블로그 이미지
과학이야기
최신 과학기술 동향

calendar

      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30    

Notice

Recent Comment

Archive

체내의 모든 세포로 분화될 수 있는 배아줄기세포는 치매 등 난치성 질환을 치료할 수 있는 무한한 잠재력이 있습니다.
 
그러나 면역 거부반응과 같은 부작용과 난자를 이용해야 하는 윤리적 문제로 인해 그 사용이 제한되고 있습니다.

이 같은 문제점을 해결하고자 환자로부터 얻은 체세포를 배아줄기세포와 유사한 상태로 유도하는 체세포 역분화 연구가 활성화되고 있습니다.
  
특히 지난 2006년에는 일본 쿄토대 야마나카 교수팀이 체세포 역분화 유전자를 삽입하여 배아줄기세포와 매우 흡사한 유도만능줄기세포 생산에 성공하기도 했습니다.

그러나 유도만능줄기세포는 분화과정에서 소량의 미분화세포가 잔류해 세포를 이식하는 과정에서 종양이 생성될 수 있는 문제점이 있습니다.

따라서 최근에는 역분화과정을 거쳐 유도만능줄기세포로 만들지 않고, 직접적인 세포치료를 위한 체세포로의 직접전환(리프로그래밍)을 유도하기 위한 기술개발이 진행되고 있습니다.
 
하지만 이 기술도 세포들이 이미 최종단계까지 분화되어 자기재생능력이 없는 세포들로서, 시험관에서 일정기간 이상 배양이 어려워 세포치료에 필요한 충분한 양의 세포를 확보하는 것이 현재 기술로는 불가능했습니다.

그런데 신경줄기세포의 특이적인 유전자를 이용해 '유도신경줄기세포'를 생산, 기존의 배아줄기세포와 유도만능줄기세포를 대체할 세포치료의 한계가 극복되었습니다.
 
■ 건국대 한동욱 교수팀은 독일 막스플랑크연구소와 공동으로 기존 문제점을 개선한 '유도신경줄기세포'를 개발하고, 치매 등 퇴행성 뇌질환 치료에 새로운 가능성을 열었습니다.
 
 한 교수팀은 생쥐의 체세포에 신경줄기세포의 특이적인 유전자를 삽입하여 뇌 조직으로부터 나온 신경줄기세포와 유사한 세포를 생산해냈는데, 이를 '유도신경줄기세포'라고 이름 붙였습니다.
 

유도신경줄기세포로의 직접 리프로그래밍 기법 모식도.체세포에 신경줄기세포 특이적인 유전자를 도입, 체외와 체내에서 정상적인 분화능을 가진 유도신경줄기세포의 생산이 이루어짐.



 한 교수팀이 개발한 유도신경줄기세포는 시험관에서 1년 이상 장기 배양이 가능하여 자기재생능력이 증명되었고, 분자생물학적 측면에서도 뇌 조직으로부터 나온 신경줄기세포와 일치했습니다.

직접 리프로그래밍 기법으로 생산된 유도신경줄기세포.체외에서 장기간 배양이 가능하여 자기재생능을 획득했음이 증명되었으며, 형태학적으로 뇌조직 유래 신경줄기세포와 매우 유사함.

유도신경줄기세포의 체외 분화능.직접 리프로그래밍을 통해 생산된 유도신경줄기세포가 신경세포, 성상세포, 희돌기교세포로 분화가 이루어져 정상적임 분화능을 가지고 있음이 증명됨.



또한 생쥐의 뇌 조직에 주입하자, 어떠한 종양도 형성되지 않고 다양한 신경세포로 분화되어 정상적인 분화능력도 확인되었습니다.

신경줄기세포로의 직접 리프로그래밍 기술은 분화 및 자기재생 능력을 겸비한 성체줄기세포 중에서도 줄기세포 분야 블루칩으로 각광 받는 기술입니다.

이번 연구는 체세포를 성체줄기세포로 직접 역분화를 유도한 첫 번째 사례로서, 기존의 유도만능줄기세포를 이용한 치료의 가장 큰 문제점인 종양 형성의 문제점을 극복한 획기적인 방법으로 평가받고 있습니다.

이번 연구결과는 세계 최고 권위의 과학전문지 '셀(Cell)'의 자매지인 '세포줄기세포지(Cell Stem Cell)' 주요 논문으로 온라인 판(3월 22일)에 게재되었습니다.
(논문명: Direct reprogramming of fibroblasts into neural stem cells by defined factors)

한동욱 교수(왼쪽)


 용  어  설  명

배아줄기세포(Embryonic stem cells, ESCs) :
수정란에서 유래 가능한 줄기세포로서, 전분화능 (pluripotency, 전능성)을 가지고 있어서 우리 몸을 구성하는 모든 종류의 세포로 분화 가능한 세포이다.

