반응형

실리콘 태양전지는 차세대 에너지원으로 각광 받고 있습니다.

이 가운데 단결정 실리콘 태양전지는 결정성이 높아 물질 내 결함이 적어 비정질 실리콘 태양전지에 비해 전기적 특성이 우수한 장점이 있습니다.

그러나 단결정 실리콘은 빛을 흡수하는 능력이 떨어져 모든 태양광을 흡수하기 위해서는 실리콘 밴드의 두께가 두꺼워야 하므로(수 백 ㎛ 이상) 비경제적입니다.

나노선을 활용한 태양전지는 화학증기증착법(CVD)으로 나노선을 합성하므로, 다양한 물질을 손쉽게 제조할 수 있는 장점이 있습니다.

그러나 결정성도 높고 매끄러운 단결정 실리콘 나노선 태양전지를 개발하는 것은 난제 중의 하나입니다.

□ 실리콘 나노선을 이용해 태양광을 전기로 변환시키는 고효율 태양전지가 개발됐습니다.

고려대 박홍규 교수팀은 단결정 실리콘으로 이루어진 나노선을 화학적 방법으로 대량 합성하고, 이 나노선으로 태양전지를 제작하여 기존 나노선 태양전지보다 2배 이상 높은 효율(6% 이상)을 갖는 나노크기의 태양전지를 개발했습니다.

이 태양전지는 단결정 실리콘 나노선을 이용해 두께가 기존보다 100배나 얇은 300㎚(나노미터)에 불과합니다.

또 나노선 태양전지는 실리콘의 결정면을 따라 정육각형의 단면을 유지하고, 표면도 매끄럽습니다.

이번에 박 교수팀이 합성한 단결정 실리콘 나노선은 현재까지 개발된 나노선 태양전지 중에서 가장 우수한 전기적 특성을 지니고 있어, 산업체에서 개발하고 있는 박막형 태양전지와 견주어도 동등한 수준입니다.

박 교수팀이 개발한 단결정 실리콘 나노선 태양전지는 나노선 고유의 특성인 공명을 이용해 태양광의 수집 효율을 2배 이상 끌어올렸습니다.  

(위) 제작된 실리콘 나노선 태양전지의 전자현미경 사진. (아래) 실리콘 나노선 태양전지의 빛의 파장별 흡수 스펙트럼과 계산된 흡수 이미지 (내삽).



□ 지금까지 단결정 실리콘의 낮은 흡수율은 효율 저하의 원인으로 지적되어 왔습니다.

그러나 이번에 합성한 실리콘 나노선은 빛의 파장보다 작은 크기의 구조체로, 기존의 평면구조와는 다른 특성을 나타냅니다.

실리콘 나노선의 경우 특정 파장에서 입사되는 빛이 표면에서 반사되지 않고 대부분 흡수됩니다.

이러한 공명현상으로 실리콘 나노선 태양전지는 같은 두께의 박막형 실리콘 태양전지에 비해 2배 이상 전류밀도가 높습니다. 

아울러 박 교수팀은 합성된 실리콘 나노선은 특정 파장에서 입사한 태양광이 반사 없이 나노선 내부로 모두 흡수된다는 사실을 실험과 계산으로 입증했습니다.

이번 연구는 고려대 박홍규 교수(교신저자)와 김선경 박사, 미국 하버드대 찰스 리버 교수팀과 공동으로 진행됐습니다.

연구결과는 세계적으로 권위 있는 과학전문지인 '미국국립과학원회보(PNAS)'에 1월 19일자로 게재되었습니다. 
(논문명: Coaxial multishell nanowires with high-quality electronic interfacesand tunable optical cavities for ultrathin photovoltaics)

고려대 박홍규 교수(왼쪽), 김선경 박사(오른쪽), 송경덕 학생(가운데)이 태양전지의 전류-전압 특성을 측정하고 있다

 

 

 용  어  설  명

나노선(nanowire) :
수 십~수 백 나노미터의 굵기를 가지며 반도체 물질로 이루어진 머리카락 형태의 나노 구조체

화학 증기 증착(chemical vapor deposition) :
기판 위에 촉매에 해당하는 금속 물질(주로 금을 사용)을 배열한 뒤, 고온의 튜브 내에 반도체 물질을 구성하는 기체를 주입하면 촉매 주위로 결정성을 가진 반도체 물질이 성장되는 방식.

개방전압(open-circuit voltage) :
태양전지 양 극단에 추가적인 전류를 주입하지 않을 때 걸리는 전위차. 이상적인 개방전압의 최대치는 해당 반도체 물질의 밴드갭 에너지와 동일하며, 개방전압이 높을수록 태양전지의 효율이 증가한다.

누설전류(leakage current) :
반도체 접합 부분 외의 영역을 따라 이동하는 전류로 물질의 불순물이 높을수록 누설전류의 양이 증가한다.

공명(resonance) :
빛이 특정 모양을 가진 구조체 내에 입사되었을 때, 그 구조체 내에서 빛이 진행 또는 반사하며 특정 파장을 가진 빛이 증폭되는 현상.

