연결되어 구성되어 있는 물질

항체 :
타겟물질에 고친화도 및 선택성으로 결합할 수 있는 면역글로부린 구조를 가지고 있는 단백질로서 다양한 질병에 대한 획기적인 치료제로서 각광을 받고 있음

<연 구 개 요>

현재 질병 타겟에 높은 친화력을 가지며 특이적으로 붙는 펩타이드는 진단과 치료 분야에서 많은 이용 가치를 가지고 있다.
일반적으로 펩타이드는 생산 단가가 낮고 반응성이 높으며 면역반응을 잘 일으키지 않으며 합성을 통해서 생산되기 때문에 변형이 쉽고 순도가 높은 제품을 만들 수 있는 장점을 가지고 있다.
하지만 기존의 펩타이드가 후보약물이 되기 위해서는 낮은 타겟 친화력과 특이성, 단백질 가수분해 효소에 의한 생체 내 불안정성과 같은 한계점을 극복해야 한다.
이런 문제점을 해결하기 위해서 새로운 높은 친화력과 특이성을 가지는 "펩타이드 압타머 (앱타이드, Aptide)"라는 새로운 펩타이드 스캐폴드를 디자인하고 그것의 성질을 규명하였다.

그림 1.  앱타이드는 루이신 지퍼 단백질과 비슷한 모양을 가지도록 디자인을 함. 펩타이드 골격(scaffold)의 양 말단의 결합된 두 개의 펩타이드(오렌지색, 파랑색)가 공동으로 타겟분자에 결합하는 형태로 높은 친화성으로 특이적 결합력을 가지도록 함.

앱타이드는 루이신 지퍼 단백질의 구조에서 영감을 얻어 디자인을 한 총 26개의 아미노산으로 이루어진 펩타이드이다.
이는 trpzip 이라는 beta-hairpin motif scaffold를 골격으로 이용하여 trpzip 의 N- 과 C- 말단 부분에 각각 6개의 아미노산을 무작위로 배열함으로써 타겟 바인딩 부분을 만들었고 이를 통해 항체와 대등한 수준의 높은 친화력과 특이성을 가진 펩타이드를 개발하였다.
이는 기존의 펩타이드의 단점인 안정성을 극복함과 동시에 표적결합부위의 두 개의 구조로 이루어진 가변적 펩타이드를 이용하여 시너지 효과를 일으켜 타겟에 대해 매우 높은 친화력과 특이성을 확보할 수 있었다.


그림 2.  암 바이오마커인 EDB에 특이적 앱타이드의 암 표적화.
(a) 쥐의 인간 뇌종양 세포를 이식하여 암을 만든 다음에 형광이 표식된 EDB 특이적인 앱타이드(APTEDB1st)와 대조군인 scramble 앱타이드 (scr-APT)를 정맥주사 한 후 시간마다 형광이미지를 얻음. 붉은 화살표는 암을 나타냄. 시간이 지나감에 따라 EDB 특이적 앱타이드는 암에 선택적으로 축적되나 scramble 앱타이드는 암에 전혀 축적되지 않음.
(b) 정맥 주사 후 6시간 후에 쥐에서 암, 간, 심장, 폐, 신장, 이자를 절제하여 형광이미지를 얻음. EDB 특이적 앱타이드는 암에 많은 양이 선택적으로 표적화되었으나 scramble 앱타이드는 전혀 암에 축적되지 않았음.

예를 들어 fibronectin extra-domain B (EDB), VEGF, HSA 와 hexa-histidine tag 과 같은 여러 다른 타겟에 대해서 모두 nanomolar 범위의 친화력을 갖는 앱타이드를 발굴할 수 있었고 친화력 향상 과정을 통해 65 nM 인 EDB 특이적 앱타이드를 최대 3 nM 까지 친화력을 향상시킬 수 있었다.
중요하게, 암 바이오마커인 EDB에 특이적인 앱타이드를 이용하여 생체 내에서 암만을 선택적으로 진단할 수 있었다.
결론적으로, 이러한 앱타이드는 어떤 타겟이든 높은 친화력과 특이성을 가지는 펩타이드를 발굴할 수 있기 때문에 항암제 등의 의약품으로서의 용도뿐만 아니라 생체 내 물질의 검출, in vivo 분자 이미징, in vitro 세포 이미징, 약물전달시스템, 에스코트 분자 등에 광범위하게 응용할 수 있다.

<전상용 교수>

1. 인적사항 
 ○ 소 속 : 광주과학기술원 생명과학부 정교수
 
2. 학력
  ○ 1993 : 한국과학기술원 학사  (화학과)
  ○ 1995 : 한국과학기술원 석사  (화학과)
  ○ 1999 : 한국과학기술원 박사  (화학과)
 
3. 경력사항
○ 1999 ~ 2002 : POSTECH, Postdoctoral Research Scientist
○ 2002 ~ 2004 : MIT, Postdoctoral Associate
○ 2004 ~ 2007 : 광주과학기술원 생명과학부, 조교수
○ 2007 ~ 2010 : 광주과학기술원 생명과학부, 부교수
○ 2010 ~ 현재 : 광주과학기술원 생명과학부, 정교수

4. 주요연구업적
1. Park S, Kim YS, Kim WB* and Jon S*. "Carbon Nanosyringe Array as a Platform for Intracellular Delivery", Nano Lett., 2009; 9(4), 1325-1329.

2. Yu MK, Jeong YY, Park JH, Park SJ, Kim JW, Min JJ, Kim KW and Jon S*. "Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo", Angew. Chem. Int. Ed., 2008; 47, 5362-5365.

3. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S*, Kantoff PW,    Langer R and Farokhzad OC*. "Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy and Sensing   of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer", Nano Lett. 2007; 7, 3065-3070.

4. Kim D, Park S, Lee JH, Jeong YY* and Jon S*. "Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Computed Tomography Imaging", J. Am. Chem. Soc., 2007; 129, 7661-7665.

5. Lee H, Lee E, Kim DK, Jang NK, Jeong YY* and Jon S*. "Antibiofouling Polymer-Coated Superparamagnetic Iron Oxide Nanoparticles as Potential Magnetic Resonance Contrast Agents     for In Vivo Cancer Imaging", J. Am. Chem. Soc, 2006; 128, 7383-7389.

