반응형

지금까지 세계의 연구자들은 나노구조체의 기계적 물성을 평가할 수 있는 방법을 찾기 위해 다각도로 연구했지만, 물성 값 도출에 큰 오차를 보이면서 결과의 해석에 큰 이견을 나타냈습니다.

박원일 교수

장재일 교수


그런데 한양대 신소재공학부 장재일 교수와 박원일 교수가 공동 주도하고 한국과학기술연구원(KIST)의 최인석 박사가 참여한  연구에서 나노구조체의 기계적 물성을 정확히 분석하는 기술이 정립됐습니다.

이에 따라 현재보다 더욱 얇고 작으면서도 질적으로는 더 우수한 나노소자를 신뢰성 있게 설계, 생산, 구동할 수 있는 기반 기술이 확보됐습니다.

연구팀은 지금까지 보고된 연구 가운데 가장 다양한 크기 범위의 나노선에 대한 실험을 수행, 나노선의 기계적 물성을 가장 정확하게 측정할 수 있는 기술을 개발하고, 기계적 물성에 미치는 나노선의 크기 효과를 체계적으로 정립하는데 성공했습니다.

연구팀은 나노역학 시험법으로 주목받고 있는 원자힘현미경(AFM; Atomic Force Microscope) 굽힘 시험과 나노압입(Nanoindentation) 시험을 동시에 실시해 실리콘 나노선의 기계적 물성을 평가했고, 다양한 시험조건과 분석 방법을 통해 얻은 결과를 바탕으로 나노선의 기계적 물성을 가장 정확하게 측정할 수 있는 방법을 제시했습니다.

<실리콘(Si) 나노선(nanowire)의 기계적 물성 분석 절차>

(a) (왼쪽부터) 원자힘현미경 굽힘 시험을 위해 준비한 나노선 모습, 시험모식도 및 시험 후 원자힘현미경 이미지(b) (오른쪽부터)나노압입 시험을 위해 준비한 나노선 모습, 시험모식도 및 시험 후 원자힘현미경 이미지.




또 지금까지 수행된 연구 중에서 다양한 크기 범위의 나노선에 대해 실험을 수행해 최근 논란이 가열되고 있는 기계적 물성에 미치는 나노선의 크기 효과를 체계적으로 정립했습니다.

<원자힘현미경(AFM, Atomic Force Microscope) 굽힘 시험 결과>

(a) 원자힘현미경 굽힘 시험으로부터 얻은 힘(force) - 변위(displacement) 곡선이며, 삽입된 이미지는 실험 전(위)과 후(아래)의 실리콘 나노선의 모습을 나타냄.(b) 굽힘 시험에서 사용되는 세 가지 모델을 (a)의 결과에 적용하여 얻은 탄성계수(elastic modulus)와 항복강도(yield strength)를 나노선 크기에 따라 체계적으로 비교함.


<나노압입(Nanoindentation) 시험 결과> 

(a) 나노압입 시험으로부터 얻은 하중(load)-변위(displacement) 곡선이며, 삽입된 이미지는 실험 전(위)과 후(아래)의 실리콘 나노선의 모습을 나타냄.(b) 사용된 압입자의 각도의 변화에 따라 나노선 크기에 따른 탄성계수(elastic modulus)와 항복강도(yield strength)를 비교함.


이번 연구결과는 재료공학분야에서 권위 있는 학술지인 '어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)' 1월호에 게재됐습니다.
(논문명 : Exploring Nanomechanical Behavior of Silicon Nanowires: AFM Bending Versus Nanoindentation)

<나노 구조체의 기계적 물성에 미치는 크기 효과 분석>
 

원자힘현미경 굽힘 시험을 이용하여 얻은 결과들을 기존 연구들과 비교하고 나노선의 크기 변화에 따른 탄성계수(왼쪽)와 항복강도(오른쪽)의 변화를 체계적으로 분석함.



 용   어   설   명

나노구조체
: 나노미터(10억분의 1m) 크기를 가지는 구조체를 가리키며, 대표적으로 0차원 나노구조체인 양자점(quantum dot), 1차원 나노구조체인 나노선(nanowire), 2차원 나노구조체인 그래핀(graphene)  등이 여기에 포함됨. 

나노구조체의 기계적 물성
: 나노구조체가 외부로부터 힘을 받았을 때 나타나는 거동 및 성질을 의미하며, 강도와 탄성 등이 이에 해당됨.

나노소자
: 나노 크기를 가지는 소재 및 구조체를 이용하고 나노기술을 통해 만든 미세  기능성 장치를 말함. 

나노선
: 일차원 나노구조체로서 단면의 지름이 수 나노미터~수십 나노미터 정도의 크기를 가지는 극미세선으로 이것을 만드는 기술은 세계를 변화시킬 신기술 가운데 하나로 꼽히며, 트랜지스터, 논리회로, 메모리, 화학감지용 센서(감지기), 레이저, 에너지 재생/저장 등 다양한 분야에 쓰임.

나노선의 크기효과
: 모든 재료는 나노크기로 작아질 때 물리적, 화학적 성질이 변하게 되는데, 기계적 물성(강도, 탄성 등) 또한 일반적인 크기의 경우와 완전히 다른 성질을 나타내게 됨.

원자힘현미경(AFM, Atomic Force Microscope) 굽힘 시험
: 원자간 힘을 이용하여 극미소 소재의 표면 정보를 구체적으로 분석할 수 있는 장비인 원자힘현미경(AFM)에 장착된 캔틸레버(cantilever)를 측면으로 이동시켜 나노선에 힘을 가하고 그때 얻어지는 굽힘의 정도로부터 나노선의 강도를 평가하는 방법임

나노선에 대한 AFM 굽힘 시험 모식도

나노압입(Nanoindentation) 시험
: 압입(indentation)시험을 이용한 소재의 강도(strength)측정 방법 중 하나로 작게는 수 나노미터(nm) 깊이까지 하중을 가하고, 이때 얻어지는 하중-변위 곡선을 해석함으로써 미소영역에 대한 기계적 물성을 쉽고 비파괴적인 방법으로 측정할 수 있음.

나노선에 대한 나노압입시험 모식도



중견연구자지원사업 내 핵심연구
: 교육과학기술부 이공분야 기초연구지원사업의 하나로서 과학기술 전 분야의 창의성 높은 개인연구 또는 공동연구를 지원하여  기초연구능력을 배양하고 우수 연구인력을 양성하는 것을 목적으로 함.

  

반응형

+ Recent posts