반응형

멀지 않은 미래에는 두루말이 모니터, 장갑이나 옷 겉면에 부착된 디스플레이, 접어서 보관하는 TV 등 플렉시블 전자제품이 상용화 될 것입니다. 

이를 실현 가능하게 하는 기술 중 하나가 유연한 기판에서 작동할 수 있는 소자를 개발하는 것인데요. 특히 인쇄형 전극의 경우 은나노입자가 우수한 전기적 기계적 성능을 갖고 있지만 생산 가격이 높다는 한계를 갖고 있습니다.  

이에 따라 은나노입자의 대안으로 구리나노입자 기반 기술이 제시돼 왔는데요.

하지만, 구리나노입자는 표면 산화막 형성에 따른 제어의 어려움으로 인해 전도성이 떨어지고, 열처리 공정에 한계가 있어 상용화에 어려움을 겪었습니다.

가격경쟁, 성능경쟁 가능한 구리나노입자 개발

한국화학연구원(이하 화학연) 최영민 박사와 정선호 박사팀, 조예진 연구원(주 저자)은 가격경쟁력과 전기전도성이 높은 구리나노입자로 플렉시블 디스플레이, 스마트폰 등에 쓰이는 전자회로를 만들 수 있는 전극 제조기술을 개발했습니다.

이번 연구는 터치스크린, 전자파 차단 필름 등에 쓰이는 연성회로기판의 전자회로를 보다 저렴하고 효율성이 높은 구리나노입자 기반 인쇄형 전극으로 제조할 수 있어 미래 플렉시블 전자산업에 획기적인 역할을 할 것으로 기대됩니다.

연구팀이 개발한 핵심은 산화막이 표면에 형성되는 것을 막아주면서 나노입자를 합성할 수 있는 구리나노입자  합성기술과 1000분의 1초 단위의 광열처리 기술을 통해 공기 중에서 인쇄형 구리배선을 연속으로 제조할 수 있는 기술인데요. 

[그림 1] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진[그림 1] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진
(a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진

구리나노입자 합성기술은 구리나노입자의 표면에 산화막이 형성되면 전기가 잘 흐르지 않기 때문에 전자배선에 쓰이는 구리나노입자의 표면 산화막을 방지하는 것으로, 연구팀은 구리나노입자의 산화막 형성을 방지하면서 나노입자를 합성할 수 있는 기술을 개발했습니다.

또 광열처리 기술은 기존의 열에너지를 이용하는 열처리 공정과 달리 순간적인 광 조사를 통해 나노입자기반 박막의 물리적 화학적 특성을 변화시키는 기술입니다.

이번 연구는 가격경쟁력이 우수한 구리나노입자 소재 활용의 한계점으로 작용했던 산화막 형성을 극복하고, 추가 공정 없이 공기 중에서 연속적으로 제조하는 기술을 제시해 미래 유연소자용 배선의 높은 전도성을 확보하면서도 저가로 간편하게 제조할 수 있어 파급효과가 클 것으로 전망됩니다.

또 이번 연구를 통해 제시된 공정기술은 생산성이 높은 롤투롤(roll-to-roll) 공정기술에 적용이 가능하고, 순간적인 광 조사를 통해 구리입자의 확산 움직임을 적층소자구조에서 효율적으로 제어, 우수한 성능의 소자를 제작할 수 있음을 규명했다는 평가를 받고 있습니다.

연구팀은 이번에 개발한 기술을 국내 전자소자 관련 기업 2곳으로 기술이전, 2~3년 내 상용화 될 전망이고요. 산업계 응용을 보다 확장하기 위해 추가 상용화 연구를 진행하고 있습니다.

아울러 연구팀은 구리 전자잉크를 바탕으로 섬유, 의류 등에 적용이 가능하도록 쉽게 늘어날 수 있는 회로를 3D 프린팅으로 인쇄하는 기술도 개발하고 있습니다.

향후, 구리나노입자 기반 유연 전도성 전극이 적용될 수 있는 플렉시블 전자소자 시장은 2018년까지 150억 달러(10조 6,000억 원)으로 성장할 것으로 기대되고 있습니다(출처: Conductive Ink Martket 2014-2024 (IDtechEx)).