반응형
반응형

리튬이차전지는 현재 휴대폰, 노트북 컴퓨터 등 휴대통신기기에 폭넓게 사용되고 있고, 최근에는 하이브리드 전기자동차와 지능형 로봇 등의 동력원 뿐만 아니라 태양광, 풍력 발전 등 신재생 에너지용 전력저장 중대형 전지시스템으로 주목 받고 있습니다.   

그러나 국내외에서 심심치 않게 발생하는 배터리 폭발사고와 배터리 공장 폭발사고 등으로 인해 이를 실제 중대형 전지시스템에 적용하기 위해서는 에너지 밀도를 높이는 문제 뿐만 아니라 높은 안정성을 확보하는 문제까지 중요한 이슈로 제기되어 왔습니다.

이런 가운데 안정성이 뛰어나고 용량도 큰 리튬을 이용한 이차전지의 차세대 양극소재가 국내 연구진에 의해 개발돼 전기자동차 등 중대형 전지 개발에 새로운 가능성을 열었습니다.
 
한양대 선양국 교수팀은 최근 주목받고 있는 중대형 리튬이차전지의 안전성과 에너지밀도를 동시에 획기적으로 높인 이중구조 양극소재를 개발했습니다

여기서 이중구조란 고에너지 밀도를 갖지만 안전성이 낮은 중심물질에 고안전성, 고출력을 나타내는 외부층을 형성하여 양쪽의 장점만을 취한 독특한 구조입니다.

마이크론 사이즈의 이중구조 올리빈계 소재의 구성요소 및 각각의 장점을 표현한 그림.



연구팀은 이중구조 양극소재를 개발하여 리튬이차전지의 에너지 밀도를 높이면서(상용화된 소재 대비 1.2배 상승) 동시에 안정성을 획기적으로 향상(상용화된 소재 대비 약 500배 안정)시키는 데에 성공하였다.
 
이는 향후 하이브리드 전기자동차나 전력저장 시스템용 중대형 전지 뿐만 아니라 신재생에너지 저장용 차세대 에너지 저장시스템의 전극 소재 개발 등에 중요한 기반이 될 전망입니다.

연구결과는 화학분야의 권위 있는 학술지인 '앙게반테 케미 국제판(Angewandte Chemie International Edition)'에 1월 17일자로 게재되었습니다.
(논문명 : Double-Structured LiMn0.85Fe0.15PO4 Coordinated with LiFePO4 for Rechargeable Lithium Batteries)

 용  어  설  명

리튬이차전지 (Lithium Ion Secondary Battery) :
이차전지의 일종으로서, 방전 과정에서 리튬 이온이 음극에서 양극으로 이동하는 전지이다.
충전 시에는 리튬이온이 양극에서 음극으로 다시 이동하여 제자리를 찾게 되며, 충전 및 방전의 반복으로 지속적으로 사용할 수 있는 전지로 현존하는 이차전지 중 가장 에너지밀도가 높다.

올리빈 구조 (olivine structure) :
리튬이차전지에 사용되는 양극 소재의 한 종류로 orthorhombic 구조를 가진다.
일반적으로 LiMPO4 (M=Fe, Mn, Co, Ni) 화학식으로 표현되며, 사용되는 전이금속에 따라 다른 산화 환원 전위 (Fe: 3.4 V, Mn: 4.1 V, Co: 4.7 V, Ni: 5.2 V)를 갖는다.

에너지밀도 (Energy Density) :
단위 부피나 단위 무게 당 저장되는 에너지를 나타내며, 리튬이차전지에서는 사용되는 전극의 밀도에 따라 그 크기가 결정된다.

확산거리 (Diffusion Length) :
리튬이차전지의 충전 혹은 방전 시 양/음극 소재 입자에서 리튬이온이 삽입 또는 탈리 중에 이동하는 거리를 말한다.

전기화학 테스트 (Electrochemical test) :
리튬이차전지에서 사용되는 소재의 성능을 평가하기 위해 진행되는 테스트로 충방전 테스트, 수명특성, 출력특성 등을 일반적으로 평가한다.

시차주사 열량계 (Differential Scanning Calorimetry) :
일반적으로 물질은 온도가 변화됨에 따라 물리적, 화학적 변화를 일으키며, 대부분의 화학적 물리적 변화를 일으키는 물질은 각각 열을 흡수하거나 방출한다. 따라서 시료의 열 출입을 관찰하여 화학적, 물리적 변화여부를 분석하는 장비이다.

<연 구  개 요>

리튬이차전지는 휴대폰, 노트북컴퓨터 등과 같은 소형전지에 널리 사용되어 왔으며, 최근에는 하이브리드 전기자동차, 에너지 저장장치 등으로 쓰이는 중대형 전지로 사용하기 위한 연구가 활발히 진행되고 있다.
이러한 중대형 전지에서 요구되는 중요한 특성은 높은 열적안전성과 장 수명특성, 높은 에너지밀도이다.
높은 열안전성과 장 수명특성을 만족시키기 위한 많은 양극 소재 중 올리빈(olivine)구조를 갖는 양극 소재가 저가격, 친환경성, 고안전성으로 각광받고 있다.
이러한 올리빈 구조의 양극 소재도 낮은 전기전도도를 갖는 단점이 있는데, 입자의 나노화, 균일한 카본코팅, 전이금속 치환의 방법으로 이를 극복하였다.
그 중 가장 많이 연구되고 발전된 소재가 LiFePO4와 LiMnPO4 조성의 소재이다.
먼저, LiFePO4의 경우 열적안전성이 우수하고 수명 특성이 뛰어난 장점이지만 평균전압대가 3.4 V로 상용화되고 있는 LiCoO2 계열의 층상계 소재 (3.7 V)에 비해 낮은 에너지 밀도를 가진다.
이에 반해, LiMnPO4의 경우 평균전압대가 4.1 V로 LiFePO4에 비해 높은 에너지 밀도를 지닌다.
하지만 이 물질은 부도체에 가까운 낮은 전기전도도와 (<10-10 S/cm) 전지 구동에 따른 Mn 금속 용해에 의해 낮은 용량과 열악한 수명특성 등이 상업화의 걸림돌이 되어왔다.
중대형 전지에서는 높은 에너지밀도를 요구하는데 그 이유는 한정적인 공간에서 더 높은 에너지를 얻을 수 있기 때문이다.
이러한 요구조건으로 인해 나노사이즈의 소재가 아닌 높은 밀도를 지닌 마이크론 사이즈의 소재의 연구가 진행되어 왔다.
하지만 높은 밀도를 갖는 마이크론 사이즈 물질은 내부에 카본코팅이 어려워 전도도가 낮아지며, 리튬이온의 확산거리 (diffusion length)가 증가하여 성능이 현저히 낮아지게 된다.
앞에서 설명한 특성을 지니며, 단점을 극복하는 소재를 개발하기 위해 이번 연구에서는 고에너지밀도를 지닌 마이크론 사이즈의 LiMn0.85Fe0.15PO4 코어에 고안전성을 지닌 LiFePO4 층을 형성하여 각각의 소재의 장점인 고에너지밀도, 고안전성을 동시에 지니게 하였다.
또한, 마이크론 사이즈 소재의 단점을 극복하기 위해 내부에 나노사이즈의 공극(pore)을 가지며, 각각의 공극 안에 균일하게 카본이 코팅된 마이크론 사이즈의 소재를 개발하였다. (그림 1. 개념도)