유도만능줄기세포(Induced pluripotent stem cells, iPSCs) : 
체세포에 4가지 전사 유전자 (Oct4, Sox2, Klf4, c-Myc)를 도입하여 만든 세포로서 전분화능을 비롯한 다양한 측면에서 배아줄기세포와 유사한 세포이다. 2006년 일본 쿄토대학의 신야 야마나카 연구진이 개발하였다.

리프로그래밍(Reprogramming) :
일반적으로 분화가 이루어진 체세포를 여러 가지 실험적 방법을 이용 다시 배아줄기세포화 시키는 방법이다. 최근 체세포를 전혀 다른 형태의 체세포로 바꾸어 주는 과정 역시 직접 리프로그래밍(Direct reprogramming, Direct conversion, Transdifferentiation)이라고 부른다.

신경줄기세포 (neural stem cells, NSCs) :
뇌조직이나 척수에서 유래 가능한 성체줄기세포로서 자기재생능을 가지며 신경, 성상세포, 희돌기교세포로 분화가 가능한 다능성을 가진다.

세포줄기세포(Cell Stem Cell)지 :
Cell지의 자매지인 Cell Stem Cell지는 줄기세포분야 최고 권위(인용지수 impact factor 26.967)지로서 주로 다양한 줄기세포에 대한 연구내용을 다룬다.

<연 구  개 요>

최근  Embryonic stem cells (ESCs) 특이적인 전사인자를 이용하여 체세포를 ESCs과 동일한 상태 즉 유도만능줄기세포 (induced pluripotent stem cells, iPSCs)로  reprogramming이 가능하게 되었다.
그러나 특정 체세포에서 특이적으로 발현하는 전사인자들을 도입, 전혀 다른 형질을 가진 adult stem cells로의 직접 리프로그래밍 여부는 아직 알려진 바 없다.
최근 분화된 체세포에 reprogramming 유전자 (Oct4, Sox2, Klf4, c-Myc) 또는 세포 특이적인 전사유전자들을 적용하여 신경세포, 심근세포, 혈액전구세포, 간세포, 외배엽줄기세포로의 직접 리프로그래밍의 유도가 성공적으로 이루어졌다.
기존의 연구에 따르면, 신경세포 특이적인 전사유전자 및 microRNA를 적절히 조합하여 생쥐와 인간의 fibroblast를 다양한 신경세포로 직접 리프로그래밍이 가능함이 밝혀졌다.

이러한 유도신경세포 (induced neurons, iN cells)는 신경세포와 유사한 유전자 발현 양상은 물론 활동전위를 발생시킬 수 있었으며 이 결과는 체외에서 직접 리프로그래밍을 통해 생산된 유도신경세포가 체내 유래 신경세포와 기능적으로도 매우 유사하다는 것을 보여준다.
그러나 자기재생능 (self-renewal) 없는 유도신경세포는 체외에서 일정기간 이상 배양이 어렵고 따라서 충분한 양의 세포를 확보할 수 없기 때문에 직접 리프로그래밍에 관여하는 분자 세포학적 기전을 이해하기 어렵고 나아가 세포치료에 필요한 충분한 양의 세포를 얻어내는 것이 현실적으로 불가능하다.
현재까지 가장 잘 알려진 성체줄기세포인 신경줄기세포 (Neural stem cells; NSCs)는 자기재생능은 물론 신경세포 (neurons), 성상세포 (astrocytes), 희돌기교세포 (oligodendrocytes) 로의 분화능력을 갖추고 있다.
따라서 섬유아세포의 신경줄기세포로의 직접 리프로그래밍은 궁극적으로 신경세포뿐만 아니라 신경 관련 세포들을 대량 확보할 수 있는 기술로 적용 가능하다.
본 연구진은 신경줄기세포 특이적인 전사유전자와 줄기세포 특이적 전사유전자를 적절히 조합하여 fibroblast를 기능성을 구비한 유도신경줄기세포 (induced neural stem cells, iNSCs)로 직접 리프로그래밍에 성공하였다.

iNSCs는 뇌 조직에서 유래된 신경줄기세포와 형태학적 특성, 자기재생능, 후생학적 상태, 체내와 체외 분화능에서 매우 유사하였다.
또한 본 연구진은 fibroblast에서 iNSCs로의 직접 리프로그래밍이 체세포 특이적인 유전자의 발현이 시간이 지남에 따라 비활성화되는 점진적 방식 (gradual process)으로 이루어짐을 발견하였다.
따라서 이 연구결과는 체세포를 실질적으로 자기재생능과 정상적인 기능성을 겸비한 성체줄기세포로의 직접 리프로그래밍을 유도한 첫 번째 연구사례로 사료된다.


