블로그 이미지
과학이야기
최신 과학기술 동향

calendar

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Notice

Recent Comment

Archive

LIN28 단백질은 줄기세포 치료의 핵심 기술인 유도만능줄기세포(iPS Cell) 생산에 사용되는 것으로 잘 알려져 있습니다.

유도만능줄기세포는 배아줄기세포와 비슷한 수준의 분화능력을 지니고 있으면서도 수정란이나 난자를 사용하지 않아 윤리문제에서 비교적 자유로워 '꿈의 기술'로도 불립니다.

또 LIN28에 이상이 생기면 당 대사와 사춘기 시기 조절 및 간암과 난소암 등에도 영향을 미치게 됩니다.

때문에 LIN28이 다른 유전자의 발현을 조절하는 원리를 완벽하게 알아낸다면, 줄기세포의 이해와 관련 질병 연구, 치료에 새로운 돌파구를 마련하는 셈입니다.

국내 연구진이 줄기세포에서 에너지를 분배하고 세포 간의 의사소통의 양과 속도를 조절하는 원리를 처음으로 규명했습니다.

이는 마이크로RNA를 조절하여 줄기세포의 성질을 간접적으로 유지하는 것으로 알려진 단백질(LIN28)의 기존 기능과는 전혀 다른 새로운 기능을 규명한 성과입니다.

■ 서울대 김빛내리 교수팀은 기존에 알려진 LIN28이 마이크로 RNA를 조절하여 줄기세포의 성질을 간접적으로 유지하는 기능 이외에도 추가적인 기능에 대한 단서를 확인했습니다.

연구팀은 살아있는 줄기세포에 강한 자외선을 쬐어서 단백질과 RNA를 엉겨 붙게 한 다음, 이 RNA에 담긴 정보를 차세대서열분석기로 분석, 총 58기가베이스를 읽어 LIN28이 붙어 조절하는 RNA 전체를 일괄적으로 조사했습니다.

58기가베이스는 A4용지에 인쇄해서 쌓으면 2028m로, 이는 한라산보다도 높은 막대한 분량입니다.

이 같은 방법은 클립시크(CLIP-seq)라고 부르는데, RNA를 조절하는 단백질에 대한 대단위 연구에서 각광받고 있는 기술로, 세계적으로 10여 개 연구실에서만 성공한 신기술입니다.

이 기술은 전통적인 RNA결합 단백질 연구에 비해 세포에 있는 모든 LIN28 단백질 주변의 RNA를 한꺼번에 사진을 찍듯 볼 수 있어 상호작용 전체 지도를 그릴 수 있습니다.

이 실험에서 김 교수팀은 LIN28이 조면소포체에서 일어나는 단백질 생산 전체를 조절한다는 실마리를 얻었습니다.

이후 세포 전체 단백질의 생산 속도를 관찰할 수 있는 리보솜 흔적 조사법을 활용해 LIN28이 실제로 조면소포체에서 생산하는 단백질 모두를 억제한다는 사실을 밝혀냈습니다.

리보솜 흔적 조사법(ribosome footprinting)은 세포 내 전체 mRNA(전령RNA)에 결합된 리보솜의 위치를 분석하여 단백질의 합성속도를 추측하는 방법입니다.

조면소포체는 세포 안에서 막으로 싸인 소기관으로, 사람의 단백질 3만 5000종 중 약 7000종이 여기서 생산됩니다.

이렇게 생산된 단백질들은 △세포와 세포의 연결 △각종 물질의 분비와 수송 △세포 사이의 신호 전달 △면역 반응 등에서 핵심적인 역할을 합니다.

자외선을 이용한 RNA결합 단백질 연구 (CLIP-seq 기술)

RNA결합 단백질을 연구할 때 어떤 RNA에 결합하는가는 가장 중요하고 기초적인 정보다. CLIP-seq에서는 가장 먼저 자외선을 이용하여 살아있는 세포 안에서 단백질과 대상RNA를 엉겨 붙게 (공유결합을 형성하게) 한다. 그 다음, 세포 내용물을 꺼내서 RNA를 잘게 쪼개고 연구하고 싶은 단백질 (LIN28)을 항체를 이용하여 정제한다. 이 과정을 거치면 단백질이 결합하고 있는 작은 RNA조각이 남게 되고, 그 다음 이 RNA조각을 서열분석기로 읽어낸다. 이 서열의 형태와 유전자 유래, 기능적인 특성을 통계적으로 분석하여 차후 RNA결합 단백질 연구의 실마리를 잡게 된다.


연구팀은 LIN28이 배아의 초기 발달 과정에서 세포 전체의 균형을 조절한다는 사실도 규명하였습니다.

세포가 단백질을 생산하려면 상당량의 에너지가 필요합니다.

연구팀은 LIN28이 조면소포체 단백질의 생산을 줄여, 이 에너지를 세포의 양적 성장에 집중시키고, 세포 간의 의사소통도 줄여서 성체 세포로 발달하는 시기를 충분히 늦추는 역할을 할 수 있을 것으로 보고 있습니다.