이번 연구결과는 영국왕립화학회 나노스케일(Nanoscale)지 2015년 2월 21일 자 내부 표지논문으로 선정됐습니다. 
    ※ 영문 제명: Ambient Atmosphere-Processable, Printable Cu Electrodes for Flexible Device Applications: Structural Welding on a Millisecond Timescale of Surface Oxide-Free Cu Nanoparticles  


2015년 2월 Nanoscale 표지 (Inside back cover)


 용 어 설 명

표면 산화막 형성이 제어된 구리나노입자 
저온 소결 공정을 통해 금속나노입자 기반 전극을 형성함에 있어서 표면 산화막은 소결거동을 제약하는 동시에 전극의 전기적 특성을 제한함.
따라서, 쉽게 산화가 되는 구리나노입자의 경우 표면 산화막 형성이 제어된 구리나노입자를 합성하는 기술이 핵심적으로 필요함.  
 
광열처리
기존의 열에너지를 이용하는 열처리 공정과 달리 1/1000 초 단위의 순간적인 광조사를 통해 나노입자기반 박막의 물리적 화학적 특성을 변화시키는 기술

롤투롤
기판에 회로배선을 인쇄형으로 연속 제조할 수 있는 기술. 대면적 전도성 박막을 높은 생산성으로 제조할 수 있음. 

적층소자구조
디스플레이 등에 쓰이는 전자회로 기판에는 여러 층의 소자들이 겹겹이 쌓인 구조를 이루고 있으며, 원하는 성능을 나타내기 위해서는 이 층 사이에 원자가 확산하는 것을 효율적으로 제어하는 것이 필요함

 

구 개 요

1. 연구배경

미래 전자소자의 발전방향은 대면적 기판의 적용이 가능한 저가의 소재/공정기술을 바탕으로 유연기판상에 다양한 기능성을 가지는 소자를 제작하는 흐름임.

소자의 제작을 위해 필요한 다양한 적층화 공정에서 가장 필수적인 소재는 전극소재이며, 기존의 증착 및 광학전사법이 배제된 신규 소재 및 공정기술의 개발이 필수적임. 최근 금속나노입자 기반의 인쇄형 전극을 개발하는 연구가 활발히 진행되어왔지만, 특성 및 공정성이 우수한 은나노입자는 높은 생산가격으로 인해 한계점을 가지고 있음.

이에 대한 대안기술로서 제시되어온 구리나노입자 기반의 전극형성 기술은 구리나노입자 표면의 산화막 형성 거동 제어의 어려움으로 인해 높은 전도성을 확보하기가 어려우며, 높은 열처리 온도 및 분위기 제어등의 공정상의 제약점이 수반되는 한계점을 지니고 있음.

따라서, 구리나노입자 기반의 인쇄형 전극을 형성함에 있어서 기존 한계기술을 극복할 수 있는 새로운 개념의 소재 및 공정기술의 개발이 필수적임.

본 연구에서는 산화막 형성이 제어된 구리나노입자 합성기술과 광열처리 기술을 기반으로 일반대기 하에서 인쇄형 고전도성 초저가 구리배선의 연속식 제조를 가능케 하는 기술을 개발하였음.


2. 연구내용

본 연구에서는 캡핑 고분자의 화학적 거동을 제어함으로서 구리나노입자 표면의 산화막 형성을 억제하였으며, 순간적인 광조사를 이용하여 구리나노입자간의 소결 거동을 제어함으로서 유연소자 적용이 가능한 인쇄형 구리 전도성 배선을 만들 수 있음.

[그림 1] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진[그림 1] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진
[그림 1] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선의 반복벤딩 특성; (c) 연속공정을 통해 제작된 유연 구리박막의 사진

그림 1에서 보듯이, 저온 소결공정시 일반 대기하에서 쉽게 산화가 되는 구리나노입자 기반의 패턴임에도 불구하고, 종이, PET, PES 및 PI 기판을 포함하는 다양한 기판상에서 우수한 전도성 패턴이 공기중에서 용이하게 제작됨을 알 수 있음.