<한동욱 교수>

1. 인적사항
 ○ 소 속 : 건국대학교 의학전문대학원 줄기세포교실  
     

2. 학력
  1994-2001  건국대학교 학사 (축산학)
  2001-2003  건국대학교 석사 (가축번식학)
  2005-2008 건국대학교 박사 (생명공학)
     
3. 경력사항
  2008 - 2011  독일 Max Planck 연구소, 박사후 연구원
  2011 - 현재  건국대학교, 총장석학교수
  2011 - 현재  건국대학교 의학전문대학원 줄기세포교실 부교수
 
4. 전문 분야 정보
  - 연구 분야
   1) 생쥐의 배아줄기세포와 외배엽줄기세포, 인간 배아줄기세포를 기반으로 하는 전분화능의 기작에 대한 연구
   2) 유도만능줄기세포의 생산과 역분화 기전에 대한 연구
   3) 유도만능줄기세포를 이용한 신약개발과 질병발생 기작에 대한 연구
   4) 체세포를 다른 형태의 체세포 혹은 성체줄기세포로 직접 리프로그래밍을 유도하기 위한 연구
   5) 직접 리프로그래밍 기법을 이용 임상수준의 유도만능줄기세포와 성체줄기세포의 생산에 대한 연구
   6) 역분화 과정과 생식세포의 발달, 분화과정 그리고 개체의 발달과정에서 수반되는 후생유전학적 리프로그래밍의 기작에 대한 연구

- 수행 과제
   2011-현재 : 교육과학기술부(한국연구재단) 일반연구자지원사업(우수신진연구)
   2011-현재 : 교육과학기술부(한국연구재단) 원천기술개발사업 (바이오.의료기술개발사업)
- 연구 논문
   SCI 및 SCI(E) 28편


posted by 글쓴이 과학이야기

댓글을 달아 주세요

  1. 모과 2012.03.23 11:11  Addr Edit/Del Reply

    건국대가 키운 학자이군요.
    젊은 분이시라서 앞으로 무한한 연구업적을 남기시겠어요.
    내용이 너무 어려운 용어라서 다시 읽어 보겠습니다 ^^

    • 글쓴이 과학이야기 2012.03.23 20:29 신고  Addr Edit/Del

      안녕하세요. 모과님.
      제가 공부가 부족해 쉽게 올리지 못했습니다.
      명문대 물리학과 출신인 모과님이시니 아마도 내용은 다 파악하셨을 듯 해요.

■ 건국대 나노기술연구센터  임용식 교수팀이 단일벽 탄소나노튜브(CNT)에서 광학기법인 시분해 분광법으로 직경이나 구조 등 다양한 나노튜브의 특성을 실시간으로 분석할 수 있는 기법을 개발했습니다.

연구팀은 반도체형 탄소나노튜브에서 전자구조의 결맞음성에 기인한 강한 진동신호 및 이에 수반되는 미세한 격자진동 신호를 처음으로 관측하고 분석했습니다.

연구팀이 개발한 새로운 나노계측 기술은 펄스폭이 극히 짧은 펨토초 펄스로  탐사하는 광학기법으로, 시료에서 발생하는 미세한 전자적 구조 변화와 원자간 격자진동의 변화를 시간 진행에 따라 투과세기의 변화로 직접 검출하는 레이저 분광법입니다.

검출된 탐사광의 세기는 독특한 여러 주파수의 합성으로 표현되는 데, 사용되는 레이저 중심파장을 변화시키면 검출된 진동 주파수(모드)도 민감하게 변합니다.

이러한 진동모드들은 시료 내부의 전자 구조의 정보를 반영할 뿐만 아니라 원자간(격자) 진동에 관한 정보를 담고 있습니다.

탄소나노튜브의 종류에 따라 고유 진동주파수도 달라지고 공명조건에 따라 진동세기도 다르기 때문에 이를 분석하면 각 튜브 종류에 따라 그 전자 준위와 격자 진동준위(구조)를 거의 완벽하게 추출할 수 있습니다.


 

■ 연구팀은 장파장 적외선 파장대역의 펨토초 레이저 광원을 사용해 레이저 고유의 결맞음성으로부터 파생된 나노튜브에 결맞는 격자진동 뿐만 아니라, 결맞는 전자적 구조에 기인한 강한 진동주파수 성분들을 추출하여 나노튜브를 분석할 수 있는 기법을 새로이 제시했습니다.

이러한 새로운 나노물질에 관한 시분해 정밀 계측기법은 기존에 나노물질의 크기나 종류를 구분하기 위한 전자 및 X선 현미경법, 라만 및 형광 분광측정법보다 여러 장점을 갖게 됩니다.

우선 고밀도 시료에 대해 전처리 과정이나 시료 손상 없이 동시 다발로 처리할 수 있는 능력과 높은 분해능을 가지며, 연속적인 파장 변환측정이 어려운 라만 측정이나 금속 나노튜브에서는 측정이 불가한 형광측정법에 비해 큰 차별성을 갖게 됩니다.

또 자외선 파장영역의 펨토초 광원을 이용하면 에너지 띠가 큰 양자 나노 재질이나 생체 내 약효 나노 재질의 거동 등에도 활용될 수 있습니다.