또 연구팀은 암세포 전이에서 중요한 역할을 하는 단백질의 상당수가 조면소포체에서 생산되므로, LIN28이 조면소포체 전체 단백질을 조절하여 암 전이에도 일조할 수 있을 것으로 예측하고 있습니다.

이는 줄기세포의 정상적인 발달과 당(糖) 대사 및 사춘기 시기 조절 등에 관여하는 LIN28 단백질의 알려지지 않은 직접적인 조절 원리를 밝혀냄으로써, 향후 줄기세포의 유도와 관련 질병의 치료 기술 개발에 새로운 실마리를 제공하는 것입니다.

또한 간암, 난소암 등 여러 종류의 암 발생과 전이에서도 자주 발견되는 LIN28 단백질의 이상 조절에 대처할 수 있는 새로운 치료법 개발에도 가능성을 열고 있습니다.

이번 연구는 서울대 김빛내리 교수 주도로 조준, 장혜식 박사과정생이 공동 제1저자로 참여했고,  연구결과는 세계 최고 권위의 생명과학 전문지인 'Cell'지 온라인 속보(10월 25일자)에 발표되었습니다.
(논문명: LIN28A is a Suppressor of ER-associated translation in embryonic stem cells) 

<연 구 개 요>

LIN28A is a suppressor of ER-associated translation in embryonic stem cells
Jun Cho, Hyeshik Chang, S. Chul Kwon, Baekgyu Kim, Yoosik Kim, Junho Choe, Minju Ha, Yoon Ki Kim, and Narry Kim
(Cell, Vol 151, Issue 4) 
LIN28은 발생 과정, 당 대사와 발암 과정에서 중요한 역할을 하는 것으로 알려져 있다. 분자기작 수준에서 LIN28은 let-7 마이크로RNA의 신생성을 억제하고, 특정 mRNA 몇 종류의 번역을 증진하는 기능이 밝혀졌다.

이 연구에서는 LIN28의 두 paralog 중 하나인 LIN28A가 생쥐 배아 줄기세포에서 어떤 RNA를 대상으로 작용하는지 알기 위해 CLIP-seq (crosslinking immunoprecipitation-sequencing)과 리보솜 흔적 조사법 (ribosome footprinting)을 수행했다.


우리는 이 연구에서 let-7의 전구체뿐만 아니라 온전히 절단된 mRNA에도 대량으로 붙는 것을 발견했다. LIN28A는 AAGNNG, AAGNG와 비교적 적은 빈도로 UGUG를 인식하는 것으로 밝혀졌는데, 이 모티프 서열은 주로 작은 머리핀 구조의 끝 루프에 위치하였다.
또한, LIN28A이 특징적으로 조면소포체에서 번역되는 단백질에 많이 결합하여 번역을 저해하는 현상이 관찰되었는데, 여러 조사 결과 LIN28A가 예상 밖으로 조면소포체 주변에 다량 분포하고 있고, 신호인식물질(SRP)에 의해 조면소포체로 이동하여 번역되는 단백질이 아니면 LIN28A에 의해 인식되지 않는다는 사실이 밝혀졌다.

우리의 연구 결과, LIN28A는 조면소포체에서의 번역에 특이적인 번역 조절을 하고 있으며, 배아 줄기세포에서 단백질 배출 경로를 전체적인 수준에서 조절하는 의외의 기능을 갖고 있다는 사실이 제시되었다.


 
용   어   설   명

LIN28 단백질
미국 톰슨(Thomson)팀에서 성체 세포에서 줄기세포를 유도할 때 사용한 4가지 유전자 중의 하나에서 만들어지는 단백질로, 줄기세포의 특성 유지에 중요한 것으로 알려져 있다. 2009년과 2010년에 김빛내리 교수 연구팀에서 LIN28가 마이크로RNA를 조절하여 세포 발달 단계를 조절한다는 것을 밝혀냈으며, 줄기세포와 발달 초기 세포들과 아주 소수의 성체 세포에 존재한다. 한편, 암으로 발달된 세포에서 과발현되는 경우가 흔해서, 암세포가 되는 과정에서 암세포의 성장을 유도하는 요인 중 하나로 받아들여지고 있다.   

마이크로RNA (microRNA 혹은 miRNA)
마이크로RNA는 21~23 뉴클레오티드 정도 길이의 아주 작은 단일가닥 RNA이다. DNA에서 RNA로 전사된 이후 여러 단계의 프로세싱 과정을 거쳐 완성되며, 단백질로 번역되지 않고 RNA상태로 세포 내에 존재한다. 마이크로RNA는 주로 다른 유전자들의 발현을 조절하는 기능을 하는데, 자신의 염기 서열과 상보적인 메신저RNA(mRNA)에 결합하여 그 메신저RNA가 단백질로 만들어지는 과정을 억제한다. 인간에는 수백종류 이상의 마이크로RNA가 존재하며 각각이 발생, 성장, 노화, 사멸 등의 생명 현상에 관여한다. 

차세대서열분석기 (Next Generation Sequencer)
DNA 서열을 대량으로 분석할 수 있도록 개발된 분석기계. RNA도 분석할 수 있어서, 기존에 불가능했던 대단위 RNA 연구에서 최근 필수적으로 사용되고 있다.