그림 1. 마이크론 사이즈의 LiMn0.85Fe0.15PO4 ? LiFePO4 이중구조 소재 개념도

이러한 이중구조를 지닌 올리빈 소재의 성능을 확인해 보기 위해 LiFePO4 외부층이 없는 물질과 전기화학 테스트를 비교 진행해 보았다.


그림 2. 이중구조 물질의 충방전 테스트(charge/discharge test)와 수명특성(cycle life test) 비교


그림 2.에 나타낸 것처럼 외부층이 존재함에 따라 방전용량이 증가하며, 외부층의 두께가 증가함에 따라 고온에서의 수명특성도 훨씬 향상되는 것을 볼 수 있다.
이는 LiFePO4 외부층이 전체적인 소재의 전도도도 향상시킬 뿐만 아니라 고온에서의 Mn 금속의 용해도 방지하여 수명특성을 향상시킨다는 것을 알 수 있다.

그림 3. 시차주사 열량법 (Differential Scanning Calorimetry, DSC) 분석을 통한 이중구조의 열적안전성 비교

또한, 그림 3.에 나타난 시차주사 열량법 (DSC) 테스트를 통해 외부의 LiFePO4 층이 발열온도를 높일 뿐만 아니라 발열량도 현저히 낮춰서 열적안전성을 훨씬 향상시키는 것을 볼 수 있다.

<선양국 교수>

1. 인적사항 
 ○ 소 속 : 한양대학교 에너지공학과 교수
 
2. 학력
  ○ 1987 : 서울대학교 석사 (화학공학)
  ○ 1992 : 서울대학교 박사 (화학공학)
 
3. 경력사항
○ 1996 ~ 2000 : 삼성종합기술원, 수석연구원
○ 2000 ~ 2008 : 정보통신신소재연구센터, 센터장
○ 2002 ~ 2004 : Argonne National Lab., 방문연구원
○ 2007 ~ 현재 : Illinois Institute of Technology, 연구교수
○ 2000 ~ 2008 : 한양대학교 응용화학공학부, 교수
○ 2007 ~ 현재 : 한국과학기술 한림원 정회원
○ 2009 ~ 현재 : 한양대학교 에너지공학과, 교수
○ 2012 ~ 현재 : Journal of Power Sources, Associated Editor

4. 주요연구업적
1. Y.-K. Sun, S.-M. Oh, H.-K. Park, B. Scrosati, "Micro-sized, nanoporous, high volumetric capacity LiMn0.85Fe0.15PO4cathodematerialforrechargeable lithium batteries", Advance Materials, 23(43), 5050-5054, 2011.
2. J. Hassoun, K.-S. Lee, Y.-K. Sun, B. Scrosati, "An Advanced Lithium Ion Battery Based on High Performance Electrode Materials", J. of Amer. Chem. Soc., 133(9), 3139-3143. 2011.
3. H.-G. Jung, S.-T. Myung, C.-S. Yoon, S. M. Son, K. H. Oh, K. Amine, B. Scrosati, Y.-K. Sun, "Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries", Energy and Environmental Science, 4(4), 1345-1351, 2011
4. S.-W. Oh, S.-T. Myung, S.-M. Oh, K. H. Oh, K. Amine, B. Scrosati, Y.-K. Sun, "Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries", Advanced Materials, 22(43), 4842-4845, 2010.
5. S.-W. Oh, S.-T. Myung, S.-M. Oh, K. H. Oh, K. Amine, B. Scrosati, Y.-K. Sun, "Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries", Advanced Materials, 22(43), 4842-4845, 2010.
6. Y.-K. Sun, D.-H. Kim, C.-S. Yoon, S.-T. Myung, J. Prakash, K. Amine, "A Novel Cathode Material with Concentration-Gradient for High Energy and Safe Lithium-Ion Batteries", Advanced Functional Materials, 20(3), 485-491, 2010.
7. 6. Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, K. Amine, "High-energy cathode material for lng-life and safe lithium batteries", Nature Materials, 8(4), 320-324, 2009.
8. K.-S. Lee, S.-T. Myung, K. Amine, H. Yashiro, Y.-K. Sun, "Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 fr lithium batteries", Journal of Materials Chemistry, 19(14), 1995-2005, 2009.
9. K. S. Lee, S.-T. Myung, K. Amine, Y.-K.Sun, "Structural and Electrochemical Properties of Layered Li[Ni1-2xCoxMnx]O2(x=0.1-0.3)PositiveElectrodeMaterialsforLi-IonBatteries", J. of Electrochem. Soc., 154(10), A971-A977, 2007.
10. Y.-K. Sun, S.-T. Myung, M.-H. Kim, J. Prakash, K. Amine, "Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries", Journal of the American Chemical Society, 127(38), 13411-13418, 2005.
외 272편

반응형
반응형

생존을 위해 전략적, 기능적으로 최적화된 자연 생태계의 동물과 곤충의 몸체들을 유심히 관찰하고, 이를 응용하는 것이 생체모사 공학입니다.

대표적으로 물에 젖지 않는 연꽃잎에 관한 연구나 잠자리의 눈, 곤충의 날개구조 등이 있습니다.