■ 연구팀은 이러한 계측기법을 적용하여 HiPco(튜브직경=1 nm), CoMoCAT (직경=0.8 nm), Arc-discharged CNT (직경=1.5 nm)에서 나노튜브 종류(형상) 분석 기술개발과 전자-격자 상호작용에 관한 기본 기작에 관한 연구를 국내외 연구팀과 공동으로 수행해 오고 있습니다.

이는 현재 우리나라가 나노과학기술 분야에서 세계적으로 최상위군의 리더로써 활발한 연구 개발을 수행하고 있지만 주로 나노 소재를 바탕으로 한 응용 연구에 집중되어 있어, 상대적으로 나노 물질에 관한 계측과 같은 기반 요소기술이 취약한 상황에서 이번 연구와 같은 계측분야의  새로운 기술개발은 상당한 의미를 가지고 또 향후 응용연구에 중요한 역할을 할 전망입니다.

이번 연구결과는 미국화학회가 발간하는 세계적 과학저널인 나노레터스(Nano Letters : IF 12.21) 최근호에 게재됐습니다.
(제목 : Coherent Electronic and Phononic Oscillations in Single-Walled Carbon Nanotubes)

또 연구팀은 이와 관련해 지난 2006년 유사 측정기법을  탄소나노튜브에 적용한 'Coherent Lattice Vibrations in Micelle-Suspended Single-Walled Carbon Nanotubes'를 게재해(Nano Lett. 6, 2696, 2006) 약 40회 인용된 바 있습니다.

posted by 글쓴이 과학이야기

댓글을 달아 주세요

일반적으로 염료감응형 태양전지의 광전극은 이산화 타이타늄 나노입자들 간의 무질서한 연결을 통해 형성된 메조 다공구조를 형성하고 있습니다.

이는 나노입자 간의 전자 전달 효율이 낮추는 원인으로, 전체 태양광에너지 변환효율 향상을 위해 해결해야 할 문제 중 하나입니다.

이 같은 문제 해결을 위해 그동안 광전극 내 타이타늄 배향성을 증가시키거나, 나노선 또는 나노크기의 튜브형 구조를 적용한 고정렬도 광전극 구조를 적용하고자하는 연구들이 시도됐지만, 이러한 구조 자체가 불안정하고 큰 면적에 적용하기 어려운 한계가 있었습니다.

■ 건국대 글로컬캠퍼스 응용화학과 이재준 교수팀이 전도성이 높은 탄소계 나노물질인 탄소나노튜브(CNT)를 이용해 차세대 염료감응형 태양전지(DSSC)의 광변환 효율을 높일 수 있는 기술을 개발했습니다.


연구팀은 차세대 태양전지 가운데 가장 유망한 염료감응형 태양전지(Dye-Sensitized Solar Cell, DSSC)의 효율 향상을 위해 광전극에 탄소나노튜브(Carbon Nanotube, CNT)를 적용해 염료감응형 태양전지의 개방전압 감소를 최소화함으로써 광변환 효율을 최대 6~7 % 정도 증가시켰습니다.
 
염료감응형 태양전지는 식물의 광합성 원리를 응용한 태양전지로 기존의 실리콘 태양전지보다 경제적이며 투명하게 만들 수 있어 건물의 유리창에 직접 활용할 수 있는 차세대 태양전지입니다.

이번 연구는 연료감응형 태양전지에서 아직 규명되지 않은 탄소나노튜브의 영향을 체계적으로 분석해 이론적으로 해석했을 뿐 아니라 이를 실험적으로 구현해 증명한 첫 연구입니다.

■ 연구팀은 이번 연구에서 광전극의 메조 다공구조를 유지한 채 고전하 전도성 특성을 가지는 대표적인 탄소계 나노물질인 CNT를 도입함으로써 공정상의 어려움이라는 근본적 문제를 피하고, CNT의 고전도성을 활용함으로써 태양전지의 전하포집 효율이 증가되는 기술을 개발했습니다.

이 교수팀은 특히 계면에서의 전자전달 특성 변화 원인 규명에 대한 실험적, 이론적 연구결과를 설명하고, CNT를 첨가할 때 발생하는 개방전압의 감소를 최소화 할 수 있는 광전극 구조에 대한 연구 결과를 제시했습니다. 

일반적으로 CNT를 광전극에 도입할 경우 전자포집효율이 40% 이상까지 크게 증가하지만, 대부분의 경우 개방전압의 급격한 감소로 인해 실질적인 태양전지 효율의 향상을 이끌어 내지 못했습니다.

그러나 이번 연구를 통해 이 교수팀은 CNT가 광전극내에 도입될 경우 형성되는 다양한 계면들에서의 계면상태 에너지 분포와 변화가 개방전압의 감소와 밀접한 상관관계가 있음을 규명했고, 이러한 특성을 기반으로 개방전압의 감소에 직접적인 영향을 주는 계면상태의 분포를 최소화할 수 광전극의 구조를 제안했습니다.

이번 연구에서 제안하는 광전극 나노구조를 활용할 경우 CNT를 사용하지 않았을 때에 비해 6~7 % 정도 광효율이 증가하는 것으로 나타났습니다.