기가베이스 (gigabase)
서열분석기에서 해독한 염기서열(4가지 알파벳으로 이루어진 문장)의 양을 나타내는 단위. 1기가베이스는 10억 글자에 해당하며, 대략 책 5천 권 정도의 정보에 해당한다. 인간 유전체 전체 길이는 3.13 기가베이스 정도다.  

조면소포체 (rough endoplasmic reticulum)
단백질 중 세포막이나 세포 밖, 세포소기관의 막, 핵막 등에 수송될 단백질들을 합성하는 세포내 소기관. 전체 단백질 중 대략 15~20% 정도가 조면소포체에서 합성되어 수송된다. 특히, 막 단백질과 세포 밖으로 수송되는 단백질을 합성하기 때문에, 세포 간 신호전달과 외부 환경 인식, 면역 반응에서 매우 중요한 역할을 담당한다.

리보솜 흔적 조사법 (ribosome footprinting)
세포내 전체 mRNA(전령RNA)에 결합된 리보솜 위치를 분석해서 모든 단백질의 합성 속도를 추측할 수 있는 방법으로, 차세대서열분석기를 활용한 최신 기법이다.

Cell지
생물학 전 분야에서 최고 권위를 인정받는 저널로 피인용지수(Impact Factor)는 32.403로 Science지(31.201)보다 높은 편이다.

 

<김빛내리 교수>

1. 인적사항
 ○ 소 속 : 서울대학교 생명과학부

2. 학력
 ○ 1988 - 1992    서울대학교 학사
 ○ 1992 - 1994    서울대학교 석사
 ○ 1994 - 1998    英 Oxford University 박사
 
3. 경력사항
 ○ 1999 - 2001  美 University of Pennsylvania Postdoctoral Fellow
 ○ 2001 - 2004 서울대학교 연구조교수
 ○ 2004 - 2008   서울대학교 생명과학부 조교수
 ○ 2008 - 현재     서울대학교 생명과학부 부교수
 ○ 2007 - 2011  교과부?연구재단 지정 창의연구단장 (MicroRNA 연구단)
 ○ 2010 - 2012 교과부?연구재단 지정 국가과학자
 ○ 2012-  현재     기초과학연구원 (IBS) RNA 연구단 단장
 
4. 전문 분야 정보
 ○ 호암상 (2009)
 ○ L'Oreal-UNESCO 세계여성생명과학자상 (2008)
 ○ 올해의 여성과학자상 (2007)
 ○ 젊은과학자상 (2007)

<조준 박사과정생> 

1. 인적사항

 ○ 소속: 서울대학교 생명과학부
 
2. 학력
 ○ 2003. 03 - 2007. 02 서울대학교 생명과학부 학사 졸업
 ○ 2008. 09 - 현재 서울대학교 생명과학부 박사과정 재학 (수료)

<장혜식 박사과정생>
                                         

1. 인적사항

 ○ 소속 : 서울대학교 생명과학부                

2. 학력
 ○ 1998. 03 - 2007. 02 연세대학교 기계전자공학부 졸업 (정보산업공학전공)
 ○ 2007. 03 - 2009. 02 KAIST 바이오및뇌공학과 석사과정 졸업
 ○ 2009. 09 - 현재  서울대학교 생명과학부 박사과정 재학

3. 경력사항
 ○ 2001 - 2005  리눅스코리아(주) 솔루션개발팀 사원
 ○ 2001 - 2010 공개운영체제 FreeBSD 개발팀
 ○ 2002 - 현재   공개프로그래밍언어 Python (파이썬) 개발팀
 ○ 2004 - 현재   Python Software Foundation 지명회원
 
4. 전문 분야 정보
 ○ 소프트웨어산업발전유공자 정보통신부장관상 (2008)


 

posted by 글쓴이 과학이야기

댓글을 달아 주세요

■ 대장균은 생명현상을 이해하기 위한 대표적인 모델로, 산업적으로도 매우 중요한 미생물입니다.

대장균 연구를 통해 의약용 단백질 등 다양한 유용 재조합단백질 생산과 석유화학을 이용해 만든 각종 화학물질을 대체하는 친환경 바이오화학제품을 개발합니다.

또 바이오에탄올 등 저탄소 신재생연료를 생산할 수 있기 때문에 대장균을 '작은 세포공장(cell factory)'이라 부르기도 합니다.

■ 최근 석유자원의 고갈과 석유화학제품의 대규모 사용에 따른 지구 환경오염 및 온난화의 문제가 심각해지면서  친환경 녹색기술 개발은 그 어느 때보다 중요합니다.

에너지원으로 이용되는 식물과 미생물 등 바이오매스를 활용해 바이오에너지와 바이오화학제품을 생산하는 고효율 맞춤형 미생물 바이오공장을 개발하기 위해서는 생체 네트워크에 대한 시스템 수준의 이해가 선행되어야 합니다.

지금까지는 대장균을 비롯한 세포공장의 유전자 정보는 물론 대사와 생리 및 기능에 대한 종합적인 정보가 부족해 무작위로 하나씩 맞춰보는 단순 시행착오 방식(trial and error)으로 연구개발이 진행됐습니다.