그런데 딱정벌레의 날개에서는 독특한 구조와 형태의 잠금장치가 있다고 합니다.

이 딱정벌레 날개에 있는 잠금장치인 미세섬모의 결합 기본원리를 모사해 신개념 나노구조 잠금장치가 개발됐습니다.


□ 서울대 서갑양 교수팀은 최근 전 세계적으로 주목받고 있는 생체모사 공학분야 중 딱정벌레 날개의 결합원리를 이용해 기존의 결합제인 벨크로(일명 찍찍이)와는 전혀 다르게, 강한 접착력을 띄면서도 소음이 발생하지 않고 반복적으로 사용할 수 있는 신개념 나노구조 잠금 테이프 개발에 성공했습니다.

서 교수팀은 우선 딱정벌레의 섬모와 유사한 크기인 마이크로와 나노 크기의 규칙적인 섬모를 다양한 길이비율과 재료들을 이용해 제작하여 접착력을 상호 비교 분석하고, 섬모간의 결합력과 형태를 직접 확인했습니다.

특히 연구팀은 미세섬모 사이에 작용하는 다양한 미세한 힘(반데르발스 힘 포함)들을 분석하고 시뮬레이션하여, 섬모 사이의 결합 현상이 일어나는 재료, 형태 및 설계의 특징을 처음으로 규명했습니다.

연구결과 딱정벌레 날개잠금장치의 구조와 현상을 모방하여 간단한 미세섬모 제조기술을 이용해 결합력도 뛰어나고 소음도 없는 획기적인 나노구조 잠금장치를 개발할 수 있었습니다.

이번 연구결과는 기존 제품을 대체할 수 있는 생활용품을 포함해 얇고 가벼운 스마트기기 및 의료장비, 강한 접착력이 필요한 우주 항공 등 다양한 분야에 활용되는 원천기술로서 파급효과가 상당히 클 것으로 기대받고 있습니다.

특히 향후 생체모사 공학분야의 나노크기 구조의 결합과 접촉을 이용한 전기접합 등 초고효율 에너지 전달과, 피부에 부착하여 생체신호를 모니터링하는 센서 등 융합기술 개발에 초석이 될 전망입니다.

연구결과는 나노기술 및 재료 분야의 권위 있는 학술지인 'Advanced Materials'지 1월호(4권, 1월 24일자) 표지논문으로 게재됐습니다.
(논문명 : Bioinspired Reversible Interlocker Using Regularly Arrayed High Aspect-Ratio Polymer Fibers)

딱정벌레 날개 잠금 장치를 모사한 가역적 나노 구조 잠금장치 논문 표지 (The front cover of Advanced Materials: Bioinspired Reversible Interlocker Using Regularly Arrayed High Aspect-Ratio Polymer Fibers). 딱정벌레의 날개는 몸체에 비해 상대적으로 크고 섬세하며, 주변 환경에 최적화되어 딱정벌레의 생존에 중요한 기능을 담당하고 있다. 이러한 날개를 보호하기 위하여 몸체와 겉날개의 맞닿는 여러 부분에 가역적 미세 섬모 배열이 존재하며, 미세 섬모의 결합을 통해 날개의 쓸림이나 자연계의 외부 힘에 대해 날개를 보호하는 기능을 가지고 있는 것으로 알려져 있다. 본 연구진은 딱정벌레 날개의 잠금장치를 모사하여 신개념 나노구조 잠금장치를 개발하였다.


왼쪽부터 서갑양 교수, 방창현 박사과정, 배원규 박사과정

 용  어  설  명

전단 접착력 (Shear adhesion force) : 
물체의 어떤 단면에 평행으로 서로 반대방향인 한 쌍의 힘을 작용시키면 물체가 그 면을 따라 분리될 때까지의 작용하는 힘을 말하며 접착 강도의 척도이다. 

피일링 오프 탈착 방법 (Peeling-off) :
접착테이프의 탈착 시 테이프를 탈착 힘을 최소화하기 위해 테이프의 곡면을 주어 벗겨내는 방법을 말한다.
일반적인 테이프형 습식 및 건식 접착제의 탈착에 쓰이는 방법이다.

반데르발스 상호작용(van der Waals interaction) :
무극성 분자에서 전자의 운동으로 순간적인 쌍극자가 형성되면 그 옆의 분자도 일시적인 편극이 일어나 유발 쌍극자가 생성된다.
이런 순간적인 쌍극자와 유발 쌍극자의 인력 작용을 반데르발스 상호작용이라고 한다. 화학결합에 비하면  약하나 재료와 표면 구조에 따라 강한 인력작용을 유발할 수 있다.

모세관력 리소그래피 (Capillary force lithography) :
모세관 현상은 고분자 물질을 이용한 패턴 형성에서 유용한 개념으로 액체가 모세관을 적실 때, 낮은 자유에너지를 갖게 되며, 그 젖음 현상은 액체의 모세관 오름 현상을 일으킨다.
이러한 현상을 이용하여 고분자의 나노 혹은 마이크로 크기의 패턴을 성형 및 제조하는 리소그래피 공정 중의 하나이다.

탄성계수(Young's modulus) :
고체 물질의 탄성계수는 응력-변형률곡선의 기울기로부터 구할 수 있으며, 하중이력(history)에 따라서 다양하게 존재할 수 있다.
즉, 접선영률은 일부 고정된 백분율에서 응력-변형률 곡선에서의 기울기가 된다. 일반적으로 최대압축강도의 50%를 선택하는 경우가 많다.

Advanced Materials :
세계적인 신소재 분야의 권위 있는 학술지로, 화학, 물리, 나노기술, 세라믹, 생체재료 등을 다루며, 연구논문(Communications), 리뷰(Review), 특집 기사 (Feature Articles)를 포함한다. (2010 SCI 피인용지수: 10.880)  

<연 구 개 요>

본 연구는 딱정벌레 날개 잠금장치를 분석하여 결합체의 구조물의 멀티스케일 (마이크로 및 나노) 분석을 통한 초강도 전단 접착력(Shear adhesion force)의 방향성을 가지며, 탈착 방법(Peeling-off)에 따라 비교적 손쉬운 탈착성을 지닌 가역적 잠금장치 개발에 관한 연구이다.
그림 1은 자연계에 존재하는 딱정벌레 잠금장치에 관한 분석 및 모식도를 나타낸다.

