반응형

지난달 나로호 3차 발사 중단의 원인이 발사체로 연료를 공급하는 어댑터 블록의 결함 때문으로 밝혀졌습니다.

어댑터 블록은 러시아가 제작해 들여온 것으로, 나로호 1단 엔진과 발사대를 연결해 연료 및 헬륨을 공급하는 배관역할을 수행합니다.

최초 원인으로 지목됐던 헬륨 공급 장치의 실 파손은 이 어댑터 블록의 결함에 의한 것으로 최종 확인됐습니다.

교육과학기술부는 나로호 발사체 하부와 발사대 사이에 위치한 어댑터 블록 중앙 체결부의 문제로 연료 공급라인 결합부에 틈이 발생, 실이 파손된 것으로 공식 밝표했습니다.

교과부와 한국항공우주연구원은 파손된 실을 새로 교체하고 기밀시험에서, 220bar의 압력으로 헬륨가스 공급한 후 약 3시간이 지난 시점에 어댑터 블록이 분리되는 현상을 발견했습니다
.
이 같은 결과는 3차 발사 중지 직후인 지난달 27일 시행한 1차 기밀시험에서 헬륨가스를 2시간 동안만 가압했기 때문에 나타나지 않았던 현상입니다.

이에 한-러 기술진은 어댑터 블록의 중앙체결부를 기존 지상검증용기체(GTV) 부품으로 교체해 6시간 동안 추가 기밀실험을 수행, 어댑터 블록 분리나 헬륨가스 누설 등 이상현상이 일어나지 않음을 확인했습니다.

원인은 연료 공급 어텝터를 연결하는 암나사와 숫나사의 오차가 커지면서 틈이 발생한 것으로 추정되고 있습니다.

그러나 이에 대한 원인은 한-러 협정 상 러시아 측이 원인을 밝히지 않으면 우리나라는 알 수 없는 상황입니다.

실제  러시아 측은 문제가 된 나사의 오차 발생 원인에 대해 별다른 해명을 하지 않고 있어, 불평등한 한-러 협정이 불씨로 남을 전망이다.

일단 어댑터 블록 교체품의 국내 이송 시간과 발사 준비 절차 등을 감안할 때 빨라야 다음 주 중반 이후 재발사가 추진 될 것으로 보입니다.

한편 교과부는 나로호 1단 전체 상태에 대한 점검 결과 어댑터 블록을 제외한 다른 부분에는 아무런 이상이 없는 것을 확인했습니다.

이번 재발사 예정일은 오는 9일부터 24일까지입니다.

 

반응형
반응형

<취임사>한국생명공학연구원 제11대 원장 취임식 취임사

존경하는 김건 이사장님, 표준연구원 강대임 원장님, 천문연구원 박필호 원장님, 내외 귀빈여러분, 한국생명공학연구원 가족 여러분,

바쁘신 가운데도 한국생명공학연구원의 새 출발에 격려와 축하를 해 주시기 위해 참석하신 여러분에게 감사드리며,
또한 여러분의 기대에 반드시 부단한 노력으로 보응할 것을 오늘 원장 취임식에서 약속드립니다.

저는 우리 연구원이 설립된 1985년부터 현재까지 30여년을 끊임없는 노력으로 오늘날 연구원이 있게 한 동료 여러분들의 땀과 노력을 기억합니다.

또한, 20여명의 조직에서 오늘날 1,500여명의 국내 바이오 전문 연구원으로 성장할 수 있게 해주신 전임 원장님들과 선배님들, 연구원, 행정원, 모든 분들께도 감사드리고,

특히, 어려운 대외 여건에서 연구원 발전에 노력하다가 타계하신 故 정혁 전 원장님에게도 감사드립니다.

존경하는 연구원 가족 여러분.

21세기, 인간유전체 해독으로 시작된  뉴바이오테크놀로지시대는 2020년을 전후로 Bioeconomy시대로의 진입이 전망되고 있으며,

또한, 맞춤형 의료와 바이오 에너지 화학을 근간으로 하는 융·복합연구는 인류가 심각하게 직면하고 있는 건강, 식량, 환경, 에너지 문제를 해결할 수 있는 실마리를 제공할 것 입니다. 

이에 따라 바이오 분야의 대표 출연연구원인 우리에게/ 국가와 국민이 거는 기대는,
우리의 희망인 동시에 반드시 풀어야 할 숙제입니다.
하지만 현재의 우리는 이러한 시대적 요구사항에 과연 얼마나 부응하는가? 라는 질문에,
한마디로 기회이기보다는 심각한 위기사항이라 말씀드릴 수 있으며 원장으로서의 막중한 책임감을 느낍니다.

사랑하는 연구원 동료여러분.

저는 연구원 직원 여러분의 힘을 합쳐서 위기를 기회로 만드는 지혜로 우리연구원이 "바이오 경제를 주도하는 창조적 바이오 글로벌 연구원"으로 발전하는 데 최선을 다하고자 하며, 연구원 모두의 적극적인 동참을 원합니다.

나아가서 국가와 국민을 위하는 연구원으로 발전하기위해서, 앞으로 기관경영을 위한 기본방향을 다음과 같이 연구원 여러분과 공유하고자 합니다.

첫 번째로, 믿을 수 있는 강한 연구원이 되는 것입니다.
  국내외 변화를 적극 수용하여 연구역량을 재조정하여 연구원의 위상을 높여서 자신있고 강한 연구원을 만들겠습니다.

둘째, 즐기면서 일하는 연구원을 만듭시다.
  연구원, 행정원의 동기부여를 유발하여 스스로 즐기면서 일하는 연구 풍토를 조성하여 생산성을 높이도록 노력합시다.

셋째, 미래에 도전하는 융·복합 연구원을 만듭시다.
  원천 기반 분야의 기술을 보강하고, 여기에 미래에 가장 유망한 융·복합기술을 과감히 도입하여 선택과 집중으로 미래를 만드는 연구원으로 발전합시다.

마지막으로, 소통하고 Networking하는 연구원을 만듭시다.
  소통으로 연구원을 안정화시키고 조직과 개인 발전방향의 일체감을 조성합시다. 우리의 단합된 주인의식을 근거로서, 국내외 우수 연구팀과 연계하여 단시간내에 글로벌 우수연구팀을 만듭시다.     

이상과 같은 우리의 노력이 결실을 거둔다면 우리는 국가를 위해서는 대형 원천기반기술을 주도하는 연구원, 국민을 위해서는 바이오산업 경제를 주도하는 연구원, 그리고 직원 여러분들께는 미래가 보장된 안정된 연구원으로 도약할 수 있다고 약속할 수 있습니다.

자! 이제, 우리 모두 지난 우리의 허물과 과오를 과감히 벗어 버리고 희망찬 미래로 전진합시다!!!

이 자리에 참석하시어 격려와 축하를 해주신 내빈여러분, 연구원 가족여러분, 다시 한번 여러분의 기대에 부응하는 원장이 될 것으로  약속드리며 취임의 인사를 마치고저 합니다.

감사합니다.


 

                               2012년 10월 31일
 한국생명공학연구원장 오 태 광

 

 

반응형
반응형

무반사구조(antireflective structures)는 빛의 효율을 향상시키기 위한 대표적인 방법입니다.

그러나 이 구조는 평판에만 국한되기 때문에 LED 렌즈와 같은 곡면에 적용하기에는 많은 어려움이 있었습니다.

KAIST 바이오및뇌공학과 정기훈 교수팀은  3차원 미세몰딩 공정으로 이를 극복하고 스스로 빛을 내는 반딧불이를 모방한 생체모사(자연모사) 공학을 이용해 고효율 LED 원천기술을 개발했습니다.

일반 렌즈(좌)와 고효율 LED 렌즈(우) 사진. 연구팀은 3차원 미세몰딩 기술을 이용해 고효율 LED 렌즈를 제작.

(A) 고효율 LED 렌즈의 제작 과정. (step Ⅰ) 나노입자와 식각공정을 이용하여 나노구조 형성. (step Ⅱ) PDMS 막에 나노구조 전사. (step Ⅲ) PDMS 막에 음압을 가하여 곡률 형성. (step Ⅳ) 자외선 경화 고분자를 부은 후 경화. (step Ⅴ) 완성된 고효율 LED 렌즈. (B) 고효율 LED 렌즈의 전자현미경 사진. (C) 곡면 위에 잘 정렬되어 형성되어 있는 나노구조.

이는 반딧불이 발광기관 외피에 있는 생물 발광기관 나노구조를 세계 최초로 모사한 기술이라는 점에서 의의가 큽니다.

연구팀은 기존에 렌즈의 반사를 방지하기 위해 값비싼 반사방지 코팅을 추가로 처리하던 기술과 달리, 렌즈 제작 시 생체모사 나노구조를 주형에서 한 번에 만들어 보다 저렴하게 LED를 제작할 수 있게 했습니다.

또 무반사효과(antireflection)를 위해 모방한 나노구조를 최적화해서 발광효율을 기존 반사방지 코팅에 상응한 수준으로 만들었습니다

이는 앞으로 스마트폰, TV, 자동차, 의료기기, 실내외 조명 등에 널리 적용될 전망입니다.

(A) 반딧불이 사진. (B) 반디불이의 전자현미경 사진 (N)은 비발광기관, (L)은 발광기관. (C) 비발광기관의 미세패턴, 무작위한 패턴을 형성. (D) 발광기관의 나노구조, 잘 정렬된 나노구조를 형성. (E, F) 반딧불이의 발광기관과 고효율 LED 패키징이 대응되는 구조를 형성하고 있음. 본 연구팀은 반딧불이 발광기관 외피층에 형성된 나노구조층을 LED 렌즈 위에 형성시켜 발광효율을 증가시킴. (E) 반딧불이 발광기관의 모식도. 나노구조의 크기는 약 주기가 250 nm, 너비가 150 nm, 높이가 110 nm 정도임. (F) 고효율 LED 패키징의 모식도.

연구팀은 실리콘 산화막 위에 나노입자를 단일 층으로 형성하고 식각공정을 통해 나노구조를 형성했습니다.

이어 나노구조를 PDMS(polydimethylsiloxane) 막에 전사시키고, 이 막에 음압을 가해 곡률을 형성한 다음, 자외선경화 고분자를 부어 굳혀 반딧불이와 유사한 구조의 렌즈를 만들어 내는 데 성공했습니다.

이번 기술은 세계 최초로 무반사구조가 형성된 반구형 고효율 LED 렌즈를 개발한 것으로, 이 렌즈는 기존에 사용되는 무반사코팅(antireflection coating)과 같은 효과를 보이고 있습니다.

앞으로 생체모사 기술을 활용한 고효율 LED 렌즈 기술을 통해 기존의 값비싼 무반사코팅을 대신해 저렴하면서도 효율을 극대화할 수 있을 전망입니다.

이번 연구는 정기훈 교수와 제1저자인 김재준 박사과정생이 주도했고, 연구 결과는 미국 국립과학원회보지(PNAS) 10월 29일자 온라인 판에 게재됐습니다.

 

정기훈 교수

김재준 박사과정생


반응형
반응형

신임 한국생명공학연구원장에 오태광 책임연구원이 선임됐습니다.

신임 오 원장은 1978년 서울대학교 식품공학과를 졸업하고, 동 대학에서 미생물효소학으로 1982년 석사, 1986년 박사 과정을 마쳤습니다.

1982년 KIST(한국과학기술연구원)를 거쳐 생명연으로 자리를 옮겨 현재까지 재직 중입니다.

신임 오 원장은 2002년부터 2012년 9월까지 교육과학기술부 21세기 프론티어 미생물유전체활용기술개발사업단장을 역임했고, 2003년 영년직 연구원으로 선정되었습니다.