그러나 만일 모든 오믹스 정보를 확보한다면 산업미생물의 생체 네트워크를 이해할 수 있을 뿐만 아니라 맞춤형 유전체 설계가 가능해 각종 유용단백질, 바이오화학제품과 바이오에너지 생산에  가장 적합하고 효율적인 미생물을 개발할 수 있게 됩니다.

■ 연세대 김지현 교수, 한국생명공학연구원 윤성호 박사, KAIST 이상엽 교수 공동 연구팀이 '대장균'의 생명현상과 관련된 중요한 생체 정보, 즉 오믹스(Omics)를 규명했습니다.

오믹스 특정 세포 속에 들어 있는 생리현상과 관련된 대사에 대해 전사체와 단백질체, 형질체 등 대량의 정보를 통합적으로 분석하여 생명현상을 밝히는 학문입니다.

연구팀은 가장 많이 활용되는 대장균 B와 K-12의 각종 오믹스 정보를 확보하고, 인실리코 분석 및 검증 등 컴퓨터 모델링을 이용해 시스템 수준에서 대장균의 대사 네트워크를 재구성하고 대장균 2종을 비교 분석하는데 성공했습니다.

대장균 B 균주에 대해 유전자 암호가 mRNA로 전사되고 이로부터 단백질이 만들어져 여러 대사회로를 통해 형질로 나타나는 전 과정의 다중 생체 정보를 확보하고, 시스템 수준에서 통합적으로 분석하여 컴퓨터 시뮬레이션을 통해 생체 네트워크를 재구성하여 확인한 것은 이번이 처음입니다.

연구결과  대장균 B 균주가 K-12에 비해 아미노산 생합성 능력이 뛰어나고 단백질분해효소가 적으며 편모가 없어, 인슐린, 섬유소분해효소(cellulase)와 같은 외래 재조합 단백질을 생산하는데 매우 적합한 특성을 가지고 있다는 사실을 밝혀냈습니다.

또한 대장균 B 균주는 단백질 분비 시스템을 2개나 보유하고 있고, 단백질 분비에 유리한 세포벽과 세포외막을 구성하고 있어 생산된 단백질을 세포 밖으로 배출하는데 유리하다는 것을 확인했습니다.

반면 K-12 균주는 고온에 노출되면 이에 대응하는 유전자를 더 많이 발현하고, 몇 가지 스트레스 조건에 덜 민감했습니다.

연구팀은 이번 연구에 활용된 대장균 B와 K-12의 유전자들이 어떻게 상호작용하는지를 분석하는 마이크로어레이 DNA칩을 제작해 국내외 연구자들에게 무상으로 제공했습니다.

이번 연구로 바이오의약, 바이오화학, 바이오에너지 등 친환경 녹색 바이오산업을 위한 기술 개발에 청신호가 켜질 전망입니다.

연구팀은 앞서 지난 2009년 다중 오믹스 정보를 이용한 시스템 수준의 분석 연구를 통해 대장균 유전체 지도 정보와 유전체 진화 양상을 국제 학술지에 게재한 바 있습니다.

이번 연구결과는  'Genome Biology(IF = 9.036)'에 온라인으로(6월 29일) 게시되었습니다.
(논문명 : Comparative multi-omics systems analysis of Escherichia coli strains B and K-12)

대장균 B와 K-12 균주의 전사체, 단백체 및 형질체 비교

대장균 B와 K-12 균주의 각종 오믹스 정보를 시스템 수준에서 통합적으로 분석하였으며 그 결과, B 균주가 우수한 아미노산 생합성 능력과 적은 수의 단백질분해효소, 그리고 편모 부재 등 재조합 단백질을 생산하는데 적합한 특성을 가지고 있다는 것과 단백질을 세포 밖으로 분비하는 시스템을 2개나 보유하고 있고 단백질 분비에 유리한 세포벽과 세포외막 구성을 가지고 있다는 것을 밝힘. 이에 비해 K-12 균주는 고온에 노출되었을 때 이에 대응하는 유전자를 더 많이 발현하고 몇몇 스트레스 조건에 덜 민감하였음

 

<연 구  개 요>

Comparative multi-omics systems analysis of Escherichia coli strains B and K-12
Sung Ho Yoon, Mee-Jung Han, Haeyoung Jeong, Choong Hoon Lee, Xiao-Xia Xia, Dae-Hee Lee, Ji Hoon Shim, Sang Yup Lee, Tae Kwang Oh and Jihyun F Kim*
*Corresponding author: Jihyun F. Kim jfk1@yonsei.ac.kr
http://genomebiology.com/2012/13/5/R37