그림 1. 딱정벌레 날개 잠금장치. (a-c) 딱정벌레 날개 잠금장치 미세 섬모(d) 가역적 딱정벌레 날개 잠금장치 모식도


일반적으로 단추, 기존의 벨크로(Velcro)와 지퍼 같은 커넥터는 서로 결합되기 위해서 기계적 상호작용이나 짝끼리의 접합을 이용한다.
하지만, 신개념의 나노구조 잠금장치는 나노크기 치수를 최소화함에 따라 분자 간 반데르발스 상호작용(van der Waals interaction)이 급격하게 증폭되는 현상을 이용한다.
또한, 모세관력 리소그래피(Capillary force lithography)를 응용한 간단한 제조 공정으로 동일한 짝으로 간단한 접착이 가능하다.
(그림 2) 이것은 기존의 커넥터 기술과 대조적이고 다양한 곳에 더 쉽게 활용이 가능하며, 재료가 갖는 적정한 탄성계수(Young's modulus) 때문에 나노 구조들은 쉽게 붕괴되지 않는다.
 

그림 2. 가역적 신개념 나노구조 잠금장치의 제조와 탈부착


미세 섬모의 체결(interlocking)현상은 미세 섬모에 작용하는 반데르발스 힘과 섬모 고유의 구조적 변형(Deflection)의 상호 관계로부터 설명할 수 있다.
그림 3은 미세 섬모의 결합 및 강한 결합력에 의한 섬모의 분리 현상을 분석한 결과이다.
이로부터 이론적 모델을 확립함으로써 딱정벌레 날개 잠금장치의 원리를 설명하고, 기존의 벨크로와 전혀 다른 현상을 갖는 신개념 나노구조 잠금장치 개발의 기술적 토대를 확립하였다.

그림 3. 미세 섬모의 체결 메커니즘 및 결합 기준


그림 4와 같이 미세 섬모의 움직임의 반경을 계산하여 신개념 나노구조 잠금장치의 구조적 및 재료적 형성 기준을 마련하였다.

결과적으로 신개념 나노구조 잠금장치는 나노구조물의 단위면적당, 많은 개수의 섬모 체결 결합이 형성될수록 접착력이 우수해진다.
즉, 형성된 미세섬모의 밀도, 구조, 재료적 특성에 따라, 미세섬모 간의 접촉에 의한 반데르발스 힘이 커지기 때문에 접착력이 향상된다.

그림 4. 멀티스케일 미세 섬모의 결합 기준

<서갑양 교수>

1. 인적사항 
 ○ 소 속 : 서울대학교 기계항공공학부 부교수
 
2. 학력
  ○ 1996 : 서울대학교  학사 (화학공학)
  ○ 1998 : 서울대학교 석사 (반도체 공정)
  ○ 2002 :  서울대학교 박사 (나노공정)
 
3. 경력사항
○ 2002 ~ 2002 : 서울대학교 응용화학부, Postdoc Fellow & Lecturer
○ 2002 ~ 2004 : Massachusetts Institute of Technology (MIT), Postdoc Fellow
○ 2004 ~ 2008 : 서울대학교 기계항공공학부, 조교수
○ 2010 ~ 2011 : Johns Hopkins University, 방문 연구교수
○ 2008 ~ 현재 : 서울대학교 기계항공공학부, 부교수

4. 주요연구업적
1. M. K. Kwak, H.-E. Jeong, K.-Y. Suh, "Dry Adhesive Medical Skin Patch: Rational Design and Enhanced Biocompatibility," Adv. Mater. vol. 23, no 34, pp. 3949, 2011.
2. H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, H. H. Lee, "Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays," Nat. Commun. vol. 2, pp. 455, 2011.
3. P. Kim, S. J. Kim, J. Han, and K. Y. Suh, "Stabilization of Ion Concentration Polarization Using a Heterogeneous Nanoporous Junction," Nano Lett. vol. 10, pp. 16, 2010.
4. K.-J. Jang and K. Y. Suh, "A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells," Lab Chip. vol. 10, pp. 36, 2010.
5. K. Y. Suh, M. C. Park, and P. Kim, "Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering," Adv. Funct. Mater. vol. 19, pp. 2699, 2009.
6. T. I. Kim, H. E. Jeong, K. Y. Suh, and H. H. Lee, "Stooped nanohairs: geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive," Adv. Mater. vol. 21, pp. 2276, 2009.
7. H. E. Jeong, J. K. Lee, H. N. Kim, S. H. Moon, and K. Y. Suh, "A nontransferring dry adhesive with hierarchical polymer nanohairs," Proc. Natl. Acad. Sci. vol. 106, pp. 5639, 2009.

반응형
반응형

간섬유화와 간경화의 주된 원인은 음주, 바이러스감염, 지방간염, 약물 등으로 알려져 있는데, 병이 진행될 경우 간을 이식하는 것 이외에는 효과적인 치료가 없는 실정입니다. 

일반적으로 간섬유화증은 간세포가 손상되면서 간에 섬유소가 축적되고, 이런 상황이 오래 지속되면서 간경화 또는 간암으로 발전하게 됩니다.

□ 간섬유화 등 만성 간 질환 환자에게서 나타나는 간세포의 죽음을 마이크로RNA 조절로 억제하는 원리가 개발됐습니다.

이에 따라 치사율이 높은 간경화증을 약물로 치료할 수 있는 새로운 가능성이 열렸습니다.

서울대 김상건 교수팀은 마이크로RNA가 비정상적으로 증가할 경우 만성 간 질환의 초기증세인 간섬유화에서 간경화로 악화될 때 발생하는 간세포 손상을 촉진하고, 간의 항상성을 조절하는 핵수용체(FXR)가 활성화되면 간 손상을 억제한다는 사실을 규명했습니다. 

김 교수팀은 간경화 환자에게서 간세포의 손상이 진행될수록 특정 마이크로RNA가 비정상적으로 증가한다는 사실을 발견하고, 이 변화가 간섬유화와 간경화에서 세포 손상을 촉진하는 중요한 원리임을 밝혀냈습니다.