연구실적은 SCI 논문 315편, 국내외 특허 73건 등록, 기술이전 57건(사업단 47건, 개인 10건) 등입니다.

또 내년부터는 미생물 관련 5개 학회 연합회장 겸 한국미생물학회장으로 활동할 예정입니다.

신임 오 원장은 10월 31일 기초기술연구회 이사장으로부터 임명장을 수여받으며, 임기는 2015년 10월 30일까지 3년간 입니다.

 


반응형
반응형

지금까지 노화를 억제하는 약물들이 다수 개발되었지만, 사람에게 적용하는데 한계가 있었습니다.

그런데 노화를 억제하면서 건강하게 오래살 수 있도록 돕는 새로운 물질이 발견됨에 따라, 불로장생을 향한 인류의 꿈에 한걸음 다가서게 되었습니다.

사람이 건강하게 오래 살 수 있는 효과적인 방법은 식사량을 줄이거나 달리기와 같은 유산소운동을 하는 것입니다.

■ KAIST 김대수 교수팀은 우선 소식이나 유산소운동이 보조효소(NAD+)를 증가시켜 세포의 노화를 억제한다는 점에 착안했습니다.

NAD+(니코틴아미드 디욱시뉴클레오타이드)라는 보조효소가 세포 내에서 증가하면 노화방지 효과가 있는 것으로 알려지고 있습니다.

연구팀은 천연화합물인 '베타-라파촌'으로 효소(NQO1)를 활성화시키면, 적게 먹거나 별도의 운동을 하지 않아도 NAD+의 양이 증가됨을 규명했습니다.

베타-라파촌(beta-lapachon)은 라파초 나무나 단삼 등에 고농도로 함유된 천연화합물입니다.

또한 이미 노화가 진행된 생쥐들에게 베타-라파촌을 사료에 섞여 먹인 결과, 3개월이 경과되면 운동기능과 뇌기능이 모두 향상되어 건강하게 오래살 수 있음을 확인했습니다.

실제로 베타-라파촌을 투여한 생쥐 그룹이 소식을 하지 않았는데도 생존율이 증가한 것을 보여주는 생존 곡선.

베타-라파촌은 동서양에서 오랜 기간 사용해 온 약초의 주성분으로 만들어져, 머지않아 쉽게 상용화할 수 있는 것이 특징입니다.

이번에 연구팀이 찾아낸 새로운 물질은 소식이나 운동으로 나타나는 효과를 그대로 모방하여 밝혀낸 것으로서, 향후 암, 치매 및 파킨슨병과 같은 노인성 질환을 예방하고 치료하는데 크게 기여할 전망입니다.

이번 연구는 KAIST 김대수 교수팀과 충남대 의과대학와 공동연구로 진행됐고, 연구결과는 생물학 분야의 권위 있는 학술지인 '플로스 원(PLoS One)' 최신호(10월 11일자)에 게재되었습니다.
(논문명: Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice)

NQO1 효소를 베타라파촌으로 조절하여 노화 시 증가하는 NADH 를 NAD+ 로 변형시켜 건강수명을 증가시킨다.

<연 구 개 요>

Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice
NAD 대사를 조절하는 beta-lapachone의  노화지연효과에 관한 연구
(Plos one, 2012. 10. 11. 출판)

노화는 기억력 감소 및 운동 능력 퇴행 등의 기능적인 면에서의 퇴화를 동반한다.
노화는 그 자체로 암, 당뇨병, 대사성 질환, 알츠하이머병 및 파킨슨병과 같은 신경퇴화질병의 위험 인자의 역할을 하게 된다. 모든 생명체가 겪게 되는 노화를 지연시키기 위한 많은 노력이 이뤄져 왔으며 그 동안 가장 효과를 보이는 것으로 알려진 방법은 소식을 통한 칼로리 제한 기법 및 운동을 통한 방법이다.
하지만 사람의 경우 변인 통제 및 지속성에 어려움이 있기에 소식 및 운동 기전의 이해를 통해 효과를 모사하는 약물을 개발하고자 하는 노력들이 이뤄지고 있다.

노화가 진행되는 동안 세포내의 NAD+/NADH 비율이 제대로 조절되지 못하고 소식을 하는 경우 이 비율이 증가한다는 것이 알려져 있다.
이러한 NAD 에너지 대사에 관여하고 있는 효소 중 한 가지가 NQO1 (NADH:quinone oxidoreductase1)이며 quinone(CoQ, lapachone...)구조를 가지고 있는 물질들을 기질로 사용한다.
기존 연구결과에서 NQO1이 효모(yeast)와 같은 비포유류 개체에서 수명연장의 효과에 관여하고 있음을 밝힌 논문도 있다. 신체 내에서 만들어지는 NQO1의 기질인 CoQ의 경우 NQO1 뿐 아니라 다른 여러 효소의 기질로 사용되며 나이가 듦에 따라 그 양이 줄어든다.
본 실험에서는 NQO1에 특이적으로 작용하는 베타 라파촌(beta lapachone)물질을 포유류인 생쥐 모델에서 섭취시켜 NQO1 효소가 NADH를 NAD+로 전환 감소시킨 결과 노화 생쥐의 수명 및 운동, 지능 능력에서 어떤 효과를 보이는지를 확인하였다.

  태어난 지 13개월 된 생쥐들을 대조군, 소식 그룹, 베타 라파촌 투여 그룹으로 나누어 실험을 진행하였으며 투여 후 소식 그룹과 함께 베타 라파촌 그룹의 경우 몸무게가 감소하는 효과를 보인다.
먹는 양에 있어서는 대조군과 차이가 없기에 에너지 대사 과정과 관련하여 어떤 변화가 있는지 살펴본 결과 베타 라파촌 그룹의 경우 우선 기초 대사량(EE, energy expenditure)이 증가되어 있음을 확인하였다.
또한 베타 라파촌을 일시적으로 투여하면 체온 상승의 효과도 있음을 관찰할 수 있었다. 이러한 결과는 기존에 NAD 대사 과정이 대사량을 조절한다는 연구결과와 일치하는 결과이다.

 베타 라파촌 투여 효과를 행동학적 실험 결과들로 살펴본 결과 투여 3개월 후부터 다른 그룹에 비해서 운동 능력(rota-rod, pole test, grip test)이 향상되어 있음을 확인하였고 인지 능력(fear conditioning)을 확인하는 실험에서도 효과를 볼 수 있었다.
그 다음으로 운동과 인지 능력에 관련되어 있는 근육 및 뇌 조직에서 나타나는 변화들을 전자 현미경 (Electron microscopy)을 통해 살펴보았다. 세포 내에서 에너지 대사과정에 중요한 역할을 하는 소기관인 미토콘드리아가 소식 및 베타 라파촌 그룹에서 그 구조가 잘 유지되어 규칙적으로 배열되어 있으며 뇌조직에서는 기억력에 관여하는 수상돌기가시(dendritic synapse)가 증가되어 있다.  

 
  마이크로어레이(microarray)를 통해 베타 라파촌이 생체 내에서 변화시키는 생물학적 과정들을 살펴본 결과 소식과 유사한 방향성을 가지고 있음을 알 수 있었다.
또한 최종적으로 생존 곡선을 비교한 결과 소식 및 베타 라파촌 그룹이 대조군 그룹에 비하여 오랜 기간 생존함을 확인하였다. 

  위의 결과들을 통해 노화 과정에서의 NAD 대사의 중요성과 베타 라파촌을 이용한 NAD 대사 조절이 포유류에서도 노화 진행을 지연시키는데 효과를 나타냄을 보였다.
소식의 효과를 모사하는 이러한 약물들의 발견을 통해 실제 소식 및 운동을 하기 어려운 사람들도 노화 지연 및 암, 알츠하이머병과 같은 노인성 질환을 예방하는데 있어서 중요한 기여를 하게 될 것으로 기대된다.


 용   어   설   명


NQO1
체내에 유입된 퀴논계 화합물을 환원시키는 효소로서 노화과정에서 증가된 NADH 를 NAD+ 로 전환시키는 기능을 함.

NAD+
니코틴아마이드 디옥시뉴클레오타이드 로서 이것이 세포내에 증가하면 노화방지 효과가 있다고 알려져 있음.

베타라파촌 (beta-lapachon)
라파초 나무, 단삼 등 식물에 고농도로 함유된 천연 화합물로 NAO1 효소가 NADH를 NAD+ 로 전환시키는 반응을 촉진한다. 단삼은 동의보감에는 노쇠한 말을 다시 일으킨다고 알려져 있으나 노화억제 물질이 베타라파촌이라는 사실이 이번 연구로 밝혀지게 되었다.

<김대수 교수>

1. 인적사항 
 ○ 소 속 : KAIST 생명과학과 부교수         
 
2. 학력
  ○ 1989-1993 : 서강대학교 학사  (생물학)
  ○ 1993-1998 : 포항공과대학교(POSTECH) 박사
                            (유전학 및 신경생물학)
 
3. 경력사항
○ 1998 ~ 1999 : 미국 SUNY health science center, New York, 박사후 연구원
○ 1999 ~ 2001 : 포항공과대학교, 박사후 연구원
○ 2001 ~ 2004 : KIST, 선임연구원
○ 2004 ~ 2011 : KAIST 생명과학과, 조교수
○ 2011 ~ 2012 : 미국 Rockefeller University, 방문교수
○ 2012 ~ 현재 : KAIST 생명과학과, 부교수

4. 주요연구업적
1. Won, H., Lee, H-R., Gee, HY., Mah, W., Kim, J-I., Lee, J.m, Ha, S., Chung, C., Jung, ES., Cho, YS., Park, S-G., Lee, J-S., Lee, K., Kim D., Bae, YC., Kaang, B-K., Lee, MG., Kim E. (2012). Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486(7402):261-5.

2. Kim, J., Woo, J., Park, YG., Chae, S., Jo, S., Choi, JW., Jun, HY., Yeom, YI., Park, SH., Kim, KH., Shin, HS., Kim, D. (2011). Thalamic T-Type Ca2+ Channels Mediate Frontal Lobe Dysfunctions Caused by a Hypoxia-Like Damage in the Prefrontal Cortex.  Journal of Neuroscience. 16;31(11):4063-4073.

3. Won, H., Mah, W., Kim, E., Kim, JW., Hahm, EK., Kim, MH., Cho, S., Kim, J., Jang, H., Cho, SC., Kim, BN., Shin, MS., Seo, J., Jeong, J., Choi, SY., Kim, D., Kang, C., Kim, E. (2011). GIT1 is associated with attention deficit/hyperactivity disorder (ADHD) and ADHD-like behaviors in mice." Nature medicine. 17, 566?572.

4. Park, YG., Park, HY., Lee, CJ., Choi, S., Jo, S., Choi, H., Kim, YH., Shin, HS., Llinas, RR., Kim, D. (2010). CaV3.1 is a tremor rhythm pacemaker in the inferior olive. Proc Natl Acad Sci USA, 8;107(23):10731-6.

 


 

반응형
반응형

LIN28 단백질은 줄기세포 치료의 핵심 기술인 유도만능줄기세포(iPS Cell) 생산에 사용되는 것으로 잘 알려져 있습니다.

유도만능줄기세포는 배아줄기세포와 비슷한 수준의 분화능력을 지니고 있으면서도 수정란이나 난자를 사용하지 않아 윤리문제에서 비교적 자유로워 '꿈의 기술'로도 불립니다.

또 LIN28에 이상이 생기면 당 대사와 사춘기 시기 조절 및 간암과 난소암 등에도 영향을 미치게 됩니다.