1. 연구 배경
대장균(Escherichia coli)은 가장 집중적으로 연구된 모델 미생물의 하나로서 과학적 연구뿐만 아니라 산업적 응용을 위해 널리 사용되고 있다. 가장 많이 사용되는 대장균은 K-12와 B로서 유전적, 생화학적 연구와 더불어 바이러스(박테리오파지), 제한효소, 돌연변이, 진화 연구에 활용되어왔다.
김지현 박사 연구팀에서는 지난 2009년 장기 실험진화(experimental evolution) 모델인 REL606 균주와 재조합 단백질, 바이오연료, 바이오소재 등을 대량 생산하는데 쓰이는 세포공장(cell factory)인 BL21(DE3)의 유전체 서열을 해독하여 'Journal of Molecular Biology'에 표지논문으로 발표하였고, 장기 실험진화에서의 유전체 진화 양상을 규명하여 'Nature'지에 아티클 논문으로 게재하였다.
유전형(genotype)과 표현형(phenotype)의 관계를 밝히는 것은 생명체를 시스템 수준에서 이해하는데 필수적이다. 하지만 유전체 서열 비교만으로는 유전형과 표현형 사이의 관계에 대해 제한적인 정보밖에 제공할 수 없다. 연구팀은 이 논문을 통해 컴퓨터 모델링 기법과 접목한 다중 오믹스 데이터의 비교 분석이 유전체 서열 정보가 해독된 생명체의 형질적 특징을 파악하는 새로운 접근 방식임을 전거하였다.

2. 연구 결과
본 연구에서는 대장균(E. coli) B와 K-12 균주의 차이점을 알아내기 위해 유전체(genome), 전사체(transcriptome), 단백체(proteome), 형질체(phenome)와 같은 시스템 전체 수준에서 여러 측면으로 측정한 지표들의 총체적인 정보를 종합하여 분석한 결과를 정리하였다. 또한 대장균 B 균주의 대사 네트워크(metabolic network)를 유전체 수준에서 재구성하였고, K-12 균주와 비교할 때 B 균주에 특징적인 형질들의 유전적 근거를 in solico complementation test를 통해 동정하였다.
이 시스템 분석(systems analysis)을 통해 밝혀낸 K-12 균주와의 차이점은 B 균주가 우수한 아미노산 생합성 능력과 적은 수의 단백질분해효소, 그리고 편모 부재 등 재조합 단백질을 생산하는데 적합한 특성을 가지고 있다는 것과 단백질 분비 시스템을 두 개나 보유하고 있고 단백질 분비에 유리한 세포벽과 세포외막 구성을 가지고 있는 등 생산된 단백질을 세포 밖으로 배출하는데 유리하다는 것이다. 이에 반해 K-12 균주는 고온에 노출되었을 때 이에 대응하는 유전자를 더 많이 발현하고 몇몇 스트레스 조건에 덜 민감하였다.

3. 연구 결론
초고속 대용량 분석 기술의 발전에도 불구하고, 성격이 다른 여러 오믹스 데이터 세트에서 의미 있는 생물학적 지식을 도출하는 것은 여전히 풀기 힘든 과제이다. 이 연구에서는 다중 오믹스 정보를 통합하고 총체적으로 분석하여 대장균 B와 K-12 균주 사이의 세포 대사와 생리상의 차이점을 밝혔다.
이러한 통합적 시스템 분석 방식은 고해상도의 시스템 전체 수준 정보 및 분석 능력과 더불어 대장균 B와 K-12와 같이 매우 유사한 균주가 어떻게 뚜렷이 구별되는 형질을 보여주는지에 대한 통찰을 가능케 한다. 따라서 생명체의 생리와 대사에 대한 체계적인 이해는 이들의 배양 조건과 재조합 균주를 디자인하는데 필수적이다. 

유전체, 전사체, 단백체 정보를 통합 분석하여 도출한 B 균주의 형질

4. 기타사항
□ 연세대는 생명현상을 본질적으로 이해하기 위해서는 분자생물학, 생화학, 생명공학 등이 함께 어우러지고 나아가 NT, IT, MT 등과 융합된 시스템생물학 연구와 교육이 필요하다는 인식 아래 21세기 생명과학 시대를 주도할 우수한 인재를 양성하기 위해 지난 2008년 이과대학 생물학과와 생화학과 그리고 공과대학 생명공학과를 통합하여 생명과학기술과 의생명 분야가 융합된 생명시스템대학(http://bio.yonsei.ac.kr/)을 설립하였다.
□ 우리나라 생명공학의 메카로도 불리는 생명연(http://www.kribb.re.kr/)은 국내 유일의 바이오전문 정부출연 연구기관으로서 생명현상의 이해와 더불어 보건의료, 농업생명, 바이오소재, 환경에너지 분야의 연구개발을 통해 국민보건 향상 및 바이오산업 발전에 기여하고 있다. 또한 생명연은 국내 최고의 유전체 및 생물정보 연구 전문기관으로서 BT와 IT, NT, CT 등 융합기술 연구개발에도 선도적인 역할을 수행하고 있다.
□ 연구팀 홈페이지
 ○ 미생물유전체정보기지(Genome Encyclopedia of Microbes; GEM) https://www.gem.re.kr
 ○ 시스템생명공학연구그룹(Systems Biotechnology Research Group; SyBiRG) http:// sybirg.kribb.re.kr

 