특히 일반적인 염료감응형 태양전지보다 수 마이크로미터 이하의 훨씬 얇은 박막상태인 광전극에 적용할 경우 그 효과가 극대화되기 때문에 향후 저온소성 공정을 필요로 하는 유연기판형 광전극 개발에 유용한 기술이 될 것으로 기대되고 있습니다.


■ 이 교수는 향후 그래핀을 적용하는 방법과 저온소성기반 염료감응형 태양전지용 광전극 제작에 활용하는 방안 등 다양한 연구를 구상 중입니다.

또 비액체형 전해질이 도입된 유연성 염료감응형 태양전지 개발에 적용할 수 있는 기반기술의 개발과 관련된 후속연구들을 진행 중입니다.

이번 연구결과는 영국 왕립화학회(Royal Society of Chemistry)가 출간하는 SCI 급 국제 학술지인 PCCP(Physical Chemistry Chemical Physics) 2012년도 제 14호 표지논문으로 선정됐습니다.
(논문명 :  patial arrangement of carbon nanotubes in TiO2 photoelectrodes for high efficiency dye-sensitized solar cells)

<연구논문 영문 요약분>

Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes for high efficiency dye-sensitized solar cells               
 
Abstract
Three electrode structures with different spatial arrangements of carbon nanotubes (CNTs) in the mesoporous TiO2 layer were employed in dye-sensitized solar cells to study the effect of surface states at the interface formed by the incorporation of CNTs. It was found that the decay of open circuit voltage (Voc) was significantly minimized by avoiding the direct contact of nanotubes to the conducting substrate by introducing a thin buffer layer of TiO2 while maintaining the superior electron collection efficiency from the incorporation of nanotubes.


<이재준 교수>

1. 인적사항
 ○ 소 속 : 건국대학교 글로컬캠퍼스 응용화학과            
    

2. 학력
  1986-1990  서울대학교 이학사 (화학)
  1990-1993  서울대학교 이학석사 (화학)
  1995-2001 Case Western Reserve University 이학박사 (전기화학)
     
3. 경력사항

2008 ~ 현재
 건국대학교 자연과학대학 응용화학과 (나노화학/전기화학 전공) 부교수
 / 건국대학교 신기술융합학과 (대학원) 겸임교수
 / 건국대-프라운호퍼 차세대 태양전지 연구소  부소장 (2008.12.1~)
(Vice Director, KonkukUniversityMAT-FraunhoferISE Next Generation Solar CellResearchCenter(KFnSC))
2004 ~ 2007 
 건국대학교 자연과학대학 응용화학과 (나노화학/전기화학 전공) 조교수
 건국대학교 신기술융합학과 (대학원) 겸임교수

2000 ~ 2004 
  Post Doctoral Scholar (박사후 연구원),
  Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California (캘리포니아 공과대학)

2012-  한국전기화학회 태양전지분과회장  (2012.1.1 ~ 2013.12.31)
2012-  한국전기화학회 학술위원장  (2012.1.1 ~ 2013.12.31)
2012-  대한화학회 전기화학분과 총무간사  (2012.1.1 ~ 2012.12.31)
2011-  충청권 태양광 테스트베드 운영위원 (2011.8. ~ )


posted by 글쓴이 과학이야기

댓글을 달아 주세요

유방암, 자궁암, 폐암 등 고형암 뿐만 아니라 림프성, 골수성 혈액암의 발병과 암세포 확산에 공통적으로 관여하는 효소(Akt)가 있다는 사실은 이미 1990년대 말에 밝혀졌습니다.

특히 정상세포와 달리 암세포에는 Akt가 비정상적으로 활성화되어 있는데, Akt의 활성화는 곧 암세포의 성장, 전이, 항암제 내성 및 재발과 관련된 모든 질병을 촉진하는 것으로 알려지고 있습니다.

따라서 전 세계 연구자들은 지난 수십 년간 Akt의 분해를 유발하는 효소를 발굴해 암을 정복하고자 노력하였지만, 애석하게도 가시적인 성과를 거두지 못했습니다.

□ 건국대 안성관 교수와 배승희 박사(제1저자) 연구팀은 '뮬란'이라는 효소가 Akt를 매우 강력하게 분해시켜, Akt와 관련된 모든 암세포의 진행을 억제한다는 사실을 규명했습니다.

또한 뮬란이 세포 내에 에너지 합성 및 세포의 생존과 사멸에 필수적인 미토콘드리아를 통해 Akt의 분해를 촉진한다는 세부 메커니즘도 밝혀냈습니다.

'뮬란(MULAN)'이라는 효소가 폐암 등의 고형암과 골수성 백혈병 등 혈액암의 진행단계를 억제하여 암세포의 사멸을 촉진하는 것입니다.

안 교수팀은 '뮬란'을 통해 향후 신개념 항암 치료제 개발에 새로운 돌파구를 마련할 것으로 기대하고 있습니다.