때문에 LIN28이 다른 유전자의 발현을 조절하는 원리를 완벽하게 알아낸다면, 줄기세포의 이해와 관련 질병 연구, 치료에 새로운 돌파구를 마련하는 셈입니다.

국내 연구진이 줄기세포에서 에너지를 분배하고 세포 간의 의사소통의 양과 속도를 조절하는 원리를 처음으로 규명했습니다.

이는 마이크로RNA를 조절하여 줄기세포의 성질을 간접적으로 유지하는 것으로 알려진 단백질(LIN28)의 기존 기능과는 전혀 다른 새로운 기능을 규명한 성과입니다.

■ 서울대 김빛내리 교수팀은 기존에 알려진 LIN28이 마이크로 RNA를 조절하여 줄기세포의 성질을 간접적으로 유지하는 기능 이외에도 추가적인 기능에 대한 단서를 확인했습니다.

연구팀은 살아있는 줄기세포에 강한 자외선을 쬐어서 단백질과 RNA를 엉겨 붙게 한 다음, 이 RNA에 담긴 정보를 차세대서열분석기로 분석, 총 58기가베이스를 읽어 LIN28이 붙어 조절하는 RNA 전체를 일괄적으로 조사했습니다.

58기가베이스는 A4용지에 인쇄해서 쌓으면 2028m로, 이는 한라산보다도 높은 막대한 분량입니다.

이 같은 방법은 클립시크(CLIP-seq)라고 부르는데, RNA를 조절하는 단백질에 대한 대단위 연구에서 각광받고 있는 기술로, 세계적으로 10여 개 연구실에서만 성공한 신기술입니다.

이 기술은 전통적인 RNA결합 단백질 연구에 비해 세포에 있는 모든 LIN28 단백질 주변의 RNA를 한꺼번에 사진을 찍듯 볼 수 있어 상호작용 전체 지도를 그릴 수 있습니다.

이 실험에서 김 교수팀은 LIN28이 조면소포체에서 일어나는 단백질 생산 전체를 조절한다는 실마리를 얻었습니다.

이후 세포 전체 단백질의 생산 속도를 관찰할 수 있는 리보솜 흔적 조사법을 활용해 LIN28이 실제로 조면소포체에서 생산하는 단백질 모두를 억제한다는 사실을 밝혀냈습니다.

리보솜 흔적 조사법(ribosome footprinting)은 세포 내 전체 mRNA(전령RNA)에 결합된 리보솜의 위치를 분석하여 단백질의 합성속도를 추측하는 방법입니다.

조면소포체는 세포 안에서 막으로 싸인 소기관으로, 사람의 단백질 3만 5000종 중 약 7000종이 여기서 생산됩니다.

이렇게 생산된 단백질들은 △세포와 세포의 연결 △각종 물질의 분비와 수송 △세포 사이의 신호 전달 △면역 반응 등에서 핵심적인 역할을 합니다.

자외선을 이용한 RNA결합 단백질 연구 (CLIP-seq 기술)

RNA결합 단백질을 연구할 때 어떤 RNA에 결합하는가는 가장 중요하고 기초적인 정보다. CLIP-seq에서는 가장 먼저 자외선을 이용하여 살아있는 세포 안에서 단백질과 대상RNA를 엉겨 붙게 (공유결합을 형성하게) 한다. 그 다음, 세포 내용물을 꺼내서 RNA를 잘게 쪼개고 연구하고 싶은 단백질 (LIN28)을 항체를 이용하여 정제한다. 이 과정을 거치면 단백질이 결합하고 있는 작은 RNA조각이 남게 되고, 그 다음 이 RNA조각을 서열분석기로 읽어낸다. 이 서열의 형태와 유전자 유래, 기능적인 특성을 통계적으로 분석하여 차후 RNA결합 단백질 연구의 실마리를 잡게 된다.


연구팀은 LIN28이 배아의 초기 발달 과정에서 세포 전체의 균형을 조절한다는 사실도 규명하였습니다.

세포가 단백질을 생산하려면 상당량의 에너지가 필요합니다.

연구팀은 LIN28이 조면소포체 단백질의 생산을 줄여, 이 에너지를 세포의 양적 성장에 집중시키고, 세포 간의 의사소통도 줄여서 성체 세포로 발달하는 시기를 충분히 늦추는 역할을 할 수 있을 것으로 보고 있습니다.

또 연구팀은 암세포 전이에서 중요한 역할을 하는 단백질의 상당수가 조면소포체에서 생산되므로, LIN28이 조면소포체 전체 단백질을 조절하여 암 전이에도 일조할 수 있을 것으로 예측하고 있습니다.

이는 줄기세포의 정상적인 발달과 당(糖) 대사 및 사춘기 시기 조절 등에 관여하는 LIN28 단백질의 알려지지 않은 직접적인 조절 원리를 밝혀냄으로써, 향후 줄기세포의 유도와 관련 질병의 치료 기술 개발에 새로운 실마리를 제공하는 것입니다.

또한 간암, 난소암 등 여러 종류의 암 발생과 전이에서도 자주 발견되는 LIN28 단백질의 이상 조절에 대처할 수 있는 새로운 치료법 개발에도 가능성을 열고 있습니다.

이번 연구는 서울대 김빛내리 교수 주도로 조준, 장혜식 박사과정생이 공동 제1저자로 참여했고,  연구결과는 세계 최고 권위의 생명과학 전문지인 'Cell'지 온라인 속보(10월 25일자)에 발표되었습니다.
(논문명: LIN28A is a Suppressor of ER-associated translation in embryonic stem cells) 

<연 구 개 요>

LIN28A is a suppressor of ER-associated translation in embryonic stem cells
Jun Cho, Hyeshik Chang, S. Chul Kwon, Baekgyu Kim, Yoosik Kim, Junho Choe, Minju Ha, Yoon Ki Kim, and Narry Kim
(Cell, Vol 151, Issue 4) 
LIN28은 발생 과정, 당 대사와 발암 과정에서 중요한 역할을 하는 것으로 알려져 있다. 분자기작 수준에서 LIN28은 let-7 마이크로RNA의 신생성을 억제하고, 특정 mRNA 몇 종류의 번역을 증진하는 기능이 밝혀졌다.

이 연구에서는 LIN28의 두 paralog 중 하나인 LIN28A가 생쥐 배아 줄기세포에서 어떤 RNA를 대상으로 작용하는지 알기 위해 CLIP-seq (crosslinking immunoprecipitation-sequencing)과 리보솜 흔적 조사법 (ribosome footprinting)을 수행했다.


우리는 이 연구에서 let-7의 전구체뿐만 아니라 온전히 절단된 mRNA에도 대량으로 붙는 것을 발견했다. LIN28A는 AAGNNG, AAGNG와 비교적 적은 빈도로 UGUG를 인식하는 것으로 밝혀졌는데, 이 모티프 서열은 주로 작은 머리핀 구조의 끝 루프에 위치하였다.
또한, LIN28A이 특징적으로 조면소포체에서 번역되는 단백질에 많이 결합하여 번역을 저해하는 현상이 관찰되었는데, 여러 조사 결과 LIN28A가 예상 밖으로 조면소포체 주변에 다량 분포하고 있고, 신호인식물질(SRP)에 의해 조면소포체로 이동하여 번역되는 단백질이 아니면 LIN28A에 의해 인식되지 않는다는 사실이 밝혀졌다.

우리의 연구 결과, LIN28A는 조면소포체에서의 번역에 특이적인 번역 조절을 하고 있으며, 배아 줄기세포에서 단백질 배출 경로를 전체적인 수준에서 조절하는 의외의 기능을 갖고 있다는 사실이 제시되었다.


 
용   어   설   명

LIN28 단백질
미국 톰슨(Thomson)팀에서 성체 세포에서 줄기세포를 유도할 때 사용한 4가지 유전자 중의 하나에서 만들어지는 단백질로, 줄기세포의 특성 유지에 중요한 것으로 알려져 있다. 2009년과 2010년에 김빛내리 교수 연구팀에서 LIN28가 마이크로RNA를 조절하여 세포 발달 단계를 조절한다는 것을 밝혀냈으며, 줄기세포와 발달 초기 세포들과 아주 소수의 성체 세포에 존재한다. 한편, 암으로 발달된 세포에서 과발현되는 경우가 흔해서, 암세포가 되는 과정에서 암세포의 성장을 유도하는 요인 중 하나로 받아들여지고 있다.   

마이크로RNA (microRNA 혹은 miRNA)
마이크로RNA는 21~23 뉴클레오티드 정도 길이의 아주 작은 단일가닥 RNA이다. DNA에서 RNA로 전사된 이후 여러 단계의 프로세싱 과정을 거쳐 완성되며, 단백질로 번역되지 않고 RNA상태로 세포 내에 존재한다. 마이크로RNA는 주로 다른 유전자들의 발현을 조절하는 기능을 하는데, 자신의 염기 서열과 상보적인 메신저RNA(mRNA)에 결합하여 그 메신저RNA가 단백질로 만들어지는 과정을 억제한다. 인간에는 수백종류 이상의 마이크로RNA가 존재하며 각각이 발생, 성장, 노화, 사멸 등의 생명 현상에 관여한다. 

차세대서열분석기 (Next Generation Sequencer)
DNA 서열을 대량으로 분석할 수 있도록 개발된 분석기계. RNA도 분석할 수 있어서, 기존에 불가능했던 대단위 RNA 연구에서 최근 필수적으로 사용되고 있다.

기가베이스 (gigabase)
서열분석기에서 해독한 염기서열(4가지 알파벳으로 이루어진 문장)의 양을 나타내는 단위. 1기가베이스는 10억 글자에 해당하며, 대략 책 5천 권 정도의 정보에 해당한다. 인간 유전체 전체 길이는 3.13 기가베이스 정도다.  

조면소포체 (rough endoplasmic reticulum)
단백질 중 세포막이나 세포 밖, 세포소기관의 막, 핵막 등에 수송될 단백질들을 합성하는 세포내 소기관. 전체 단백질 중 대략 15~20% 정도가 조면소포체에서 합성되어 수송된다. 특히, 막 단백질과 세포 밖으로 수송되는 단백질을 합성하기 때문에, 세포 간 신호전달과 외부 환경 인식, 면역 반응에서 매우 중요한 역할을 담당한다.

리보솜 흔적 조사법 (ribosome footprinting)
세포내 전체 mRNA(전령RNA)에 결합된 리보솜 위치를 분석해서 모든 단백질의 합성 속도를 추측할 수 있는 방법으로, 차세대서열분석기를 활용한 최신 기법이다.

Cell지
생물학 전 분야에서 최고 권위를 인정받는 저널로 피인용지수(Impact Factor)는 32.403로 Science지(31.201)보다 높은 편이다.