 용  어  설  명

오믹스(omics)
세포 또는 개체 내에서 발현되는 RNA, 단백질 등 생명현상과 관련된 중요한 물질에 대하여 대사체, 단백체 등 개개의 성격이 아닌 각 통합적으로 분석하여 생명현상을 밝히기 위한 학문
 * 대사체 : 생체 내 특정한 대사작용에 의하여 생성되는 대사물질 전체
 * 단백체 : 세포 또는 개체 내에서 발현되는 단백질의 총합

인실리코(in silico)
컴퓨터 모의실험 혹은 가상실험을 이용하여 생명현상을 연구하거나 설계하는 기술. 미생물의 경우 사이버 생명체인 가상세포 실험을 통하여 연구실에서 수행하는 실험과 동일한 결과를 얻을 수 있음

바이오리파이너리(biorefinery)
식물, 미생물 등 태양에너지를 받는 생명체로부터 생물공학적, 화학적 기술을 이용하여 석유기반제품을 대체할 수 있는 바이오 기반의 화학제품, 바이오연료 등의 물질을 생산하는 기술

시스템생물학(systems biology) 및 합성생물학(synthetic biology)
세포, 조직, 신호전달체계 등 생물학적 시스템들 간의 관계 및 상호 작용을 연구하고 이러한 정보의 통합을 통하여 생물학적 시스템의 작용을 이해하고자 하는 학문 분야를 일컬어 시스템생물학이라고 하며, 기존에 자연 상태에서 존재하는 생물학적 시스템을 새로운 생물학적 시스템을 통하여 설계?제작하거나 인공생명체를 만드는 특정 목적으로 재설계하기 위하여 사용되는 과학기술을 합성생물학이라고 함

mRNA(messenger RNA)
DNA의 유전정보를 리보솜에 전달하는 RNA

 

<논문 원문 보기> 



<김지현 교수> 

1. 인적사항
 ○ 성 명 : 김지현 (45세) 
 ○ 소 속 : 연세대학교 생명시스템대학 시스템생물학과

2. 학력
 ○ 1985~1989  서울대학교 농생물학과 식물병리학전공 학사
 ○ 1989~1991  서울대학교 농생물학과 식물병리학전공 석사
 ○ 1993~1997  Mol. Plant Pathol. Program, Cornell Univ. 박사

3. 주요경력
 ○ 1992~1997  농촌진흥청 경제작물과 농업연구사
 ○ 1993~1996  교육부 국비유학 장학생 (1991 선발)
 ○ 1997~2000  Postdoc. Assoc., Dept. Plant Pathol., Cornell Univ.
 ○ 2000~2012  한국생명공학연구원(KRIBB) 선임연구원, 책임연구원, 센터장
 ○ 2004~2012  과학기술연합대학원대학교(UST) 부교수(겸임), 교수(겸임)
 ○ 2012~현재  연세대학교 생명시스템대학 시스템생물학과 부교수

4. 수상경력 및 주요업적
 ○ UST 2011 우수연구지도상, 2009 우수강의상; 2009 한국생물정보시스템생물학회 온빛상
 ○ 2011 교과부장관상; 2010 KRIBB상 대상; 2009 기초기술연구회 다빈치상 등
 ○ Nature 아티클 논문, Faculty of 1000에서 FFa 19(최상위인 Exceptional)로 평가; 포항공대 생물학연구정보센터 "한국을 빛내는 사람들" 상위피인용논문 선정
 ○ 연구 및 리뷰 논문 70여 편; 국내외 특허 및 프로그램 등록 30여 건 등

<윤성호 박사>

1. 인적사항

 ○ 성 명 : 윤성호 (40세) 
 ○ 소 속 : 한국생명공학연구원  바이오합성연구센터

2. 학력
 ○ 1996  KAIST 화학공학과 학사
 ○ 1998  KAIST 화학공학과 석사
 ○ 2002  KAIST 생명화학공학과 박사

3. 주요경력
 ○ 2003~현재  한국생명공학연구원(KRIBB) 선임연구원
 ○ 2006~2010  과학기술연합대학원대학교(UST) 강사
 ○ 2009~2011  Institute for Systems Biology 박사후연구원 (동기간 KRIBB 무급휴직)

4. 주요업적
Yoon SH, Han MJ, Jeong H, Lee CH, Xia XX, Lee DH, Shim JH, Lee SY, Oh TK, Kim JF. 2012. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol. 13:R37.
Yoon SH, Reiss DJ, Bare JC, Tenenbaum D, Pan M, Slagel J, Moritz RL, Lim S, Hackett M, Menon AL, Adams MW, Barnebey A, Yannone SM, Leigh JA, Baliga NS. 2011. Parallel evolution of transcriptome architecture during genome reorganization. Genome Res. 21:1892-1904.
Hong JW, Kim JF, Oh TK, Yoon SH. 2011. Microfluidic system for biological, chemical, and biochemical assessments. United States Patent 7,906,074.
Barrick JE, Yu D-S, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF. 2009. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243-1247.
Nam D, Yoon SH, Kim JF. 2007. Ensemble learning of genetic networks from time-series expression data. Bioinformatics 23:3225-3231.
Yoon SH, Park YK, Lee S, Choi D, Oh TK, Hur C-G, Kim JF. 2007. Towards pathogenomics: a web-based resource for pathogenicity islands. Nucleic Acids Res. 35:D395-D400.
Yoon SH, Hur C-G, Kang HY, Kim YH, Oh TK, Kim JF. 2005. A computational approach for identifying pathogenicity islands in prokaryotic genomes. BMC Bioinformatics 6:184.