이번 연구결과는 네이처(Nature)에서 발간하는 생명과학 분야의 권위 있는 학술지인 '세포연구(Cell Research)'지에 온라인 속보(3월 13일자)로 게재되었습니다.
(논문명 : Akt is negatively regulated by the MULAN E3 ligase)

Akt는 암세포 성장, 전이, 내성 및 재발에 모두 관여 하고 있으며 (따라서 '마스터 스위치' 라고 불림), 특히 암세포에서는 Akt 효소가 비정상적인 수준으로 높게 활성화(Activation) 되어 있다. 이 활성화된 Akt를 뮬란(MULAN)이 유비퀴틴(Ubiquitin, Ub)화시켜, Akt 분해를 유도하여 암 발달 관련 모든 과정이 억제된다.

안성관 교수(가운데), 배승희 박사(왼쪽) 및 김가람 학생이 암세포에 인위적으로 뮬란을 넣은 후 나타나는 항암효과에 대한 실험을 하고 있다.


 용  어  설  명

단백질 분해(Protein degradation/Ubiqutination) :
우리 인간 세포 내 기능을 수행하는 것은 단백질이다.
이러한 단백질들은 각기 다른 수명을 가지고 있다.
하지만 그 단백질들의 수명이 달라진다면 세포의 행동 양식 및 증식력이 변화되며, 이러한 세포들이 체내에 많아진다면 질병으로 나타날 수 있다.
따라서 단백질의 분해는 세포의 정상적인 기능 유지에 매우 필수적이다. 세포 내에는 수많은 단백질들이 존재한다.
이러한 단백질들은 모두 개인이 가지고 있는 수명이 다르게 되는데, 이러한 수명을 조절하는데 가장 핵심적인 메커니즘이 '유비퀴틴화(Ubiquitination)'이다.
유비퀴틴은 매우 작은 크기의 단백질이며 특정 단백질에 유비퀴틴이 붙게 되면 세포내 단백질 분해 장소인 프로테아좀(proteasome)으로 이동하게 되어 그 단백질들이 분해되게 된다.
유비퀴틴화는 E1-E2-E3의 단계를 거쳐, 최종적으로 수명이 다한 단백질에 붙게 된다.
세포 내 수많은 단백질들의 수명을 일일이 계산하여 유비퀴틴을 붙이기는 여간 어려운 게 아니다.
하지만 세포내에는 특정 단백질에 해당하는 특정 유비퀴틴 접합효소가 존재하여서 이를 가능하게 한다.
이를 E3 ligase라 한다.
따라서 특정 단백질과 그 단백질에 유비퀴틴을 붙이는 E3 ligase를 발굴해 관련 메커니즘을 규명하는 것은 현대 분자세포생물학에 있어 큰 화두가 되고 있다.

Akt 효소 :
여기서 언급한 Akt는 세포의 성장, 발달 및 혈관신생 등 거의 모든 세포 과정을 조절할 수 있는 마스터(Master) 효소이다.
따라서 Akt 효소 활성의 적절한 조절은 정상적인 상태 유지를 위해 반드시 필요하다.
Akt 효소의 활성이 저하되면, 세포의 정상적인 기능 유지가 안 됨에 따라, 세포 사멸이 야기되며, 이로 인해 인한 수많은 질병 등이 나타난다.
반대로, 종양세포에서 Akt 효소 활성은 정상세포에 비해서 지나치게 활성화되어 있으며, 이로 인해, 암세포의 진행이 빨라지며, 암 전이를 가능케 하는 것으로 보고되어 있다.
거의 모든 암에서 정상세포와 비교해 높은 Akt 효소 활성을 보였으며, 이는 암세포가 정상세포와 달리 Akt 효소를 유전자 수준에서 많이 만들어내는 것이 아니라, 단백질 수준에서의 비정상적인 조절로 인해 Akt 효소 활성이 지나치게 높아진다는 것임을 알아냈다.
따라서 Akt의 활성을 조절하는 세포 내 메커니즘에 대한 연구가 핫 이슈로 현재까지 부각 받고 있다.
현재까지의 과학자들은 Akt의 활성을 조절할 수 있는 물질들을 발굴했지만, 지속적으로 Akt의 활성을 억제하지는 못한 가역적인 조절이 대부분 이였다.
따라서 Akt의 효소를 직접적으로 분해시켜 지속적으로 Akt의 활성을 억제하여 암을 비롯하여 여러 질병을 직접적으로 치료할 수 있는 물질 발굴에 대한 연구가 필요했다.
이러한 문제점의 해결로 본 연구는 Akt 효소를 직접적으로 분해할 수 있는 뮬란이라는 물질을 발굴한데 그 의의가 있다.
암 세포 내 뮬란의 양이 많아진다면 Akt 효소 자체가 계속적으로 분해되기 때문에, 암세포의 발달을 지속적으로 억제할 수 있게 되는 것이다.
 