 

<김빛내리 교수>

1. 인적사항
 ○ 소 속 : 서울대학교 생명과학부

2. 학력
 ○ 1988 - 1992    서울대학교 학사
 ○ 1992 - 1994    서울대학교 석사
 ○ 1994 - 1998    英 Oxford University 박사
 
3. 경력사항
 ○ 1999 - 2001  美 University of Pennsylvania Postdoctoral Fellow
 ○ 2001 - 2004 서울대학교 연구조교수
 ○ 2004 - 2008   서울대학교 생명과학부 조교수
 ○ 2008 - 현재     서울대학교 생명과학부 부교수
 ○ 2007 - 2011  교과부?연구재단 지정 창의연구단장 (MicroRNA 연구단)
 ○ 2010 - 2012 교과부?연구재단 지정 국가과학자
 ○ 2012-  현재     기초과학연구원 (IBS) RNA 연구단 단장
 
4. 전문 분야 정보
 ○ 호암상 (2009)
 ○ L'Oreal-UNESCO 세계여성생명과학자상 (2008)
 ○ 올해의 여성과학자상 (2007)
 ○ 젊은과학자상 (2007)

<조준 박사과정생> 

1. 인적사항

 ○ 소속: 서울대학교 생명과학부
 
2. 학력
 ○ 2003. 03 - 2007. 02 서울대학교 생명과학부 학사 졸업
 ○ 2008. 09 - 현재 서울대학교 생명과학부 박사과정 재학 (수료)

<장혜식 박사과정생>
                                         

1. 인적사항

 ○ 소속 : 서울대학교 생명과학부                

2. 학력
 ○ 1998. 03 - 2007. 02 연세대학교 기계전자공학부 졸업 (정보산업공학전공)
 ○ 2007. 03 - 2009. 02 KAIST 바이오및뇌공학과 석사과정 졸업
 ○ 2009. 09 - 현재  서울대학교 생명과학부 박사과정 재학

3. 경력사항
 ○ 2001 - 2005  리눅스코리아(주) 솔루션개발팀 사원
 ○ 2001 - 2010 공개운영체제 FreeBSD 개발팀
 ○ 2002 - 현재   공개프로그래밍언어 Python (파이썬) 개발팀
 ○ 2004 - 현재   Python Software Foundation 지명회원
 
4. 전문 분야 정보
 ○ 소프트웨어산업발전유공자 정보통신부장관상 (2008)


 

반응형
반응형

교육과학기술부가 26일 오후 3시 전남 고흥 나로우주센터에서 긴급 기자회견을 열었습니다.

지금까지 파악한 바로는 헬륨은 로켓에 가장 먼저 주입돼 로켓의 각종 벨브를 구동시키는 역할과, 연료탱크를 내부를 가압시켜 원활한 작동을 돕는 역할을 하는데, 이날 발사 준비 작업 중 헬륨가스 공급 압력(220bar)를 견디지 못한 고무 실링이 파손됐다고 합니다.

일단 이날 이주호 교육과학기술부 장관과 포포브킨(Popovkin) 러시아 연방우주청장이 환담을 통해 철저하게 준비한 후 발사를 다시 추진하는 것으로 의견을 나눴다고 합니다.

나로호 3차 발사 일정이 크게 늦춰질 전망입니다.

나로호 재발사는 절차 상 카운트를 고려할 때, 이번 이상이 단순 부품 교환으로 처리된다고 가정해도 최소 오는 31일 이후에나 가능합니다.

그러나 다른 주변 부위 점검과 고무 실링 원인 파악 등을 할 경우 발사 시기는 더욱 오래 연기될 수도 있습니다.

26일 오후 3시 현재 나로호는 기립 상태에서 다시 눕혀져 조립동으로 이동 중입니다.

조립동 도착 예정 시간은 이날 오후 7시, 그리고 곧 조사에 착수할 예정입니다.

이날 한·러 기술진이 파악한 결과 나로호 1단부와 발사대를 잇는 연료공급 포트에서 헬륨가스 주입부의 이상이 확인됐습니다.

자세한 결과는 조립동에서 기술적 분석을 거쳐야 합니다.

일단 한국항공우주연구원은 발사체 내부의 문제가 아니고 발사체와 발사대를 연결하는 접촉 부위에서 일어난 현상이기 때문에 그것을 교체하면 될 것으로 판단하고 있습니다. 

<조광래 나로호발사추진단장과의 1문 1답>

 

-손상 부위와 정도는 어떤가?
“나로호에는 산화제와 케로신 포트가 하나씩 있는데, 여기에 헬륨과 질소 공급 배관이 함께 있다. 이 중 헬륨을 공급하는 포트에서 누설이 생겨서 기밀 유지가 안된 것이다. 이 부분은 조립동에서도 누차 점검을 했었고, 오늘 오전 점검에서도 이상이 없었다. 그러다가 엑체 핼륨을 220기압으로 공급하는 과정에 갑자기 압력이 저하됐다. 현장에 접근해서 확인해보니 기밀 유지하는 공급 실링이 손상됐다. 이는 현장에서 작업이 불가능해 조립동으로 이송을 해야 한다.”

-왜 경미하다고 판단하는가?
“우선 발사체 내부의 문제가 아니고, 발사체와 발사대를 연결하는 접촉 부위에서 일어난 현상이기 때문이다. 실링은 접착면의 기밀을 유지하는 것인데, 그것은 교체하면 될 것으로 판단된다. 그러나 실링의 손상 원인을 분석하기 위해 시간이 필요하다. 혹시 알지 못하는 원인으로 파손됐다면 좀 더 구체적으로 조사할 시간이 필요하다.”

-오전에는 발사체의 문제가 아니라고 했는데, 점검은 발사체를 점검한다고? 파손된 부위가 발사체에 붙어있는 것인가?
“문제가 된 부분은 발사체와 지상설비를 연결하는 중간부위로, 이륙하면 분리되면서 발사대로 수거된다. 이번에 가스가 새는 부분은 발사체와 지상설비가 만나는 점이다.”

-언제부터 분석이 가능한가?
“현재 눕혀진 상태로 오늘 오후 7시에 조립동에 도착하면, 늦게부터 점검에 들어갈 것이다.”

-다른 부품에서도 같은 문제가 발생한다면?
“이 부분은 고압에 대비해 이중으로 구성되어 있는데, 이 부분이 터지면서 접합면이 돌출될 수 있다. 같은 여러 종류의 부품을 우리도 여러 개 가지고 있다. 부품의 수급에는 문제는 문제가 없다. 현재는 한 부위가 삐져 나와 있는데, 실제 포트를 열어 봐야 몇개가 터졌는지 알 수 있다.”

-실링 재질은? 이번 조사에는 우리 연구진도 확인이 가능한가?
“실링 재질은 고무다. 실링의 제조는 러시아 측이다. 그러나 이는 일반 산업체 등에서도 많이 사용하는 것이다. 이번 작업은 한국과 러시아 기술진이 같이 수행한다.”

-오전 브리핑 때는 우리나라 연구진 볼 수 없다고 했었는데?
“기술보호 협정에 따라 우리나라 연구진이 접근할 수 없는 것은 엔진이다. 지금 사고가 난 부분은 접촉 가능하다. 처음 보고 때는 상황 파악이 완벽하게 되지 않았었다.”

-러시아 쪽의 점검 부실인가?
“이 물건을 제작한 것은 러시아지만, 실제로는 우리나라 인원과 설비가 함께 작업을 했고, 기밀 실험도 같이 했다. 체크하는 센서도 우리 것이다. 작업을 공동으로 했기 때문에 러시아에 모든 책임이 있다고는 볼 수 없다. 발사 전600단계를 거치는데. 한 단계마다 만족하지 않으면 넘어갈수 없다. 오늘은 240단계 무렵 중단 된 것이다.”

-이번 사고의 원인이 된 헬륨가스의 역할은?
“헬륨은 발사체 내부의 여러가지 벨브를 구동시키고, 또 연료 산화제나 터보펌프 탱크를 가압시켜 펌프가 받는 부담을 줄여주는 역할을 한다. 그래서 로켓에 연료를 주입하는 순서도 헬륨, 케로신, 엑체산소 순이다. 이는 먼저 추진제를 공급하고 나면 상황을 되돌리기 어렵기 때문이다. 때문에 이번 상황에서 추진제는 아예 들어가지 않은 상황이다.”

-헬륨은 넣고 빼어도 문제가 없나?
“로켓 내부의 헬륨 탱크는 비교적 작다. 또 고압탱크 개발 규격 상 사용 횟수도 매우 높다.”

-문제 발견이 10시 1분인데 다시 눕히기 시작한 시간이 늦지 않았나?
“수직상태에서 문제가 발생하면 발사체의 CT를 홀드시켜 기능 정지시키고 문제가 생긴 그 상태에서 관찰을 해야 한다. 또 다른 문제가 있는지도 확인하고 점검을 한다.”

-배관 등 다른 부분에서의 문제 가능성은?
“지금 나타난 현상으로 볼 때 배관엔 문제가 없다. 발사체 요소마다 센서를 설치해 놨는데 특이 현상 없었다.”

-1차 발사 때도 고압탱크 압력 저하가 있었다. 지금과 어떻게 다른가?
“발사체 내부에 있는 헬륨 탱크가 일정 압력을 유지해야 하고, 마지막 발사 15분 전 자동카운트 시작 후 -8초까지 헬륨탱크 규정압력을 유지해야 한다. 1차 발사 때는 이륙 전 헬륨가스 압력을 유지하면서 엔진 구동에 따라 소모되는 양을 이륙 직전까지 보충했는데, 이 때 일시적으로 220bar가 유지되지 않아서 스톱됐다.”

-당시 나로호관리위원회가 열리고 있었나?
“이날 오전 10시경 열려서 회의를 하던 중에 연락을 받았다.”

-31일 발사 가능성?
“지금 정확한 원인이 밝혀지지 않았기 때문에 단정적으로 말하기 어렵다. 또 모 언론에서 나로호는 겨울에 발사가 안된다고 했는데, 나로호가 사용하는 액체산소 온도가 영하 183℃도다. 겨울에 못 쏠 이유가 없다.”

-나로호관리위원회 일정은?
“이는 정부에서 결정할 일이다. 지금 상황으로 보면 내일중 한러 기술시험위원회가 열리지만, 나로호관리위원회는 열리기 어렵다. 일단 조립동으로 들어가면 그 때부터 카운터를 다시 해야 한다.”


반응형
반응형

26일 오전 11시 전남 고흥 나로우주센터에서 긴급 브리핑 중인 김승조 한국항공우주연구원장과 항우연 기술진.

26일 오전 11시 나로호 3차 발사 준비 절차가 전면 중단됐습니다.

■ 발단

이날 한-러 기술진은 나로호 발사를 위한 준비 과정 중인 오전 10시 10분 경 1단부로 헬륨가스를 공급하는 장치에서 압력이 떨어지는 사실을 발견했습니다.

이에 기술진이 직접 환인한 결과 공급장치의 결속부에 있는 씰이 파손된 것을 확인했습니다.

이 장치는 기계 결속 장치 사이의 밀폐율을 높이는 역할을 합니다.

상온에서 기체상태인 헬륨 등 연료를 액체 상태로 만들려면 극저온 상태를 유지해야 하기 때문입니다.

이날 브리핑한 김승조 한국항공우주연구원장에 따르면 나로호 1단부를 전담하는 러시아측은 이 씰의 예비 부품을 갖고 있다고 합니다.  

■ 절차

그런데 문제는 이 씰을 교체하기 위해서는 현재 기립 상태인 나로호를 다시 눕히고, 조립동으로 가져와야 한다는 것입니다.

나로호를 조립동에서 발사대로 옮길때와 같이 무진동 차량에 실어 저속으로 옮기면 하루, 교체 하루(최상의 조건일 경우), 다시 조립동에서 발사대로 이동 하루, 그렇게 최소 3일이 필요합니다.

■ 문제점

여기에는 심각한 문제가 있습니다.

이번 수리 절차는 보안 상의 이유로 1단 부를 맡은 러시아만 작업에 참여하고, 우리 기술진은 참관 조차 못한다는 것입니다.

즉 조립동으로 옮겨 정밀조사를 할 때 다른 이상이 있어도 우리늘 알 수 없고, 러시아가 제공하는 정보에 전적으로 의존해야 합니다.

실제 이날 브리핑에서 항우연 관계자들은 현재 문제가 된 씰의 제질조차 모르고 있습니다.