 



 


posted by 글쓴이 과학이야기

댓글을 달아 주세요

  1. 공감가는 글 잘 보았습니다^^
    연구에 필요한 것이 있으면 도움이 되고싶네요
    구독하고 갑니다~!

만병의 근원으로 알려진 비만은 과다한 지방세포의 분화와 에너지의 과잉공급으로 유발되는 하나의 질병으로, 고혈압이나 고지혈증, 동맥경화, 심장질환과 같은 성인병으로 발전될 수 있기 때문에 지방세포 분화에 대한 과학자들의 관심이 매우 높습니다.

지방세포 분화는 지방세포 분화에 필요한 유전자가 적당한 시기에 정확한 양을 발현함으로써 일어나는 일련의 정교한 과정입니다.

이 때 유전물질의 발현은 중심원리에 의해 이루어지는데 이는 유전물질인 DNA가 mRNA라는 전달물질로 전사된 뒤, 이 mRNA는 다시 단백질로 번역됨으로써 유전자가 발현되는 원리입니다.

고려대 김윤기 교수팀은 지방세포 분화 과정을 조절하는 원리를 밝히고, 지방세포 분화를 막아 궁극적으로 비만을 억제할 수 있음을 규명했습니다.

이전까지 연구에서는 지방세포 분화에 관한 연구가 DNA 수준에서 전사단계 조절에만 집중되어 왔습니다.

하지만 연구팀은 지방세포 분화 조절이 mRNA 단계에서도 조절된다는 것을 밝혀냈습니다.

이로써 지방세포 분화에 대한 새로운 메커니즘 발견으로 비만 질환 연구에 새로운 정보들을 제공할 수 있게 되었습니다.

세포에는 mRNA양을 조절하는 중요한 작용기전인 SMD(Staufen1-mediated mRNA decay)가 있습니다.

SMD는 단백질(Staufen1)이 특정 mRNA에 붙어 이를 빠르게 제거하여 mRNA의 양을 조절하는 원리로, 김 교수가 지난 2005년에 처음으로 밝혀낸 작용기전입니다.('Cell'지, 제1저자).

그러나 SMD가 구체적으로 어떻게 작용하고 어떤 생물학적 의미를 갖는지 알려진 바가 없었습니다. 

연구팀은 SMD가 지방세포 분화 과정에서 중요한 역할을 하는 유전자인 'KLF2'의 mRNA의 안정성에 관여함으로써, 지방세포 분화 과정을 조절한다는 것을 최초로 밝혔냈습니다.

SMD에서 중요한 역할을 하는 단백질(Staufen1, PNRC2)을 없애면, 지방세포 분화를 막는 단백질(KLF2)이 늘어나, 지방세포 분화가 억제됨도 관찰했습니다.

이번 연구은 고려대 김윤기 교수와 조하나 박사과정생(제1저자)이 주도하고, 강원대 최선심 교수팀이 참여했습니다.

연구결과는 세계 최고 권위의 생명과학전문지 '셀(Cell)'의 자매지인 '분자세포(Molecular Cell)'지에 온라인 속보(4월 12일자)로 게재되었습니다.
(논문명 : Staufen1-mediated mRNA decay functions in adipogenesis)

전구지방세포는 KLF2 mRNA에 의해 지방세포로의 분화가 억제되어 있다. 분화과정동안 Stau1 단백질이 KLF2 mRNA에 결합하고, SMD를 통해 KLF2 mRNA를 제거한다. 그 결과 지방세포로의 분화를 촉진시킨다.

 

<연 구 개 요>

세포는 DNA로 구성된 유전물질을 가지고 있다.

이러한 유전물질은 전사작용을 통해 mRNA를 만들고, 다시 mRNA는 번역기전을 통해 단백질을 만든다.
이러한 일련의 과정을 통해 세포는 필요한 단백질을 만들게 된다.
따라서 세포가 적절한 시점에 정확한 양의 유전물질을 만드는 것은 세포 활동에서 매우 중요한 일이다.
 
지방세포 분화에 관한 지금까지의 연구들은 DNA 수준에서 전사단계가 어떻게 조절되는가에 초점을 맞추어 진행되었다.
그러나 본 연구에서는 지방세포 분화 조절이 DNA 수준에서만 이루어지는 것이 아니라, 전사 후 mRNA 단계에서도 조절될 수 있음을 규명하였다.
구체적으로 세포내에는 mRNA의 안정성을 조절하는 중요한 기전인 SMD (Staufen1-mediated mRNA decay)가 있다.
SMD는 Staufen1 (Stau1)이라는 단백질이 특정 mRNA에 붙어서 mRNA를 빨리 제거하는 기전으로서 2005년 Cell지에 작용 기전이 발표된 바 있다. 그러나 SMD의 구체적인 작용 기전 및 생물학적 의미에 대해서는 알려진 바가 거의 없었다. 