특히, 고내열성이 부족한 PET 및 종이 기판상에서도 소재 및 공정 적합성이 우수함을 확인할 수 있음.

제작된 유연기판상 구리나노입자 기반 배선의 반복 벤딩특성을 평가한 결과, 10000회 동안의 반복벤딩후에도 비저항의 변화가 거의 없는 것을 알 수 있음.

또한, 이러한 유연특성이 우수한 고전도성 인쇄형 구리 배선의 대면적 적용 가능성을 평가함. 일반적인 열에너지를 이용한 열처리와 달리 광열처리의 경우 짧은 광열처리 구간으로 기판이 연속적으로 이송될 수 있으며, 이를 통해 높은 생산성을 가지는 대면적 전도성 박막을 제조할 수 있음을 보였음.


[그림 2] (a) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선 기반 capacitor의 사진; (b) PET, PES, PI 및 종이기판에 제작된 인쇄형 유연 구리배선 기반 capacitor의 반복벤딩 특성; (c) 인쇄형 유연 구리배선 기반 박막 트랜지스터의 모식도 및 전기적 특성

이렇게 제조된 유연 구리 전도성 패턴의 유연소자로의 적용성을 평가하기 위해 capacitor 및 In-Ga-Zn-O 박막 트랜지스터를 제작하였음(그림 2).

PI, PES 및 PET 기판 상에서 제작된 capacitor의 경우 10000회의 반복 벤딩 테스트 후 축적전하 및 누설전류를 측정하였을 때 소자 성능의 변화가 없음을 확인함.

또한, 구리 전도성 배선을 소스/드레인 전극으로 이용하여 박막 트랜지스터를 제작할 경우, 기존 급속열처리 (rapid thermal annealing)의 경우 산화물 반도체 내부로의 구리의 확산을 제어하기가 어려운 반면, 급속 광열처리의 경우 순간적인 광조사공정으로 인해 구리의 확산을 제어하여 우수한 성능의 소자를 제작할 수 있음을 규명하였음.

새로운 개념의 소재 및 공정기술은 그 연구의 가치를 인정받아  Nanoscale 최신호 (2015년 2월 21일)의 내부 표지 논문으로 선정되었음. (그림 3) 


[그림 3] 2015년 2월 Nanoscale 표지 (Inside back cover)

이번 연구는 한국화학연구원이 미래성장동력을 발굴하고 고유연구 역량을 심화시킬 수 있도록 추진하고 있는 “Top-Down 임무형 주요사업”의 지원을 받아 수행되었음.

3. 기대효과

이번 연구는 기존의 구리나노입자 기반의 인쇄형 유연전극에 대한 공백기술을 극복할 수 있는 소재 및 공정기술을 새로이 제시한 내용임.

금속나노입자 기반 전도성 배선이 요구되는 기존의 다양한 응용분야로의 확장된 적용이 기대되며, 이를 통해 고성능과 가격경쟁력을 동시에 확보할 수 있는 응용제품의 개발 및 시장의 개척이 기대됨.

또한, 평면기판상의 2차원 인쇄가 아닌 현재 많은 관심을 받고있는 3차원 프린팅 공정을 통한 다양한 구조의 소자 제작을 위한 기반기술로 적용될 수 있을것으로 기대함. 

 

최영민 박사

1. 인적사항
 ○ 소 속 : 한국화학연구원 그린화학소재연구본부
 ○ e-mail : youngmin@krict.re.kr

2. 학력
 ○ 1985 - 1989 연세대학교 세라믹공학과 학사
 ○ 1989 - 1991 연세대학교 세라믹공학과 석사
 ○ 1999 - 2003 KAIST 재료공학과 박사   
 
3. 경력사항
 ○ 1991 - 2005     한국화학연구원, 선임연구원
 ○ 2007 - 2011     한국화학연구원, 연구정책실장
 ○ 2008 - 현재     과학기술연합대학원, 교수
 ○ 2005 - 현재     한국화학연구원, 책임연구원