반응형
반응형

생명공학이 눈부신 발전하고 있지만 암은 여전히 정복하기 어려운 질환 중 하나입니다.

최근 암 환자 면역세포의 면역력을 증강시켜 암을 치료하는 항암면역치료제가 차세대 항암치료제로 각광받고 있습니다.

항암면역치료는 환자 자신의 면역세포를 이용하기 때문에 약물이나 방사선 치료로 인한 부작용과 항암치료에 대한 거부반응이 적고, 환자의 신체적 부담을 최소화할 수 있는 새로운 암 치료법입니다.

그러나 암세포는 면역세포의 면역력을 억제하거나 차단하여 스스로를 지키려는 특성이 있기 때문에 기존의 항암면역치료제는 암환자 면역세포의 면역력을 극대화하는데 한계가 있었습니다.

■ 대표적 항원제시세포인 수지상세포는 암세포 속에서 암 항원을 인식한 후 2차 면역기관으로 이동해 암세포를 공격하는 T세포에 암 항원 정보를 전달하고, 신호를 받은 T세포는 암세포 조직으로 이동하여 암세포의 증식을 억제합니다.

따라서 항암면역세포의 효능을 높이기 위해서는 수지상세포의 면역을 활성화하는 것이 무엇보다 중요합니다.

그러나 암세포 속의 수지상세포는 활성화를 억제하는 분자(STAT3) 등에 의해 활성화가 억제되어 면역 활성화에 어려움이 있었습니다.
 
또한 항암면역세포 치료를 위해서는 외부에서 환자의 암에 대한 항원 정보를 수지상세포에 전달해주는 과정이 필요한데, 기존의 치료법은 암 항원이 알려진 일부 암 치료에 국한되어 있어 항암면역세포 치료법의 보급화에도 문제가 되었습니다.  

■ 충남대 임용택 교수 및 김지현, 노영욱 박사팀이 나노기술을 이용해 환자의 면역세포로 항암 치료의 효능을 높이는 기술을 개발했습니다.

연구팀은 면역세포를 활성화하는 면역증강물질인 단편 DNA와 면역억제 유도 유전자를 파괴하는 RNA(작은 간섭 RNA)로 나노컨쥬게이트(나노복합체)를 만들고 암 치료 효능을 극대화한 신개념 항암면역세포 치료제를 개발했습니다.

연구팀은 면역력을 높이는 단편 DNA를 넣어 수지상세포를 활성화하고, STAT3를 파괴하는 작은 간섭 RNA를 결합하여 외부에서 암 항원 정보를 제공하지 않아도 항암효과를 극대화한 나노컨쥬게이트의 원천기술을 개발하는데 성공했습니다.

또 치료효과를 쉽게 확인할 수 있도록 면역을 활성화하는 분자에 근적외선 형광 나노조영제를 결합하고 외부를 생체친화성 고분자로 포장함으로써, 면역세포 활성화 분자를 암세포 주위의 면역세포에 효과적으로 전달되도록 제조해 항암면역치료 효과를 더욱 높였습니다.

연구팀이 암이 유발된 생쥐에 하이브리드 나노컨쥬게이트를 투여한 결과, 기존의 면역증강제(CpG ODN)만을 투여한 것에 비해 암 치료율이 3~8배 높아졌습니다.

이번 연구는 항암면역기능을 담당하는 두 분자(단편 DNA와 작은 간섭 RNA)를 결합하여 기존의 항암면역치료제보다 암 치료 효과를 최소 3배 이상 높인 것으로, 항원이 알려진 암이나 질병 치료에만 쓰이던 기존의 항암면역세포 치료제의 한계를 극복하고 다양한 암과 질병 치료에 두루 활용할 수 있는 원천기술이 될 것으로 기대받고 있습니다.

이번 연구결과는 '앙게반테 케미(Angewandte Chemie)'지 9월 18일자에 게재되었습니다.
(논문명: Multifunctional Hybrid Nanoconjugates for Efficient In Vivo Delivery of Immunomodulating Oligonucleotides and Enhanced Antitumor Immunity)

하이브리드 나노컨쥬게이트의 항암면역세포치료 개념도

(a) 하이브리드 나노컨쥬게이트를 항암면역세포치료의 메커니즘을 보여주는 사진. 하이브리드 나노컨쥬게이트에 의해 암세포 조직 내 수지상세포가 활성화되고 2차 면역기관으로 이동하여 T 세포의 항암치료기능을 증가시킨다. 이 T 세포가 암세포 조직으로 침투하여 암세포를 공격, 암 치료 효과가 나타난다.
(b) 하이브리드 나노컨쥬게이트의 구조. 이미징 조영제에 linker를 이용하여 STAT3 siRNA와 CpG ODN을 결합하고 이를 항암면역세포치료제로 활용함.

하이브리드 나노컨쥬게이트 항암면역치료제의 치료 효과

(a) 하이브리드 나노컨쥬게이트를 암이 유발된 실험동물에 투여 후 (하얀색 화살표) 72시간 내에 암세포 조직 주변 면역기관 (림프절) 오로(하얀색 삼각형) 이동되었음을 보여줄 수 있는 근적외선 형광 이미징 사진. (b) 하이브리드 나노컨쥬게이트를 암이 유발된 실험동물에 투여 48시간 후 암세포 조직 주변 림프기관에서 분리한 수지상세포에서 STAT3 유전자 발현이 억제되었음을 증명해주는 사진.
(c) 하이브리드 나노컨쥬게이트에 의해 수지상세포의 사이토카인 생성이 증가됨을 보여주는 사진.
(d) 하이브리드 나노컨쥬게이트를 암이 유발된 실험동물에 투여 후 20일 이내에 암세포의 성장이 억제되는 치료효과가 나타남을 증명해주는 사진.

 

<연 구 개 요>

Multifunctional Hybrid Nanoconjugates for Efficient In Vivo Delivery of Immunomodulating Biomolecules and Enhanced Antitumor Immunity
Ji Hyun Kim, Young-Woock  Noh, Min Beom Heo, Mi Young Cho and Yong Taik Lim
(Angewandte Chemie)

암의 치료를 위하여, 과거에서부터 현재까지 수술이나 항암화학요법, 방사선요법 등의 방법을 주로 이용해 왔으나, 2000년대에 들어서면서 부작용과 항암치료에 대한 거부반응이 적어 환자의 신체적 부담을 최소화 할 수 있는 암 치료 방법으로 면역세포를 이용한 면역치료방법이 큰 관심을 받고 있다.
특히, 수지상세포에 기반을 둔 암 치료는 수지상세포가 직접 암세포를 공격하는 것이 아니라, 암세포 조직 내에서 활성화된 수지상세포가 2차 림프기관으로 이동하여 실제적으로 암을 공격할 수 있는 T 세포 (CTL) 등에 정보를 전달하여 암의 사멸을 유도하는 치료기법이다.
효과적인 항암면역세포 치료를 위해 Toll like receptor (TLR)를 통한 수지상세포의 활성화가 반드시 필요한데, 암세포 조직 내의 수지상세포는 STAT3와 같은 분자들에 의해 활성화가 억제되어 있다.

이 연구에서는 다기능성 나노입자를 이용하여 생체 내 가장 강력한 항원제시세포인 수지상세포 (dendritic cell)를 활성화시켜 항암치료 효과를 증진시키고자 하였다.
효과적인 항암치료를 위한 수지상세포를 활성화시키기 위하여, TLR을 통한 수지상세포의 활성화를 유도하는 면역증강제인 CpG ODN을 사용하였고, 활성화를 억제하는 분자인 STAT3를 siRNA라는 RNAi 기법으로 발현을 억제시킴으로써, 더욱 효과적으로 활성화를 유도하였다.

또한, 본 연구에서는 근적외선 영역대에서 in vivo 추적이 가능한 양자점 (Quantum dot)에 CpG ODN과 STAT3 siRNA를 부착하고, 이를 생체친화성 나노입자 내에 봉입하여 하이브리드 나노컨쥬게이트 (hybrid nanoconjugates; HNCCpG-STAT3siRNA)를 형성하였다.
이 입자는 수지상세포내로 잘 uptake되도록 PLGA 고분자 물질을 이용하여 제작되었고, 세포내 리소좀 (lysosome)에서 STAT3 siRNA가 효과적으로 세포질 내로 방출되도록 SPDP Cleavable linker을 사용하여 수지상세포의 STAT3의 발현 억제를 효과적으로 유도하였다.
또한, 동물실험에서 근적외선 영상을 통해 하이브리드 나노컨쥬게이트를 수지상세포가 주로 uptake 하였음을 증명하였고, 수지상세포가 2차 림프기관으로 이동하는 현상을 추적할 수 있었으며, 2차 림프기관으로 이동한 수지상세포는 T세포 기반 항암 면역 유도에 중요한 사이토카인 물질인 IL-12, TNF-α, IL-6등이 발현 및 생산하는 것을 확인하였다.
실제적으로 암이 유발된 실험동물에 하이브리드 나노컨쥬게이트를 투여하여 면역증강제인 CpG ODN만을 투여한 실험동물에 비해 암치료율을 월등히 높일 있음을 증명하였다.

이러한 결과를 종합해 볼 때 하이브리드 나노컨쥬게이트를 이용하여 강력한 항암면역세포인 수지상세포를 활성화시켜 항암치료 효과를 증진시킬 수 있었으며, 근적외선 형광영상기법을 이용하여 항암면역세포 치료과정을 모니터링 할 수 있음을 확인하였다.
이는 기존의 항암면역치료제의 개선점인 면역세포의 활성화 효율을 높이는 어려움을 해결해주고, 항암면역치료제의 치료과정을 모니터링 함으로써, 치료 효과를 쉽게 확인할 수 있다는 장점이 있음을 보여주고 있다.
또한, 기존의 항암면역세포 치료는 항원이 알려진 암 또는 질병의 치료에 국한되어 있는 반면, 이런 다기능성 나노입자를 이용한 면역세포 치료기술은 다양한 암 및 질병 치료를 위해 광범위하게 응용할 수 있을 것으로 생각된다.


 용   어   설   명

수지상세포 (dendritic cell)
강력한 항원전달세포(antigen-presenting cell) 중의 하나이며, 수상돌기처럼 막의 돌기를 가진 면역세포.
인체에 바이러스, 세균 등 감염이나 종양과 같은 비정상적인 세포가 생겼을 때 이를 인식하고, T-세포에 정보를 제공하여 공격을 유도한다.

면역증강제 
질병을 치료, 혹은 예방하기 위하여 생체의 면역기능을 보강, 증강해주는 면역치료제의 한 종류이다.
특히, 면역세포 표면에 있는 톨유사수용체에 특이적으로 반응하여 면역활성을 증가시켜주는 물질이 많이 이용되고 있다.
면역증강제가 (TLR: Toll-like receptor)가 발현되어 있는 면역세포 (대식세포, 수지상세포) 들을 활성화시켜 사이토카인들의 분비를 촉진시키고,  T 세포 또는 B 세포의 면역반응을 유도한다.

사이토카인
면역세포에서 주로 생성 및 분비되어 신체의 방어체계를 제어하고 면역 반응을 조절하는데 관여하는 신호전달 인자이다.
일반적으로 인터루킨 인터페론, 세포증식 및 분화인자 등 면역에 관련되어 있는 저분자 단백질이 많이 알려져 있다.

단편 DNA
박테리아나 바이러스로부터 유래된 특정 염기 서열 (CpG)을 갖고 있는 올리고 핵산 (ODN)으로 면역세포 표면에 있는 톨유사수용체 9 (TLR9)와의 상호작용으로 면역 활성화를 증가시키는 면역증강물질이다.
이 단편 DNA는 TLR9이 발현되어 있는 면역세포 (대식세포, 수지상세포) 들을 활성화시켜 면역반응 조절 인자인 사이토카인들의 분비를 촉진시키고, T 세포의 면역치료 능력을 증가시킨다.