간섬유화 또는 간경변 환자에서 핵수용체 FXR의 감소와 마이크로RNA의 비정상적인 증가를 발견


특히 이 마이크로RNA는 항산화능과 항암작용에 관여하는 단백질(LKB1)을 억제하는 것으로 확인되었습니다. 

또한 연구팀은 간의 항상성을 조절하는 단백질(핵수용체, FXR)을 활성화하면 마이크로RNA의 양을 줄여 간 손상을 막을 수 있다는 사실도 밝혀냈습니다.
 
이번 연구결과는 간경화의 악화를 억제하는 핵수용체와 마이크로RNA 타깃을 제시하여, 여러 가지 원인으로 손상을 입은 간을 치료하는 새로운 가능성을 연 획기적인 성과로 평가받고 있습니다.

이번 연구결과는 소화기 연구 분야의 권위 있는 학술지인 'Gastroenterology'지 1월 18일자 온라인 속보로 게재되었습니다.  
(논문명: FXR Protects Hepatocytes form Injury by Repressing miR-199a-3p,  which Increases Levels of LKB1)

김상건 교수(오른쪽)과 이찬규 연구원


 용  어  설  명

Gastroenterology :
소화기계 질병을 연구하고 치료법을 제시하는 기초연구 및 임상연구 결과를 보고하는 국제 학술지.
Thomson 사에 의해 집계되는 SCI 저널 중 "the Gastroenterology and Hepatology category" 분야에 속하는 전체 72개 중 가장 높은 Impact factor를 기록하고 있으며, 이는 소화기계 중 세계 최고의 권위를 갖는 SCI 학술지임을 의미함.
최신의 소화기계 임상정보, 유전자, 치료타겟, 약물치료법에 관한 폭넓은 영역을 주제로 함 (Latest Impact Factor is 12.032)

간섬유증/간경화증 :
간섬유증 및 간경변증은 높은 치사율을 갖는 만성 간 질환으로, 질병에 의한 사망의 주요한 원인중 하나임.
바이러스 감염, 술, 약물 등 다양한 원인에 의해 간섬유증이 나타나며 심화될 경우 간경변, 간암으로 진행됨.
현재까지 간섬유증 및 경변증을 치료할 수 있는 효과적인 치료약물은 개발되지 않았음.

마이크로RNA :
마이크로RNA는 생물의 유전자 발현을 제어하는 역할을 하는 작은 RNA으로 보통의 mRNA가 수천개의 뉴클레오타이드 (nucleotide)로 이뤄진 데 반해 마이크로RNA는 20∼25개의 뉴클레오타이드로 구성돼 있음.
지금까지 RNA는 DNA의 유전 정보를 전달하고 아미노산을 운반하는 역할을 하는 것으로 알려져 있었으나, 마이크로RNA가 이 과정에서 mRNA와 상보적으로 결합해 세포 내 유전자 발현과정에서 중추적인 조절인자로 작용한다는 사실이 밝혀지면서 새롭게 주목을 끌기 시작하였음.
마이크로RNA는 새로운 형태의 생체 조절물질로서 다양하고도 필수적인 기능을 가질 것으로 추측되고 있으며, 비정상적인 발현은 다양한 질병의 원인이 되고 있음.
 
Farnesoid X receptor (FXR) : 
간과 장관에 높게 발현되어 있으며, chenodeoxycholic acid를 포함한 다양한 담즙산을 리간드로 갖는 핵수용체임.
FXR의 활성화는 답즙산 생성의 필수 단백질인 cholesterol 7 alpha-hydroxylase를 억제한다는 것이 잘 알려져 있으며, 간의 답즙산, 지질 및 당대사 항상성 유지를 담당하고 있음.

<연 구 개 요>

FXR Protects Hepatocytes form Injury by Repressing miR-199a-3p, which Increases Levels of LKB1
(핵수용체인 FXR의 활성화는 miR-199a-3p을 억제하여 LKB1의 생성을 올리고 간경변증에서 세포 손상을 막는다.)

간 섬유화 또는 경화는 바이러스 감염, 술, 약물 등 다양한 원인에 의해 간손상과 재생이 반복되면서 생기는 반흔조직 (상처가 아물 때 생기는 흉터)이 간에 축적되는 현상이다.
간세포의 손상과 사멸은 간섬유화를 촉진하는 세포인 간성상세포를 활성화시키고 섬유소를 비정상적으로 축적시킨다.
최근 간성상세포를 표적으로 하는 약물개발이 진행되고 있으나, 간성상세포는 전체 간의 일부분만을 차지하며 간 실질세포에서 예측하지 못한 부작용이 발생하여 개발에 난항을 겪고 있다.
반복되는 세포 사멸은 염증인자 및 성장인자를 유리하여 간섬유화를 촉진한다.
따라서 간세포의 손상 억제는 섬유화증을 예방하고 치료하는 전략이 될 수 있다.

Farnesoid X Receptor (FXR)은 소화기계와 신장에서 주로 발현되며 담즙산, 지질 및 당대사를 조절하여 우리 몸의 항상성 유지에 관여하는 핵수용체다.
1차 담즙산인 chenodeoxycholic acid 또는 리간드를 처치할 때 FXR이 활성화되며, 그 효과로는 염증 억제, 간세포 재생 촉진을 들 수 있다.
마이크로RNA는 mRNA의 3'-비번역부위 (untranslated region)에 결합하여 전사 후 유전자 조절에 관여한다.
최근 여러 질병에서 마이크로RNA의 발현이 바뀌는 것이 보고되고 있으며, 대사성 간질환 및 간암에서도 마이크로RNA의 연구가 진행되고 있다.

본 연구에서는 간염 환자의 간에서 섬유화가 진행되면서 특정 마이크로RNA가 올라가는 현상을 관찰하였으며 FXR 핵수용체의 발현감소와 연관되는 것을 찾아냈다.
발현이 바뀌는 마이크로RNA 중 특히 miR-199a-3p에 주목하여 이 마이크로RNA가 간세포의 항산화와 항암 활성에 관여하는 단백질인 LKB1을 억제한다는 것을 밝혔다.

특정 마이크로RNA가 LKB1 단백질 생성을 조절하며, 그 마이크로RNA가 비정상적으로 높아질수록 환자의 LKB1 양이 현저히 줄어듦을 볼 수 있다.