세포연구(Cell Research)지 :
기초의학분야에서 인간의 질병에 관한 주제로 그 원인을 분자세포생물학적으로 접근하여 연구하는 세계적으로 권위 있는 학술지.
특히 아시아에서 발간되는 학술지 중에서 최상위에 있고, 피인용지수(Impact Factor)가 2010년 기준 9.417이다.
전 과학 분야에서 상위 6% 이내에 랭크되는 학술지로, 세포생물학(Cell Biology) 분야에서 8.4%(21위/177개) 이내에 든다.

<연 구 개 요>

우리 인간 세포 내 기능을 수행하는 것은 단백질이다.
이러한 단백질들은 각기 다른 수명을 가지고 있다.
하지만 그 단백질들의 수명이 달라진다면 세포의 행동 양식 및 증식력이 변화되며, 이러한 세포들이 체내에 많아진다면 질병으로 나타날 수 있다.
따라서 단백질의 분해는 세포의 정상적인 기능 유지에 매우 필수적이다.
대부분의 암 성장 및 종양 발달에 Akt의 기능은 매우 중요한 역할을 한다.
비록 Akt의 과활성화가 정상세포에 비교하였을 때, 암세포에서 많이 관찰되어 있어, 그 활성을 막고자 하는 연구가 지속되어 왔지만, Akt의 분해를 직접적으로 유발할 수 있는 효소를 발굴하고자 하는 연구는 아직 걸음마 수준에 있다.

Akt의 과활성화는 암세포의 성장, 전이, 항암제 내성 등과 같은 현상을 유발시킨다.
그리고 암세포에서 Akt의 활성을 억제 및 인위적으로 Akt 분해를 유발시키면 암세포의 사멸 및 전이 억제와 항암제 효과가 커지는 것이 보고되었다.
하지만 세포내에서 어떠한 효소가 Akt의 분해를 유발하여 활성을 억제시키는지와 그로 인해 암세포의 사멸을 촉진시킬 수 있는지에 대한 연구는 아직까지 보고되고 있지 않았다.
본 연구는 세포내에 존재하는 뮬란(MULAN)이라는 효소가 Akt라는 단백질을 강력하게 분해시켜, 암세포의 성장 및 발달을 매우 효과적으로 억제시킬 수 있다는 결과를 밝혀냈다.
본 연구수행 당시 뮬란이라는 효소는 전 세계에서 보고된 적 없는 신규 유전자였으나, 애석하게도 최근 타 연구그룹에 의해서 뮬란이 세포 내 신규 효소라고 보고되었다.
하지만, 뮬란의 구체적인 암세포 억제 기능에 대해서는 이번 연구결과를 통해서 전 세계 최초로 규명된 것이다.
특히, 뮬란은 활성화된 Akt만을 표적으로 하여 분해시키며, 분해되는 장소는 세포의 생존과 사멸에 매우 중요한 소기관인 미토콘드리아(Mitochondria)에서 뮬란과 Akt가 만나 Akt의 분해가 유발됨이 본 연구를 통해 규명되었다.

뮬란은 세포 내에 존재하는 유비퀴틴 E3 접합효소(Ubiquitin E3 ligase)이다.
뮬란에 Akt가 결합하게 되면 단백질 분해를 유도하는 신호물질인 유비퀴틴이 Akt에 계속적으로 결합하게 되어, Akt의 분해가 시작되게 된다는 결과도 얻었다.
뿐만 아니라, 아직까지 전 세계 과학자들이 못 밝힌 사실 중 하나인, Akt 단백질 어느 부분에 유비퀴틴이 결합되는지에 대해서 세계 최초로 관련 부분도 밝혀냈다.
즉, 유비퀴틴 E3 접합효소 뮬란은 Akt의 284번째 아미노산에 유비퀴틴을 연속적으로 결합시켜 Akt의 분해를 유발시키는 것이다.
Akt의 284번째 아미노산을 다른 것으로 돌연변이 시킨 결과, 뮬란에 의한 Akt의 분해가 억제되었으며, 따라서 뮬란에 의한 암세포의 성장 억제 효과도 제거됐다.
또한, 세포 내 인위적으로 뮬란의 발현을 siRNA을 이용하여 억제시킨 결과, 암세포 내 Akt 단백질 양 및 활성화가 증가되어 암세포의 성장 및 발달이 증가됨을 알아냈다.
따라서, 뮬란에 의한 암세포의 생존 및 발달 억제는 Akt를 통해서 이루어지며, 뮬란을 통한 Akt의 분해가 암세포의 억제에 매우 효과적임을 증명하였다. 