STAT3 siRNA
작은 간섭 RNA (siRNA)는 목표 유전자에 달라붙어 해당 유전자의 발현을 억제하며, 이를 '작은 RNA 간섭(siRNA)'현상이라고 한다.
즉 RNA를 암이나 바이러스 등 유전자에 인위적으로 달라붙게 해 해당 유전자를 억제하면 질병을 치료하는 등 다양하게 생명현상을 조절할 수 있다.
특히, STAT3 (Signal transducer and activator of transcription-3)는 면역세포의 활성화를 통한 사이토카인 등 면역관련 신호전달 물질의 발현을 조절하는 분자로 siRNA에 의해 STAT3의 발현이 억제되면 면역 활성화가 증가되는 현상을 보이고 있다. 

나노컨쥬게이트
면역증강물질인 단편 DNA와 STAT3를 파괴하는 작은 간섭 RNA를 근적외선 형광입자인 양자점 나노입자에 결합한 후 외부를 생체 친화성 고분자로 포장하여 나노크기의 구조적 특성을 나타내는 나노복합체이다.
나노컨쥬게이트는 면역세포를 활성화하여 항암면역능력을 증가시키고 근적외선 형광을 통해 생체내의 치료과정을 모니터링 할 수 있는 다기능성 나노복합체이다.

Angewandte Chemie
응용화학 연구 분야에서 최고의 권위를 인정받고 있는 대표과학전문지. 전 과학 분야에서 상위 1.1% 이내에 랭크되는 학술지로, 융합(Multidisciplinary) 분야에서 4.6%(7위/152개) 이내에 든다. (피인용지수: 13.455)

 

<임용택 교수>

1. 인적사항 


○ 소 속 : 충남대학교 분석과학기술대학원

2. 학력

○  1992 ~ 1996 : 서강대학교 학사  (화학공학)
○  1996 ~ 1998 : 한국과학기술원 석사  (생명화학공학)
○  1998 ~ 2002 : 한국과학기술원 박사  (생명화학공학)
 
3. 경력사항
○ 2002 ~ 2003 : Harvard Medical School, Postdoctoral Associate
○ 2002 ~ 2003 : MIT, Postdoctoral Associate
○ 2003 ~ 2004 : 한국전자통신연구원(ETRI), 선임연구원
○ 2004 ~ 2009 : 한국생명공학연구원(KRIBB), 선임연구원
○ 2009 ~ 2012 : 충남대학교 분석과학기술대학원, 부교수

4. 주요연구업적
1. Young-Woock Noh, Seong-Ho Kong, Doo-Yeol Choi, Hye Sun Park, Han-Kwang Yang, Hyuk-Joon Lee, Hee Chan Kim, Keon Wook Kang, Moon-Hee Sung, and Yong Taik Lim*, "Near-Infrared Emitting Polymer Nanogels for Efficient Sentinel Lymph Node Mapping", ACS Nano in press

2. Ji Hyun Kim, Young-Woock  Noh, Min Beom Heo, Mi Young Cho and Yong Taik Lim*, "Multifunctional Hybrid Nanoconjugates for Efficient In Vivo Delivery of Immunomodulating Biomolecules and Enhanced Antitumor Immunity", Angewandte Chemie International Edition in press

3. Hyun Min Kim, Young-Woock Noh, Hye Sun Park, Mi Young Cho, Kwan Soo Hong, Hyunseung Lee, Da Hye Shin, Jongeun Kang, Moon-Hee Sung, Haryoung Poo, and Yong Taik Lim*, "Self-Fluorescence of Chemically Crosslinked MRI Nanoprobes to Enable Multimodal Imaging of Therapeutic Cells, Small, 2012, 8(5), 666-670.

<김지현 연구원>

1
. 인적사항 
○ 소 속 : 충남대학교 분석과학기술대학원 

2. 학력
○  2005 ~ 2008 : 부경대학교 학사  (생물공학과)
○  2010 ~ 2012 : 충남대학교 석사  (분석과학기술대학원)
 
3. 경력사항
 ○ 2009 ~ 2010 : POSTECH, 생명공학연구센터, 연구원
 ○ 2012 ~ 2012 : 충남대학교 분석과학기술대학원, 연구원

4. 주요연구내용
1. Ji Hyun Kim, Young-Woock  Noh, Min Beom Heo, Mi Young Cho and Yong Taik Lim, "Multifunctional Hybrid Nanoconjugates for Efficient In Vivo Delivery of Immunomodulating Biomolecules and Enhanced Antitumor Immunity", Angewandte Chemie International Edition in press

2. Yong Taik Lim, Sang-Mu Shim, Young-Woock Noh, Kyung-Soon Lee, Doo-Yeol Choi, Hiroshi Uyama, Hee Ho Bae, Ji Hyun Kim, Kwan Soo Hong, Moon-Hee Sung, and Haryoung Poo, "Bio-derived Polyelectrolyte Nanogels for Robust Antigen Loading and Vaccine Adjuvant Effects", Small, 2011, 7(23), 3281-3286.

<노영욱 박사>

1. 인적사항 
○ 소 속 : 충남대학교 분석과학기술대학원

2. 학력

○  1995 ~ 2002 : 전북대학교 학사  (생물학)
○  2002 ~ 2004 : 전북대학교 석사  (생물학)
○  2006 ~ 2010 : 전북대학교 박사  (생물학)
 
3. 경력사항
○ 2004 ~ 2005 : 한국생명공학연구원, 연구원
○ 2005 ~ 2006 : 숙명여자대학교, 연구원
○ 2010 ~ 2012 : 충남대학교 분석과학기술대학원, Post-Doctoral fellow

4. 주요연구업적

1. Young-Woock Noh, Seong-Ho Kong, Doo-Yeol Choi, Hye Sun Park, Han-Kwang Yang, Hyuk-Joon Lee, Hee Chan Kim, Keon Wook Kang, Moon-Hee Sung, and Yong Taik Lim*, "Near-Infrared Emitting Polymer Nanogels for Efficient Sentinel Lymph Node Mapping", ACS Nano in press

2. Ji Hyun Kim, Young-Woock Noh1, Min Beom Heo, Mi Young Cho and Yong Taik Lim*, "Multifunctional Hybrid Nanoconjugates for Efficient In Vivo Delivery of Immunomodulating Biomolecules and Enhanced Antitumor Immunity", Angewandte Chemie International Edition in press (1: co-first author in this paper)

3. Hyun Min Kim, Young-Woock Noh1, Hye Sun Park, Mi Young Cho, Kwan Soo Hong, Hyunseung Lee, Da Hye Shin, Jongeun Kang, Moon-Hee Sung, Haryoung Poo, and Yong Taik Lim*, "Self-Fluorescence of Chemically Crosslinked MRI Nanoprobes to Enable Multimodal Imaging of Therapeutic Cells, Small, 2012, 8(5), 666-670. (1: co-first author in this paper)

 

 

반응형
반응형

간은 체내의 대사활동이 정상적으로 이루어지도록 지휘하는 역할을 하는데, 이를 위해 소량의 지방을 축적합니다.

그러나 비만으로 간에 지방이 크게 축적되면, 지방간에 이르게 됩니다.

하지만 지금까지 대사증후군에서 간의 지방축적이 과도하게 일어나는 원인이 충분히 밝혀지지 않았고, 특히 서구화된 고지방 식품 섭취가 지방간에 어떠한 영향을 미치는지를 명확히 설명하기에는 한계가 있었습니다.

이런 가운데 비만과 당뇨, 고혈압, 고지혈증 등 대사증후군이 급격히 증가하면서 현대인의 건강을 크게 위협하고 있습니다.

세계 인구 5명 중 1명이 대사증후군일 정도로 이는 사회적, 의료적인 문제가 되고 있고, 이를 방치하면 심뇌혈관 질환 등의 부작용이 발생해 사망에 이를 수 있습니다.

특히 대사증후군에 흔히 동반되는 간지방증(비알콜성 지방간)은 당뇨병의 위험을 증가시키거나 간염과 간경변증 등 심각한 간 질환으로 이어질 수 있어 예방과 치료를 위해 집중적으로 연구되고 있습니다. 

연세의대 김재우 교수(45세, 교신저자)와 이유정 박사(제1저자)가 만성적인 대사 장애와 함께 나타나는 비알콜성 지방간에서만 지방 축적을 촉진하는 효소(MGAT1, 엠겟원)를 발견했습니다.

이에 따라 향후 비알콜성 지방간뿐만 아니라 대사증후군도 동시에 완화할 수 있는 치료법 개발에 단초가 열였습니다.

MGAT1(모노아실 글리세롤 아실 트랜스퍼라제, monoacylglycerol acyltransferase)은 간에 중성지방이 축적되는 정상적인 경로와는 달리 모노아실 글리세롤에서 직접 중성지방을 합성하는 효소입니다.

연구팀은 MGAT1이라는 효소가 지방간에서만 유독 과도하게 발현된다는 사실을 동물실험으로 밝혀냈습니다.
 
특히 MGAT1이 정상적인 간에는 거의 나타나지 않지만, 지방간이 유발되면 이 효소로 지방 축적이 크게 증가함을 규명하였습니다.

또한 아데노바이러스 기법으로 이 효소의 발현을 억제하면, 식이에 의한 지방간이 크게 완화됨도 확인했습니다.

아울러 고지방 식이를 하면 파파감마라 불리는 핵수용체 감마형 PPAR에 의해 MGAT1이 증가된다는 것도 확인했습니다.

즉, 고지방 식품을 섭취하면 감마형 PPAR에 의해 MGAT1이 증가하여 지방간의 지방축적을 촉진할 수 있다는 것입니다.

연구팀은 MGAT1을 억제하면 혈당조절기능이 개선되고 체중도 감소하는 것을 동물실험으로 관찰하여, 향후 이 효소를 억제하면 지방간을 감소시키면서 동시에 대사증후군도 완화시킬 수 있을 것으로 기대하고 있습니다.

MGAT1 억제에 의해 간의 지방축적(흰색 방울 모양)이 현저히 감소함을 보여주는 현미경 사진

이번 연구는 지방간과 관련된 기존의 연구가 탄수화물 대사와 연결된 지방산 합성에만 집중되었음에 반해 고지방 식이의 경우에는 중성지방의 합성 경로(MGAT1 효소 포함)가 크게 작용함을 새롭게 밝혔냈습니다.

또 정상적인 간에는 존재하지 않지만 비알콜성 지방간에서만 유독 발현되는 효소(MGAT1)를 발굴하여, 향후 효과적인 치료제 개발에 기반을 마련했습니다.

이를 토대로 정상적인 간의 기능과 체내 대사에 영향을 주지 않으면서 과도한 지방의 축적을 억제할 수 있게 될 것으로 기대받고 있습니다.