다양한 세포 및 동물을 활용한 간손상 모델에서 FXR 활성이 낮아지고, 이때 특정 마이크로RNA가 증가하고 LKB1이 억제되며 간세포가 손상된다. 이 핵수용체를 약물로 자극하면 이러한 현상이 개선된다.


세포와 동물을 이용하여 FXR이 miR-199a-3p의 발현을 억제한다는 것을 알아냈으며, 약물에 의한 FXR 활성화가 마이크로RNA를 억제하여 LKB1을 올릴 수 있음을 다양한 연구 모델에서 검증하였다.
본 연구 결과는 간섬유화와 함께 생기는 간세포 손상에서 마이크로RNA을 조절함으로써 간세포의 기능과 항산화능을 개선하고, 이러한 것이 FXR 핵수용체를 자극함으로써 가능하다는 것을 보여준다.
간손상 시 비정상적으로 증가하는 마이크로RNA의 발현이 세포 항산화능에 핵심적 역할을 하며, FXR은 해당 마이크로RNA를 억제하여 항산화능을 올리는 핵수용체임을 보여준다.
이와 같은 일련의 신호전달 기작의 발견은 다양한 원인에 의해 발생하는 간손상을 효과적으로 치료할 수 있는 기술의 구축과 신약 후보물질 도출에 활용될 것으로 평가한다.

<김상건 교수> 

1. 인적사항

 ○ 소 속 : 서울대학교 약학대학                 

 ○ 전 화 : 02-880-7840

 ○ e-mail : sgk@snu.ac.kr


2. 학력

기      간

학  교  명

전공 및 학위

1978.03-1982.02

1982.03-1985.02

1986.06-1989.12

서울대학교 약학대학 제약학과

서울대학교 약학대학

미국 Northwestern Univ. 의과대학

학사

석사

박사

3. 경력사항 

연도(부터-까지)

기    관

직위(직명)

2011

현재

한국독성학회

회장

2009

현재

대한약학회

편집위원장

2007

현재

서울대학교 대사 및 염증질환 신약개발연구센터

소장

2007

2008

한국독성학회

편집위원장

2006

현재

한국과학기술한림원

정회원

1997

현재

Drug Metabolism of Disposition(ASPET)

Editorial Board Member

2006

현재

서울대학교 약학대학

교수

2001

2006

서울대학교 약학대학

부교수

1999

2001

서울대학교 약학대학

조교수

1997

1999

덕성여자대학교 약학대학

부교수

1992

1997

덕성여자대학교 약학대학

조교수

1991

1992

미국 Wayne State Univ. Inst. Chem. Tox.

조교수

1990

1991

미국 Wayne State Univ. Inst. Chem. Tox.

Research Associate

4. 전문 분야 정보

- 간질환분야 최근 3년간 SCI논문 50여 편 및 10여건의 국내외 특허

5. 수상 경력

일      자

수  상  내  용

시 상 기 관

2010.02

이달의 과학기술자상

교육과학기술부, 한국연구재단

2008.11

최우수약리학자상

대한약리학회

2008.10

학술연구상

서울대학교

2004.02

우수논문상 (BPS Award)

생명약학회

2003.11

녹암학술상

대한약학회

2003.04

대한민국 과학기술우수논문상

한국과학기술단체 총연합회

2001.04

대한민국 과학기술우수논문상

한국과학기술단체 총연합회

1996.11

중외학술상

대한약리학회

1990

Award of Molecular Biology Speciality Section

미국 Society of Toxicology

1982

총장상

서울대학교



반응형
반응형

인공근육 소재는 강하고 유연하면서도 전기적 특성이 우수해야 합니다.

이를 위해 그래핀, 탄소나노튜브 등 기계적, 전기적 특성이 매우 우수한 나노물질이 고강도 나노복합소재 개발에 널리 사용되어왔습니다.

그러나 2차원 면구조로 된 그래핀을 결합하여 섬유 형태로 제조하는 것이 매우 어려워 주로 탄소나노튜브 기반의 인공근육 섬유 연구에 초점을 맞추어 왔습니다.

그러나 탄소나노튜브의 뛰어난 물리적 특성에도 불구하고, 섬유 제조 과정에서 탄소나노튜브들이 인력에 의해 서로 엉켜 탄소나노튜브 기반 섬유의 기계적 특성을 향상시키는데 한계가 있었습니다.

일부 연구팀은 이를 해결하기 위해 탄소나노튜브 섬유 제조 후에 엉킴을 강제로 풀어 추가적으로 배열하기 위한 후처리를 제시했습니다.

그러나 후처리 방법이 복잡해 기계적 물성을 향상시키기 위한 최적 조건을 찾는데 어려움이 따르고 있습니다.

□ 그래핀을 이용해 거미줄보다 6배, 방탄복 소제인 케블라보다는 12배 이상 우수한 기계적 특성을 갖는 인공근육 섬유가 개발됐습니다.

한양대 김선정 교수팀은 그래핀과 탄소나노튜브가 결합된 나노구조가 인공근육 섬유 제조 과정에서 스스로 배열하는 특성을 이용해 기계적 특성이 우수한 인공근육 신소재를 개발했습니다.

김 교수팀은 거미줄의 나노구조가 배열하는 원리인 생체모방 차원에서 아이디어를 얻어 그래핀과 탄소나노튜브를 물리적으로 결합시켜, 그 나노구조가 스스로 배열하는 특성을 이용하여 섬유제조 공정에서 추가적인 열처리 또는 인장 방법 없이 간단한 공정으로 섬유의 기계적 특성을 향상시켰고 대량생산도 가능하게 했습니다.

김 교수팀이 개발한 그래핀/탄소나노튜브 복합체 섬유는 기존 탄소 기반 섬유와 달리 고무 밴드에 바느질을 할 수 있는 질기고 유연함을 보이고, 고강도 스프링 형태로 만들어 질 수 있고, 외부 비틀림에 매우 강한 특성을 가지고 있습니다.  

이번에 개발한 새로운 그래핀 섬유는 인공근육 뿐만 아니라 센서, 액추에이터, 에너지 저장 등으로 활용될 수 있어 에너지 기반 산업에 크게 기여할 전망입니다.

FEATURED IMAGE 설명: 화학적 방법으로 제조된 그래핀(reduced graphene oxide)을 이용하여 강하고 매우 긴 그래핀 섬유가 개발되었다. 습식방사 방법으로 제조된 섬유는 배열된 그래핀이 서로 네트워크를 이루어 결합되어 있기 때문에 강하고 유연한 특성을 갖는다.



