본문 바로가기

나노와이어

세포 내부를 훤히 들여다보는 세포내시경 지금까지 배양된 세포를 관찰하기 위해서는 광학적 회절한계를 극복하는 초고해상도 현미경을 사용했습니다. 그러나 이 경우 매우 복잡하고 거대한 시스템이 필요하기 때문에 생체 내 불투명한 부위에 위치한 세포를 실시간 관찰하기에는 역부족이었습니다. □ KAIST 바이오 및 뇌공학과 박지호 교수팀이 미세한 빛을 주고받을 수 있는 광학 나노와이어를 이용해 세포내에서 나오는 미세한 광학신호를 세계 최초로 검출했습니다. 이번 연구를 통해 사람의 내장 장기를 직접 관찰하는 내시경처럼 세포의 손상 없이 고해상도로 세포 내부를 관찰할 수 있는 길이 열렸습니다. 이에 따라 세포 내에서 일어나는 미세한 생물학적 현상을 연구해 질병을 보다 효과적으로 치료할 수 있을 전망입니다. 박 교수팀이 개발한 광학 나노와이어는 지름이 100.. 더보기
10억분의 1미터 나노분자를 제어한다 KAIST 기계공학과 박인규 교수팀이 최근 나노미터(10억분의 1미터) 크기 공간에서 전기제어와 온도차를 이용해 나노분자를 제어하는 원천기술 개발에 성공했습니다. 박 교수가 이번에 개발한 기술은 ▲고밀도 전자회로 패터닝 ▲고성능 다중물질 나노센서 개발 ▲단백질·유전자 조작 ▲ 세포조작 및 자극 등 다양한 분야에 응용될 것으로 기대받고 있습니다. 특히 기술적 한계로 나노미터 크기의 섬세한 분자제어가 어려워 개발이 더뎠던 초소형-휴대형 센서 개발에도 커다란 변화를 가져올 것으로 예상됩니다. 연구팀은 나노패터닝 공정으로 고밀도·고정렬 나노와이어를 만들고, 각각의 와이어에 전기를 제어하고 빠르게 온도를 조절해 화학반응 제어를 실현해 나노분자를 정밀하고 신속하게 조절가능하다는 것을 실험으로 입증했습니다. 이 기술.. 더보기
휘어지는 유기태양전지의 효율 높이기 유기태양전지는 반도체고분자의 광반응을 통해 전기에너지를 생산하면서도 고가의 실리콘을 사용하지 않아 가격이 저렴합니다. 또 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원입니다. 유기태양전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용될 수 있습니다. 그런데 효율이 문제였습니다. 유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮기 때문에 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점입니다. 이러한 문제를 해결하기 위해 반도체고분자의 수송 특성을 향상시.. 더보기