이번 연구는 '미국립과학원회보(PNAS)' 8월 21일자에 게재되었습니다.
(논문명: Nuclear receptor PPARγ-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis)


 

<연 구 개 요>

Nuclear receptor PPARγ-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis
Yoo Jeong Lee, Eun Hee Ko, Ji Eun Kim, Eunha Kim, Hyemin Lee, Hyeonjin Choi, Jung Hwan Yu, Hyo Jung Kim, Je-Kyung Seong, Kyung-Sup Kim, and Jae-woo Kim
(PNAS, 2012.08.21 vol. 109, no. 34, pp13656-13661)
이유정, 고은희, 김지은, 김은하, 이혜민, 최현진, 유정환, 김효정, 성제경, 김경섭, 김재우
Proceedings of the National Academy of Science of the United States of America,
109(34) 13656-13661, Aug 21, 2012


I. 서   론
 
 대사증후군은 복부비만, 고지혈증, 고혈압, 간지방증, 고혈당(당뇨병) 등이 함께 동반되는 질병으로 그 발병 빈도가 급격히 증가하고 있다.
흔히 "성인병"으로 알려진 이들 질병이 서로 연관되어 있음을 인지하고 이를 "대사증후군"이라 명명하였으며, 전 인구의 5명 중 1명이 적어도 두 개 이상의 요소를 앓고 있을 정도로 사회적, 의료적으로 큰 문제가 되고 있다.
대사증후군은 방치할 경우 심혈관이나 뇌질환을 비롯한 각종 합병증으로 결국 사망에 이르게 된다.

 
대사증후군에서 흔히 발견되는 비알콜성 지방간 질환은 간에 과도한 지방이 축적되는 병이며, 이는 대사증후군의 발병과 악화에 관여한다고 알려져 있다.
또한 지방간이 지속되면 지방간염이나 간경변증 등 돌이킬 수 없는 간 손상을 유발할 수도 있기 때문에 지방간의 원인과 치료에 많은 연구가 집중되어 왔다.
그 결과로 간에서 지방을 축적하는 경로가 밝혀졌고, 그 경로를 조절하는 대표적인 전사인자로서 sterol regulatory element-binding protein 1c (SREBP1c)와 carbohydrate responsive element-binding protein(ChREBP)가 소개되었다. 이들 전사인자는 지방대사에 관여되는 각종 효소들의 발현을 유전자 수준에서 증가시켜 지방 축적을 증가시키게 된다.

간은 체내 대사를 총괄하는 중심 장기이며, 체내 지방대사의 센터인 만큼, 간 자체에도 지방을 소량 저장할 수 있다. 물론 체내에서 가장 큰 지방 저장고는 지방조직이며, 비만은 주로 지방세포의 수가 증가하거나 커지는 것에 의한다. 비만이 유발되면 체내의 전체 지방 총량이 증가하기 때문에 간에서도 지방 저장이 증가하게 되며, 이것이 바로 지방간의 원인이라 생각되고 있다.

 
지방간에서 축적되는 중성지방은 글리세롤에 지방산이 3개가 결합된 모양을 가지고 있다. 간에서 중성지방이 축적되는 경로는 3가지로 나눌 수 있다.
첫째는 지방산의 합성 경로, 둘째는 지방산의 세포내 수송 경로, 셋째는 지방산과 글리세롤로부터 중성지방의 합성 경로이다. 그런데, 앞서 말한 SREBP1c와 ChREBP는 주로 지방산의 합성 경로의 효소들을 주로 발현시킨다.
앞서 말한 세 가지 경로 중 지방산의 합성은 탄수화물로부터 지방산이 합성되는 것을 의미하기 때문에, 서구화된 식이로부터 발병하는 고지방 섭취형 지방간을 설명하기에는 한계가 있다.
이미 체내에서 섭취한 지방산의 양이 증가한 경우에는 지방산 합성 경로가 큰 기여를 하지 못할 수 있기 때문이다. 그럼에도 불구하고 과거 이삼십년 이상 간지방증은 SREBP1c나 ChREBP를 주축으로 설명되어 왔다.

  위 두 전사인자가 정상적으로 간에 존재하는 것에 반해, 또 다른 전사인자인 PPARγ는 정상적인 간에는 존재하지 않기 때문에 몇 년 전까지만 해도 간지방증 연구에서 거의 무시되어 왔다.
PPARγ는 원래 지방조직에서 지방 축적을 진두지휘하는 전사인자이다.
그런데, 이 전사인자가 지방간에서 발견되고 역할을 한다는 사실이 최근 몇 년 사이에 대두되었다.
또한 PPARγ가 간에서 증가할 경우 (원래 간에는 없고 지방조직에 많은) 지방세포 특이 유전자들이 간에도 발현된다는 사실이 밝혀졌다.
이들 결과는 PPARγ가 실제로 임상에서 발견되는 지방간에 더 중요할지도 모른다는 근거를 제시하고 있다.
그러나 지방간과 PPARγ의 연관성 연구는 두 가지 측면에서 제한점을 가지고 있었다.
첫째는 PPARγ 관련 연구가 유전자 변형 동물(genetically modified animal)에서 주로 이루어져 실제로 자연스런 지방간 모델에서 이루어지지 못했고, 둘째는 이들 연구가 PPARγ의 주된 활동 장소인 지방조직의 영향을 거의 배제하지 못했다는 점이다.

 
본 연구팀은 마우스의 여러 종에서 대사 질환의 차이를 연구하던 중, 마우스의 어떤 종(C3H 마우스)에서는 고지방 식이를 해도 지방간이 유발되지 않음을 발견하였다.
이 모델의 특성을 이용하여 위에 설명한 "지방간과 PPARγ의 관련성"을 자연적인 모델에서 입증할 수 있었으며, 나아가 PPARγ에 의해 발현되는 유전자 분석을 통해 MGAT1이라는 유전자의 새로운 기능을 규명하게 되었다.

 
II. 본   론

1) PPARγ가 고지방 식이 후의 지방간 발병에 중요함을 입증한 결과

마우스에 고지방 식이를 하면 살이 찌게 되고 혈당에 이상이 오며 지방간이 유발되기 때문에 당뇨/비만 연구 모델로 널리 이용되고 있다. 실험에 이용되는 여러 가지 마우스 종(species) 중에서 보통 C57BL/6(B6 마우스라 부름)가 가장 비만과 당뇨가 잘 유발되는 것으로 알려졌다.
그 후 B6 마우스와는 다른 반응을 보이는 다른 종에서 왜 식이에 다른 반응을 보이는지에 대한 연구가 산발적으로 이루어졌다.

 
본 연구의 기초가 된 것은 B6 마우스와 C3H 마우스의 대사 반응과 질병 유발의 차이를 발견한 것이다. 고지방식이(high fat diet, HF)를 하였을 때 C3H 마우스에서는 B6와 달리 비만에 의한 고혈당 현상이 일어나지 않고, 지방간이 나타나지 않았다.
C3H의 체중 증가는 내장지방보다는 주로 피하지방의 증가에 의한 것으로 보였기 때문에 C3H 마우스는 임상에서 비만이지만 대사적으로 위험하지 않은 마우스 모델이라 할 수 있다는 새로운 대사질환 마우스 모델을 제시하게 되었다.

 
두 마우스 종간의 가장 커다란 분자적 차이는 C3H mice의 간에서 PPARγ가 발현되지 않는다는 것이며, 이에 의해 지방간 발병 여부가 달라지는 것으로 생각되었다. (Fig. 1 설명 참조)

그림에서 A는 B6와 C3H에서 모두 고지방 식이를 하면 체중이 상당히 증가하는 결과를 보여주고 있다.
그러나 B에서 보듯이 C3H는 고도 비만에도 불구하고 혈당이 정상으로 유지되고 있다.
C와 D에서 보듯이 C3H는 간에 지방 축적이 없다(이 그림에서 지방은 빨간 색으로 염색되어 있음). E에서 B6 마우스는 지방간과 함께 PPARγ 발현이 매우 증가하지만, C3H 마우스는 PPARγ 발현이 전혀 보이지 않고 있다.

그 이후로 PPARγ가 발현되지 않는 C3H 마우스에 PPARγ를 발현시키면 지방간이 유발되는지를 확인하였고, PPARγ를 발현할 수 있는 아데노바이러스를 제조하여, 이를 마우스의 꼬리정맥으로 주입하고 그 결과를 관찰하는 실험도 시행하였다.
간에 PPARγ를 과발현한 경우 타겟 유전자인 aP2/422, CD36, ADRP와 같은 유전자들의 발현이 관찰된 것은 기존 발표된 연구와 상응하였다.
이들 유전자는 원래 간에 발현하지 않고 지방세포에 발현되는 유전자이나, PPARγ에 의해 간에서 발현되는 것으로 알려졌다.
또한 이들 유전자의 발현과 함께 간에서 지방 축적이 매우 높은 수준으로 증가하고 있음을 밝혀, PPARγ가 지방간의 발생에 핵심 역할을 한다는 것을 직접적으로 증명하였다.

2) 지방간에서 MGAT1이 발현됨을 규명한 결과

위 모델에서 간의 지방 축적의 차이를 직접 분석하기 위해서 mRNA microarray를 실시하고, 이에 따라 지방 축적에 영향을 미치는 유전자를 (1) 지방산 합성 경로, (2) 지방산 수송, (3) 중성지방의 합성 경로에 따라 분류하여 그 발현 정도를 분석하였다.
이렇게 하여 B6 마우스에서 지방 축적이 크게 증가하는, 혹은 C3H 마우스에서 지방 축적이 잘 되지 않는 원인이 되는 유전자를 파악하려 하였다.
 

 


위 표에서 분석한 결과 SREBP-1c에 의해 조절되는 지방산 합성 유전자들보다는 지방산 수송이나 중성지방 합성에 관여하는 몇 가지 유전자의 증가가 관찰되었다.
이 중에서 MGAT1은 간 지방증에서의 역할이 거의 알려져 있지 않은 신규 타겟 유전자로 생각되어 연구를 집중하게 되었다.
그 결과, MGAT1은 PPARγ 전사인자에 의해 발현되는 것으로 밝혀졌다. PPARγ의 과발현시에 MGAT1의 발현이 증가하였고, MGAT1이 PPARγ의 새로운 타겟 유전자임을 증명하기 위해 promoter assay를 시행하여 MGAT1의 promoter 상에 PPRE가 존재하여 PPARγ가 활성을 조절함을 밝혔다.
또한 EMSA와 ChIP assay를 통해 MGAT1은 PPARγ의 직접 조절 유전자임을 새롭게 밝혔다. 이런 실험들은 모두 전사인자와 그에 의한 조절 유전자의 직접 연관성을 증명할 때 반드시 보여야 하는 결과들이다.
모두 MGAT1이 PPARγ에 의해 직접 조절된다는 사실로 요약할 수 있으며, 본 연구팀이 최초로 밝힌 사실이다.
이 결과로 인해 지방간에서 (1) MGAT1의 중요성, (2) 중성지방 합성경로의 중요성, (3) PPARγ의 중요성이 서로 연관성을 가지면서 각각 증명된 셈이다. 더구나, MGAT1과 PPARγ는 정상적인 간에는 발현이 되지 않는다는 사실도 규명하였다. (Fig. 3 설명 참고)


그림에 보여주는 결과는 모두 MGAT1이 PPARγ에 의해 직접적으로 조절됨을 증명하고 있다. 특기할 만한 사실은 그림의 A에서 보여지듯이 MGAT1이 "정상적인 간에서는 거의 발현이 없다"라는 사실이다.
지방간이 없는 C3H 마우스는 물론이고, B6 마우스에서도 정상에서는 MGAT1의 발현이 없다. 그러나 B6 마우스의 고지방식이(HFD)-지방간에서는 MGAT1이 크게 증가한다.
이 결과로 고지방식이-PPARγ-MGAT1이 모두 연결되어 있음을 증명하였다.

3) MGAT1을 억제하는 경우 지방간이 감소함을 규명한 결과

MGAT1을 억제하는 경우 지방간을 감소시킬 것으로 예상하고 MGAT1의 발현을 억제할 수 있는 아데노바이러스-shRNA 시스템을 셋업하였으며, 다음과 같이 3가지의 모델에서 이를 조사하였다.
(1) PPARγ의 과발현에 의한 지방간 모델, (2) 고지방 식이에 의해 발생한 지방간 모델, (3) 유전적으로 비만이 초래된 ob/ob mice의 지방간 모델에서 그 억제 효과를 관찰하였다.