이번 연구결과는 세계 최고 권위의 과학전문지 Nature 자매지인 '네이처 커뮤니케이션(Nature Communications)'에 2월 1일자로 게재되었습니다. 
(논문명: Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes)

신민균 박사와 이보미, 김시형, 이재아 학생이 인공근육 섬유 제조를 위해 함께 실험을 진행하고 있다.

 

인공근육 :
전기적 에너지를 운동 에너지로 변환시켜 일상생활에 유용하게 이용할 수 있는 물질이나 액츄에이터(구동기).

그래핀 :
탄소원자들이 벌집 모양으로 결합하여 원자 하나 두께의 2차원 평면 구조로 된 나노소재

탄소나노튜브 :
단일벽 탄소나노튜브는 6각형 고리로 연결된 탄소들이 긴 대롱 모양을 이루는 지름 1나노미터(10억분의 1 미터) 크기의 미세한 원통형 분자.
탄소원자가 결합해 벌집 모양의 구조를 갖게 된 탄소평면이 도르르 말려서 튜브모양이 됐다고 해서 붙여진 이름이다.

인성(toughness) :
단위부피당 물질이 부서지기 전까지 흡수할 수 있는 에너지로서 물질이 외부 힘에 견딜 수 있는 정도  

 

<연 구 개 요>

Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes M. K. Shin et al. (Nature Communications - 2012. 2. 1. 출판)

 강하고 가벼운 고분자 섬유는 자동차 복합소재뿐만 아니라 방탄조끼에 응용될 수 있기 때문에 섬유 개발 관련 연구가 지속적으로 수행되고 있다.
고분자 섬유에 탄소나노튜브를 첨가하여 고강도 나노복합소재를 만드는 것은 최근 주요 연구의 흐름이다.
또한, 탄소나노튜브 기반 복합소재는 일반적으로 전기적 특성이 향상되기 때문에 에너지 저장 소재, 센서, 구동기 등에 다양하게 응용될 수 있다.
따라서 복합소재의 응용 범위와 가치를 높이기 위해서는 재료가 외부 힘에 의해 파단할 때까지 흡수할 수 있는 최대 에너지, 즉 재료의 인성(toughness, 질긴 특성)을 향상시키는 것이 주요 해결 과제이다.
일반적으로 재료의 인성과 기계적 강도는 섬유 내부의 마이크로구조에 의해 영향을 크게 받는다.
따라서, 열처리 또는 기계적 후처리 등을 통해 마이크로구조를 적절히 디자인 하는 것은 재료 연구에 있어 매우 중요하다. 이러한 관점에서 매우 강하면서 질긴 탄소나노튜브/고분자 복합섬유 제조가 시도되었다.
특히, 복합섬유의 인성 및 기계적 강도 향상을 위해 탄소나노튜브와 고분자를 섬유의 축 방향으로 배열시키는 다양한 방법이 고안되었으나 탄소나노튜브가 서로 엉켜 풀기 힘든 성질 및 복잡한 섬유 제조 과정과 경제성 문제 때문에 최적의 복합섬유를 얻는데 많은 어려움이 있다.

본 연구팀은 기존 탄소나노튜브 기반의 복합섬유 제조 방법의 문제점을 해결하기 위해서 그래핀 기반의 복합섬유를 개발하였다.
구체적으로 그래핀과 단일벽탄소나노튜브를 물에 분산시켜 만든 용액을 고분자 용액 내에서 섬유 형태를 갖도록 방사하여 그래핀/탄소나노튜브/고분자로 구성된 나노복합섬유를 제조하였다.
제조 과정에서 그래핀과 탄소나노튜브의 강한 상호작용에 의해 결합된 그래핀/탄소나노튜브 나노구조가 스스로 배열하는 현상은 섬유 제조 후 별도의 후처리를 하지 않아도 섬유의 기계적 강도를 크게 증가시킬 수 있다.
특히, 그래핀과 탄소나노튜브가 1:1의 비율로 결합되었을 때 시너지 효과가 극대화 되어 가장 물성이 좋은 탄소 기반 복합섬유가 제조될 수 있음을 증명하였다.
그래핀/탄소나노튜브 복합체 섬유는 후처리를 하지 않고 단일벽탄소나노튜브 또는 그래핀만 사용하여 제조한 섬유에 비해 기계적 특성이 10배 이상 증가되었고, 자연계에 존재하는 강하고 유연한 거미줄 보다 인성이 6배 이상 증가하였다.
이번 그래핀/탄소나노튜브 복합소재는 기존 탄소 기반 섬유와 달리 강하면서 유연성이 매우 뛰어나 고무 밴드 및 옷감 등에서 바느질이 가능하기 때문에 휴대용 전자, 복합소재 산업에 크게 기여할 수 있다.
또한, 간단한 열처리를 통해 스프링 형태로 만들 수 있으며 이는 기존 탄소나노튜브 스프링에 비해 전단 계수(shear modulus)가 60배 이상 높아 마이크로크기의 직경을 갖는 고강도 스프링으로 사용될 수 있다.
나노복합체 신소재는 그래핀과 탄소나노튜브에 의한 우수한 전기전도성과 표면적 효과로 인해 에너지 저장 및 인공근육 소재로서 응용될 수 있다.

<김선정 교수>

1. 인적사항
 ○ 소 속 : 한양대학교 생체공학과      
  
2. 학력
   1994, 한양대학교 공업화학과 박사
 
3. 경력사항
   2006-현재, 생체인공근육 창의연구단장
   2005-현재, 한양대학교 공과대학 교수

4. 전문 분야 정보
- 교육과학기술부?한국연구재단 창의리더연구사업 연구책임자 (2006 - 현재)
- 생체인공근육 분야, 국제학술지(SCI) 141, 특허등록 12

5. 수상 경력
- 2010, 기초우수성과(교육과학기술부)
  - 2009, 최우수 교수상(한양대학교)
  - 2007, 국가연구개발 우수성과 100선(교육과학기술부)
  - 2007, 대표적 우수성과 50선(한국연구재단)
  - 2006, 대표적 우수성과 50선(한국연구재단)


반응형

+ Recent posts