본 연구에서는 SMD라는 기작이 mRNA를 어떻게 제거하는지에 관한 작용기전을 규명하였다.
특히 본 연구진이 2009년 Molecular Cell지에 발표한 바 있는 PNRC2라는 단백질이 SMD가 일어나는데 필요하다는 사실을 밝혀냈다.
또한 본 연구에서는 SMD가 지방세포 분화과정을 조절한다는 중요한 사실을 알아냈다.
SMD에서 중요한 역할을 하는 PNRC2와 Stau1을 제거하면 지방세포 분화를 억제하는 요소인 KLF2가 증가하고, 그 결과 지방세포 분화가 억제되는 것을 관찰하였다.
특히 KLF2 mRNA는 Stau1에 결합함으로써 SMD의 표적 mRNA임을 새롭게 알게 되었다. 이를 통해 연구팀은 SMD를 통해 KLF2라는 지방세포 분화 억제단백질의 발현을 mRNA 수준에서 조절함으로써 지방세포 분화가 조절된다는 것을 증명하였다.



 용  어  설  명

지방세포 분화 (Adipogenesis) :
전구지방세포(비만세포로서의 형질을 나타내는 미분화의 세포)가 지방세포로 변하는 세포분화 과정을 일컫는다.
지방세포는 저장 기능과 내분비세포로서의 역할을 하는 등 매우 중요한 역할을 한다.
체내 에너지 항상성 유지를 위한 다양한 기능을 수행하는 지방세포는 오랫동안 단순한 에너지 저장 조직으로만 여겨져 왔다.
최근 들어 에너지 균형과 비만을 포함한 대사성 질환에 관심이 많아지면서 지방세포와 관련된 연구가 활발히 진행되고 있다.
WHO는 비만이 과다한 지방세포의 분화와 불균형적인 에너지의 과잉공급에 의해 유발되는 하나의 질병이라고 발표하였으며 고혈압, 고지질증, 동맥경화, 심장질환 및 인슐린 비의존성 제2형 당뇨병과 같은 성인병으로 발전 가능성이 있기 때문에 지방세포 분화에 대한 지속적인 관심이 필요하다.
 
SMD (Staufen1-mediated mRNA decay) :
특정 mRNA가 Staufen1 (Stau1) 단백질과 결합할 경우, Stau1 단백질이 mRNA 제거 단백질들을 끌어와서 결합 mRNA를 빠르게 제거하게 된다.
SMD를 일으키기 위해서는 Stau1, Upf1, PNRC2 단백질 등이 필요한 것으로 알려졌다.

mRNA(messenger RNA) :
핵 안에 있는 DNA의 유전정보를 세포질 안의 리보솜에 전달하는 RNA.

전사(transcription) :
DNA를 원본으로 mRNA를 만드는 과정

번역(translation) :
mRNA의 유전정보를 토대로 단백질 생합성을 하는 과정 


<김윤기 교수>

1. 인적사항

 ○ 소 속 : 고려대학교 생명과학부
 ○ 전 화 : 02-3290-3410/3919
 ○ e-mail : yk-kim@korea.ac.kr

2. 학력
1991~1996   포항공대 생명과학과 (학사)
1996~1998   포항공대 생명과학과 (석사)
1998~2002   포항공대 생명과학과 (박사)
 
3. 경력사항
2002~2005    미국 로체스터 대학, 박사후 연구원
2005~현재   고려대학교 생명과학대학 생명과학부 조교수/부교수

4. 연구지원 정보

기여도

(%)

지원기관

사업명

과제번호

연구지원

기간

총연구비

(천원)

35

교육과학기술부/한국연구재단

기초연구사업-중견연구자지원사업-핵심

2009-0078061

2009.09.01~2012.02.29

280,000

35

교육과학기술부/한국연구재단

기초연구사업-중견연구자지원사업-핵심(공동)

2009-0084897

2009.09.01~2012.08.31

120,000

30

보건복지부

신종인플루엔자범부처사업

A103001

2011. 07. 01∼ 2012. 10. 31

200,000

<조하나 박사과정생>

1. 인적사항

 ○ 소 속 : 고려대학교 분자세포생물학과
 
2. 학력
  2002 - 2006    서울여자대학교 생명공학과 학사
  2006 - 현재    고려대학교 분자세포생물학과 RNA 유전체학 Lab
                 석 박사 통합과정
 
3. 경력사항
  2005. 06 - 2005. 12  한국과학기술연구원(KIST) 연수생
 
 4. 수상실적
  2009. 09. 17  고려대학교 생명과학대학 최우수 연구자상
  2010. 04. 02  고려대학교 생명과학대학 최우수 연구자상
  2011. 07. 04  한국RNA학회 감사장

 

posted by 글쓴이 과학이야기

댓글을 달아 주세요

  1. 비만을 해결 할 수있는 아주 중요한 논문 이네요. 만병의 원인인 비만을 해결하는데 초석이 되기를 기대합니다.

prev 1 next