4. 전문 분야 정보
 ○ 용액공정용 나노소재 합성 및 소자응용, 웨어러블 소자용 화학소재

정선호 박사

1. 인적사항
 ○ 소 속 : 한국화학연구원 그린화학소재연구본부
 ○ e-mail : sjeong@krict.re.kr

2. 학력
 ○ 1998 - 2002 연세대학교 신소재공학부 학사
 ○ 2002 - 2007 연세대학교 신소재공학부 박사  
 
3. 경력사항
 ○ 2007 - 2008     연세대학교 신소재공학부, 박사 후 연구원
 ○ 2008 – 2009     Northwestern University, 박사 후 연구원
 ○ 2009 - 2014     한국화학연구원, 선임연구원
 ○ 2014 - 현재     한국화학연구원, 책임연구원

4. 전문 분야 정보
 ○ 프린터블 기능성 무기소재 합성, 에너지/전자 소자 제작

반응형
반응형

그래핀은 탄소 원자들이 벌집처럼 육각형으로 연결된 얇은 막 구조로, 두께는 0.35㎚ 정도로 매우 얇지만 강도와 전기전도성이 매우 뛰어납니다.

최근 터치스크린, 트랜지스터, 광검출기, 화학 생물 검출기, 열전기 장치 등 그래핀의 우수한 물리적 특성을 활용한 다양한 응용연구가 진행되고 있습니다.

또 완벽한 2차원 구조를 구현할 수 있는 그래핀을 이용해 2차원 공간에서 발생하는 새롭고 다양한 물리적 현상을 규명하는 연구도 진행 중입니다.

KRISS(한국표준과학연구원)를 비롯해 미국 표준기관(NIST), 독일 표준기관(PTB) 등 각국의 표준기관에서는 그래핀의 2차원 구조로 인해 발생하는 양자홀 효과를 활용해 양자저항 표준개발을 목표로 연구를 수행하고 있습니다. 

정수용 박사

KRISS 나노양자연구단 정수용 박사가 포함된 미국 표준기술연구원(NIST) 연구팀이 꿈의 신소재 그래핀의 전기적 성질을 외부 역학적 힘으로 조절하는 연구 결과를 발표했습니다.

이번 연구의 공저자인 정수용 박사는 NIST 객원 연구원 재직 당시 실험 및 데이터 분석 등 관련 연구 성과에 주도적인 역할을 했고, 지난 4월부터 KRISS에서 그래핀 표준연구를 수행 중입니다.

기존 그래핀을 활용한 전자소자는 게이트 전극과 같은 외부 전기적 자극을 활용해 그래핀의 전기적 성질을 제어했습니다.

하지만 연구팀은 기존의 전기적 방법을 활용하지 않고, 역학적 방법으로 그래핀의 육각형 구조를 변형시켜 그래핀의 전기적 성질을 조절할 수 있음을 실험적으로 밝혀냈습니다.

탄소원자 한 층만으로 이뤄진 그래핀은 자체적 혹은 외부적 요인으로 탄소 육각형 구조에 변형이 생길 수 있습니다.

이로 인해 그래핀 격자 탄소 원자들 사이에 거리가 변하게 되고, 변형의 세기와 구조에 따라 다양한 전기적 특성이 나타날 수 있습니다.

이번 연구에서는 주사전자현미경(STM) 탐침과 그래핀 사이의 분자들이 서로 잡아당기는 반데르발스 힘, 기판 전극을 이용한 전기력 등을 이용해 그래핀 격자의 변형을 조절했습니다.

특히 그래핀이 원형 대칭 구조로 변형될 경우, 그래핀 내 전자들이 자유롭게 움직이지 못하고 한 지점에 양자점 형태로 모여 있게 된다는 기존의 이론적 예측을 실험적으로 직접 확인됐습니다.

이번 연구는 그래핀 성질을 외부적으로 조절 할 수 있는 방법이 전기적 방법만이 아니라 역학적 방법을 통해서도 가능하다는 것을 제시한 것으로, 늘어나는 전자시계, 휘는 가전제품 등 플렉서블 일렉트로닉스(flexible electronics) 등의 역학적 변형이 필요한 장치에 응용이 가능합니다.

그래핀의 모양이 삼변형 대칭으로 변해서 전기적 성질이 바뀌면 양자홀 효과가 발생했을 때와 비슷한 성질을 나타냅니다.