비정질(非晶質) :
원자배열의 규칙성이 거의 없는 상태

CVD :
기판 위에 촉매에 해당하는 금속 물질(주로 금)을 배열한 뒤, 고온의 튜브 내에 반도체 물질을 구성하는 기체를 주입하면 촉매 주위로 결정성을 가진 반도체 물질이 성장되는 방식

<연 구 개 요>

Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics
T.J. Kempa et al. (Proc. Natl. Acad. Sci. USA - 2012. 1. 19 출판)

미래의 대체 에너지원으로 각광을 받고 있는 실리콘 태양전지는 재료비 대비 고효율 소자 제작이 현재의 가장 큰 관심사이다.
이를 위한 주요 과제들로 고품위의 물질 구현을 통한 전기적 특성 향상 및 광 수집 효율 증대 방안 등을 들 수 있다.
  Bottom-up 방식의 실리콘 나노선 태양전지는 일반적인 식각 과정이 불필요하므로 재료를 근본적으로 절감할 수 있으며, 합성 과정 중에 물질의 치환이 용이해 다양한 기능의 소자를 구현할 수 있다.
하지만 지금까지의 실리콘 나노선 연구는 고품위 실리콘 재현의 어려움으로 인해 고효율 태양전지 소자 실현이 사실상 불가능하였다.
  본 연구에서는 화학적 증기 증착(CVD) 방식을 통해 육각기둥 형태의 고품위 단결정 실리콘 나노선을 성장하고, 성장 과정 중에 내부 코어, 중간 껍질, 외곽 껍질 층에 각기 다른 dopant를 적용한 p-i-n형의 단일 나노선 태양전지 구현에 성공하였다.

본 연구에서 개발된 실리콘 나노선의 물질 특성을 조사하기 위해 투과전자현미경을 이용한 나노선 단면 촬영 및 격자 구조 분석을 실시하였으며, 이를 통해 성장된 나노선이 고품위의 단결정 실리콘 재질로 구성되어 있음을 확인하였다.
또한, 성분 분석 장치를 통해 나노선 내부의 코어 및 각 껍질 층이 성장 과정 중에 의도했던 dopant로 채워져 있음을 증명하였다.
  실리콘 나노선은 외곽 껍질의 일부분을 식각하여 코어 부분을 드러내고, 코어가 드러나지 않은 외곽 껍질과 내부 코어 각각에 n형 및 p형 전극을 올리게 되면 태양전지 소자로서 작동하게 된다.
제작된 단결정 실리콘 나노선 태양전지 소자의 I-V 특성 측정 결과 0.5 V의 개방전압 및 1 fA 이하의 누설 전류 특성을 기록하였다. 이는 현재까지 보고된 나노선 태양전지 소자 중에서 최고의 값이며, 범위를 산업에서 개발하고 있는 박막형 실리콘 태양전지로 확장하더라도 동등한 수준에 근접한 것이다.
  단결정 실리콘은 낮은 물질 흡수로 인해 본질적으로 전류 밀도가 작다는 단점이 있다. 하지만 본 연구의 실리콘 나노선은 크기가 약 300 nm에 불과함에도 그 자체로 미세 공진기로서 작동할 수 있으며, 공진기 내에 존재하는 공진 모드와 입사하는 태양광 사이의 강한 상호 작용을 통해 높은 광 수집 효율을 기대할 수 있다.
본 연구에서는 스펙트럼 분석 및 전자기 계산을 통해 나노선 내부에 존재하는 공진 모드의 존재를 입증하였으며, 실제로 실리콘 나노선은 같은 두께의 박막형 구조에 비해 약 2배 이상 증가한 전류 밀도를 기록하였다.     
  본 연구에서는 실리콘 나노선 소자의 추가적인 전류 밀도 향상을 위해 나노선을 수직 방향으로 두 층까지 쌓는 것에 성공하였으며, 이를 통해 약 25 mA/cm2의 전류 밀도를 기록할 수 있었다.
전자기 계산에 의하면 동일 방식을 통해 1 μm 두께까지 나노선을 적재하였을 때 약 13%의 효율이 예상되며, 이는 현재 개발되고 있는 박막형 태양 전지 소자의 수준을 훨씬 뛰어넘는 것이다.
  실리콘 나노선을 이용한 태양전지 개발은 CVD 방식을 통해 개별 나노선을 이루는 물질을 자유롭게 조작할 수 있다는 장점과 더불어 빛의 파장보다 작은 크기의 공진기가 가지고 있는 고유한 공진 모드 특성으로 인해 향후에도 활발한 연구가 이어질 전망이다.

<박홍규 교수> 

1. 인적사항
 ○ 소 속 : 고려대학교 물리학과
 
2. 학력
  1994 - 1998 KAIST 물리학과 학사   
  1998 - 2000 KAIST 물리학과 석사  
  2000 - 2004 KAIST 물리학과 박사 
    
3. 경력사항 
  2004 - 2005   KAIST 물리학과 박사후연구원
  2005 - 2007   하버드대학교 화학과 박사후연구원
  2007 - 현재   고려대학교 물리학과 부교수
  2009 - 현재   교육과학기술부?한국연구재단 지정 창의연구단장

반응형

+ Recent posts