<안성관 교수>

1. 인적사항
 ○ 소 속 : 건국대학교 미생물공학과·향장학과
 
2.. 학력
  1988 - 1995    건국대학교 미생물공학과 학사
  1995 - 1998    영국 옥스퍼드대학교 생화학과 이학박사
                  (분자세포생물학 전공)
 
3. 경력사항
  1998 - 2000 미국 유타주립의과대학 박사후연구원
  2000 - 2003 미국 하버드의과대학 박사후연구원
  2003 - 현재 건국대학교 미생물공학과·향장학과 교수
  2003 - 현재 건국대학교 유전단백체 기능제어연구센터 센터장
  2007 - 현재 방사선생명과학회, 대한화장품학회 등 편집위원
  2010 - 현재 KISTEP 생명농림수산분야 자문위원
  2011 - 현재 방송통신심의위원회 광고특별위원회 위원
  2012 - 현재 대한피부미용학회 편집위원장
<배승희 박사>

1. 인적사항
 ○ 소 속 : 건국대학교 미생물공학과·생물공학과
 
2. 학력
  2000 - 2005    건국대학교 미생물공학과 학사
  2005 - 2007    건국대학교 생물공학과 석사
  2007 - 2012    건국대학교 생물공학과 공학박사
                 
 3. 경력사항
  2003 - 2005  건국대학교 유전단백체 기능제어연구센터 연구원
  2005 - 현재  건국대학교 유전단백체 기능제어연구센터 연구실장
  2007 - 2012 건국대학교 병역특례 전문연구요원
  2012 - 현재    건국대학교 미생물공학과·생물공학과 박사후연구원
  2012 - 현재 건국대학교 생물공학과 시간강사
  2012 - 현재  대한피부미용학회 상임이사
 
4. 수상실적
  2007. 11. 15  방사선생명과학회, 우수논문상 수상
  2009. 12. 01  대한암연구재단 '암연구 박사학위논문 저술지원사업' 수상

posted by 글쓴이 과학이야기

댓글을 달아 주세요

최근 신종플루(H1N1)나 사스(SARS) 등 바이러스 감염에 의한 신종 질병이 발생하면서 분자진단 시장에서 유전자 칩과 같은 빠르고 정확한 진단에 대한 요구가 증가하고 있는 추세입니다.

유전자 칩(DNA chip)은 극 미량의 바이러스에도 반응하므로 질병의 초기진단이 가능하고, 환자의 유전정보검사 및 개인 맞춤형 처방에도 활용될 수 있습니다.

이처럼 높은 응용가치에도 불구하고 기존 유전자 칩이 안고 있는 복잡한 전 처리 과정과 다소 약한 탐지신호 등 기술적인 문제로 시장이 확대되지 못하고 있습니다.

전 세계 분자 시장의 규모는 약 35억 달러로 추산되고, 급격한 수요의 증가에 따라 2011년에는 45억 달러, 2013년에는 58억 달러에 이를 것으로 추정됩니다.

관련 업계는 바이오 산업이 가져올 가치 변화와 수익 창출에 대한 기대는 점점 커지고 있어 연평균 15% 가량의 성장률을 감안해 2011년에는 국내에서도 약 660억 원의 시장으로 성장할 것으로 예측하고 있습니다.

국내 분자진단산업이 성장하기 위해서는 무엇보다 원천기술 확보가 관건으로 꼽히고 있습니다.

한 예로 세계 분자진단 시장을 이끈 다국적기업 로슈(Roche)의 경우 원천기술 하나로 20년 동안 매년 수 천억 원의 매출을 올리고 있습니다.

바이오/의료진단 장비 전문기업 케이맥㈜이 건국대학교 산학협력단과 기술이전 협약식을 갖고 동 대학의 의생명과학연구원 채치범 교수팀에서 개발한 자동화 유전자 칩 관련 기반 기술을 이전 받기로 했습니다.

케이맥㈜이 이전 받게 되는 유전자 칩 진단기술은 유전자 분리, 증폭 및 혼성화 등 여러 단계를 통합 한 자동화 기술로 분석에 필요한 모든 복잡한 과정을 한 번에 처리할 수 있고, 민감도를 극적으로 증가시킬 수 있어 정밀한 측정이 가능합니다.

케이맥㈜은 이전 받은 유전자 진단 원천기술을 활용하여 단순화된 칩 형태의 '유전자 진단 장비'와 중형급 병원에서도 운영 가능한 '보급형 유전자 진단장비' 등을 개발할 계획입니다.

케이맥㈜는 1996년 설립 이래 물성분석과 정밀 분석 시스템 제작 노하우를 보유하고 있으며, 유전자 칩 제작에 필요한 필수 요소 기술인 MEMS(Micro Electro Mechanical Systems, 미세전자기계 시스템)을 보유하고 있습니다.
 
이번 기술이전을 계기로 기존 유전자 칩의 단점을 극복한 획기적인 진단장비의 완성이 가능할 것으로 전망되며, 기존의 시장진출 노하우를 기반으로 빠른 사업화와 원천기술의 고부가가치 사업화 실현에 시너지 효과를 기대할 수 있수 있습니다.

이번 기술이전을 기점으로 케이맥㈜은 지난해 출시한 알러지 진단장비의 면역진단 시장 뿐만 아니라 분자진단 시장까지 진출하게 되어 바이오/의료진단 시장의 영역을 더욱 확대할 수 있게 됐습니다.

posted by 글쓴이 과학이야기

댓글을 달아 주세요

prev 1 next