이러한 원리를 이용하면 극저온 냉장고와 고자기장 없이도 양자홀 효과를 발생해 저항표준기를 개발 할 수 있습니다.

향후 정 박사는 그래핀 기반 양자홀 효과를 이용한 새로운 전기저항표준 개발과 그래핀을 이용한 융합연구 및 측정기술 개발에 집중할 예정입니다.


<원자 해상도 그래핀 주사탐침현미경 이미지>
주사탐침현미경(STM)을 활용해 그래핀을 원자 해상도로 관찰한 모습으로 육각형 모양으로 탄소 원자들이 나열되어 있는 것을 볼 수 있다. 외부 역학적 인자가 존재하지 않는 완벽한 그래핀의 경우 탄소 원자들 사이의 거리는 0.142 nm(나노미터) 이다. 하지만 외부 요인에 의하여 탄소-탄소 사이의 거리 값이 변하게 되면 그래핀의 전기적 성질도 바뀌게 된다.


<STM 탐침과 실리콘 게이트 전극을 이용한 그래핀 단일 막 형태 조절 실험에 대한 개요도>
실리콘 옥사이드에 사전에 제작된 나노 사이즈 구멍위에 올려진 그래핀은 기판과 붙어 있지 않아 외부 역학적 힘에 의하여 쉽게 그 형태가 변하게 된다. 따라서 STM 탐침과 그래핀 사이의 반데르발스 힘, 그리고 그래핀과 실리콘 게이트 전극사이의 전기적 힘을 이용하여 그래핀 막의 형태를 조절 할 수 있다(그림 1a).  이들 사이의 상관관계로 변형된 그래핀은 마치 핀셋으로 얇은 막을 잡아 당기는 경우처럼 국부적 변형이 일어나게 된다(그림 1b). 하지만 그래핀 막의 거시적 변형은 그림 2에서 볼 수 있듯이 STM 탐침과 그래핀 사이의 반데르 발스 힘이 우세한 경우 위쪽으로 잡아 당겨진 형태의 변형이 발생하며, 반대로 실리콘 전극과 그래핀 사이의 전기력이 우세하게 되면 나노 구멍쪽으로 다가가는 변형이 발생한다.       

 용  어  설  명

양자홀 효과 :
극저온, 고자기장 하에서 2차원적인 전자 시스템의 홀 저항이 물질에 무관하게 기본 물리상수의 비로 양자화 되는 현상, 전기저항표준으로 사용되고 있다.
 

반응형
반응형



대덕특구의 터치 디스플레이 전문기업 ㈜아이코리아가 충남 예산 수덕사에 미디어보드 시스템 Touch-i를 설치했습니다.

Touch-i는 UX-engine 소프트웨어를 기반으로 다양한 포맷의 홍보물을 대형 터치스크린을 통해 보여주는 디지털 디스플레이 기기입니다.

수덕사에 설치된 Touch-i는 사찰 소개와 역사, 위치, 행사 등 다양한 통합 안내를 제공하며, 홍보영상, 실시간 한 줄 공지, 포토엽서 작성 및 이메일 전송, UCC 영상편지 작성 및 이메일 전송 등의 기능을 갖췄습니다.

사용자는 터치스크린을 통해 관심 있는 자료를 플레이 시킬 수 있습니다.
 
수덕사 입구와 미술관 및 대웅전 마당 각각 설치되었습니다.

또 아이코리아는 정부에서 추진하는 재래시장 활성화 사업의 일환으로 수원 팔달문 시장에 Touch-i 시스템을 단독 및 부스 형태로 제작 구축했습니다.

이 시스템은 편리한 시장 기능과 외국인을 위한 영어, 일어, 중국어 등 다양한 언어로 지원됩니다.

아이코리아는 지식경제부와 연구개발특구지원본부의 중소기업 지원 프로그램인 토탈디자인 지원 사업을 통해 새로운 기능과 디자인의 Touch-i 시스템을 개발했고, 글로벌 디자인그룹 탠저린과 마케팅 컨설팅 전문회사 ㈜스튜디오크로스컬쳐가 컨설팅을 진행 중입니다.

 

반응형

+ Recent posts