 
그 결과, 3가지 모델에서 모두 MGAT1을 억제하였을 때 지방간이 드라마틱하게 감소하였다.
이는 MGAT1이 고지방 식이에 의한 지방간 발생을 억제할 수 있는 새로운 치료 타겟이 될 수 있음을 의미하는 매우 중요한 결과이다.
또한 혈당조절 역시 개선되었음을 포도당 부하 검사 결과로 확인할 수 있었고, 체중도 감소함을 보였다. (Fig. 6 설명 참조)

그림에서 A는 실험 모델을 설명한다.
12주 동안 고지방식이를 하여 비만/당뇨/지방간을 유발해 놓고, 여기에 MGAT1 억제바이러스를 주입한 후 1주일 후 쥐를 희생하여 실험하였다.
C에서 보듯이 간의 지방축적(하얀 방울로 보임)이 많이 감소하였다. F는 체중도 감소함을 보여주고 있고, G는 혈당조절도 개선됨을 보여주고 있다.
비슷한 실험 결과를 ob/ob 마우스에서도 얻을 수 있었다. 이는 모두 MGAT1 억제의 지방간 치료 효과를 보여주고 있다.

4) 결과의 요약과 지방간의 메커니즘의 설명

본 논문에서는 이 결과를 바탕으로 고지방식이에 따른 지방간의 메커니즘을 제시하였다. 즉, 정상적인 간에서는 SREBP와 ChREBP가 작용하고, 이들은 생리적 범위 내에서 지방 합성 및 지방 축적을 하게 된다.
특히 탄수화물을 지방산으로 변화시켜 간의 지방 축적을 담당하게 된다. 그러나 이들 전사인자들이 조절하는 지방 대사 경로는 적어도 고지방식이에 의한 지방간에서는 큰 역할을 하지 못하는 것으로 보인다.

고지방식이로 체내에 지방산이 증가한 상황에서는 (정상 간에서 없는) PPARγ의 발현이 증가하게 되며, 이로 인해 지방산 수송 및 중성지방 합성 경로가 증가하는 것으로 생각된다.
중성지방 합성은 정상적으로는 발현이 없는 MGAT1이 크게 증가하기 때문이라고 보이며, 따라서 이 효소가 치료를 위한 주 타겟이 될 수 있을 것으로 전망할 수 있다. (Fig. 7 설명 참조)

그림에서 중앙에 그려진 GPAT, AGPAT, DGAT은 간의 정상 기능을 위해 존재하는 "클래식 중성지방합성 경로"이다. (아직 더 증명을 해야 하지만) 이 클래식 경로는 지방간이 되었을 때도 기능이 크게 증가하는 것 같지는 않다.
고지방식이를 했을 때는 PPARγ가 증가하여 (그림에서 핵-nucleus- 내에서) 여러 유전자의 발현을 증가시키는데, 이 중에 MGAT1은 "대용적(alternative) 중성지방합성 경로"를 증가시키게 된다.
바로 이 대용적 경로가 증가하는 것이 고지방식이에 의한 지방축적 증가의 근본적인 원인이라 생각된다.
따라서 MGAT1을 억제하게 되면 이런 대용적 경로를 원천 차단하게 되어 중성지방 합성을 감소할 수 있게 되는 것으로 생각된다.

 

III. 결   론

본 연구의 결과를 요약하면 다음과 같다.
첫째, 서구화된 식생활과 유사한 고지방식이에서 초래되는 지방간에서는 기존에 알려진 지방산 합성과정보다는 지방산 수송이나 중성지방 합성 경로가 더 큰 기여를 하며, 이 경로는 PPARγ에 의해 촉진된다.
둘째, PPARγ는 정상적으로는 간에 발현이 미약하지만, 고지방식이에 의해 활성화되어 지방 축적과 관련된 여러 유전자의 발현을 유도한다.
셋째, PPARγ는 알려진 몇 가지 유전자와 함께 MGAT1의 발현을 증가시키며, MGAT1은 중성지방 합성을 크게 촉진시킨다. 넷째, MGAT1을 억제하였을 때 지방간 모델에서 중성지방의 축적이 크게 감소하는 치료 효과를 보였다.

따라서 결론적으로 본 연구에서 아직까지 알려지지 않았던 지방간 질병에서의 지방대사 경로를 제시하였고, 그 경로가 매우 훌륭한 치료 타겟이 될 수 있음을 증명한 것이 본 연구의 핵심이라 하겠다.



 용   어   설   명


비알콜성 지방간 질환(NAFLD)
간에 지방이 과도하게 축적되는 것을 지방간(fatty liver) 혹은 간 지방증(hepatic steatosis)이라고 한다.
지방간의 큰 원인 중의 하나는 알콜 섭취인데, 이 경우는 임상적, 병리학적으로 구분할 수 있어 이를 알콜성 지방간이라 하며, 나머지 경우를 비알콜성 지방간으로 정의하였다.
비알콜성 지방간의 가장 큰 원인은 대사증후군이다. 간지방증(hepatic steatosis)이 지속되면 지방간염(steatohepatitis)으로 발전되고, 더 진행되면 간경변증(liver cirrhosis, 흔히 간경화증이라고도 하나 잘못된 용어임)이 되기도 하여 이 세 가지를 묶어 비알콜성 지방간 질환 [non-alcoholic fatty liver disease (NAFLD)]라고 부른다.

중성지방 (triacylglycerol 혹은 triglyceride)
생명체가 함유한 지방은 매우 다양한 종류가 있으나, 임상적으로 주로 관심의 초점이 되는 것은 "중성지방"과 "콜레스테롤"이다.
중성지방은 글리세롤(glycerol) 한 분자에 지방산(fatty acid) 3분자가 결합된 모양을 가지고 있어서 tri-(3개를 의미) acyl-(지방산결합을 의미) glycerol(글리세롤)이라 부른다.
중성지방은 우리 몸에서 에너지원으로서의 지방을 저장하는 기본 형태이다.
섭취한 지방은 주로 지방조직에 중성지방의 형태로 저장되며, 필요할 때에는 중성지방에 붙어있는 3개의 지방산을 분리하고, 지방산은 미토콘드리아에서 지방산 산화를 거쳐 에너지인 ATP를 만들게 된다.

전사인자(transcription factor)
우리 몸에서 기능하는 단백질들은 유전자 발현을 통해 만들어진다.
유전 정보의 흐름은 DNA(유전자)-mRNA-단백질로 연결된다는 것이 잘 알려진 사실이다.
각 유전자에는 유전자에서 mRNA(messenger RNA)를 만들 것인지를 실질적으로 조절하는 부위가 있는데, 이를 프로모터(promoter)라 한다.
이 프로모터에 결합해서 유전자 발현을 조절하는 것이 전사인자이다.
요약하면, 어떤 필요에 의해 (1) 전사인자가 유전자 프로모터에 결합하고 (2) mRNA을 많이 만들고 (3) 단백질이 많이 합성되어 (4) 세포의 기능이 변하게 되는 것이다.
하나의 전사인자 발현이 여러 단백질의 발현을 이끌어 세포의 기능 방향을 결정할 수 있기 때문에 최근 이삼십년 동안 전사인자의 발굴과 규명에 많은 연구가 집중되었다.

아데노바이러스 기법(adenovirus technique)
바이러스를 이용한 유전자 치료에는 여러 가지 바이러스를 이용할 수 있는데, 이 중에서 아데노바이러스는 세포 내 전달 효율이 높고 농축된 바이러스를 만들 수 있는 등 장점이 있어 실험적으로 많이 이용한다.
특히 마우스에서는 아데노바이러스가 대부분 간에 전달되기 때문에 간을 대상으로 하는 연구에 큰 장점이 있다.
아데노바이러스의 유전자를 연구에 필요한 유전자로 대체하여 바이러스를 만든 다음 마우스의 꼬리정맥으로 투여하게 되며, 삽입하는 유전자의 종류에 따라 어떤 유전자를 과발현할 수도 있고 유전자 발현을 억제할 수도 있다.

PNAS (Proceedings of the National Academy of Science of USA)
미국국립과학원회보. 미국의 국립과학원(National Academy of Science, NAS)에서는 각 분야 저명한 과학자들(물리, 화학, 지구과학, 생물학 등 모두 포함)을 NAS 멤버로 선정하고 있으며, 이들의 연구결과를 발표하는 회보(Proceedings)로 출발하였다. NAS 멤버가 아닌 경우에도 논문을 실을 수 있는데 이런 경우를 "direct submission"이라 하여 논문 심사가 까다롭고 게재승인 받기 매우 어려운 것으로 정평이 나 있다. (Impact factor : 9.681)

 

 

<김재우 교수>

1. 인적사항 

 ○ 소 속 : 연세대학교 의과대학 생화학-분자생물학교실
 
2. 학력
 ○ 1992 : 연세대학교 의과대학 의학과 졸업
 ○ 1995 : 연세대학교 의과대학 의학과 석사
 ○ 1998 : 연세대학교 의과대학 의학과 박사
 
3. 경력사항
 ○ 1992-1993 : 연세의료원 세브란스병원 인턴
 ○ 1993-1998 : 연세대학교 의과대학 생화학-분자생물학교실 조교/강사
 ○ 1998-2001 : 국군서울지구병원 군의관 대위 근무, 연구실장
 ○ 2001-2003 : 연세대학교 의과대학 생화학-분자생물학교실 전임강사
 ○ 2003-2008 : 연세대학교 의과대학 생화학-분자생물학교실 조교수
 ○ 2004-2006 : 미국 존스홉킨스 의과대학 연구원
 ○ 2008-현재 : 연세대학교 의과대학 생화학-분자생물학교실 부교수
 ○ 2008-현재 : 연세대학교 대학원 WCU 의생명과학과 부교수 (겸임)

4. 주요연구업적

Lee YJ, Ko EH, Kim JE, Kim E, Lee H, Choi H, Yu JH, Kim HJ, Seong JK, Kim KS, Kim JW. Nuclear receptor PPARγ-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis. Proc Natl Acad Sci U S A Published online before print Aug 6, 2012, doi: 10.1073/pnas.1203218109

Lee H, Lee YJ, Choi H, Ko EH, Kim JW. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem 284:10601-10609, 2009

Kim JW, Tang QQ, Li X, Lane MD. Effect of Phosphorylation and S-S Bond-induced Dimerization on DNA Binding and Transcriptional Activation by C/EBPβ. Proc Natl Acad Sci U S A 104: 1800-1804, 2007

Kim JW, Molina H, Pandey A, Lane MD. Upstream Stimulatory Factors Regulate the C/EBPα Gene During Differentiation of 3T3-L1 Preadipocytes. Biochem Biophys Res Commun 354: 517-521, 2007

Park SK, Oh SY, Lee MY, Yoon S, Kim KS, Kim JW. CCAAT/Enhancer Binding Protein and Nuclear Factor-Y Regulate Adiponectin Gene Expression in Adipose Tissue. Diabetes 53: 2757-2766, 2004

<이유정 박사>

1. 인적사항 

 ○ 소 속 : 연세대학교 의과대학 생화학-분자생물학교실

2. 학력
 ○ 1999 : 인제대학교 미생물학과 졸업
 ○ 2011 : 연세대학교 의과대학 의과학과 박사
 
3. 경력사항
 ○ 2011-현재 : 연세대학교 의과대학 생화학-분자생물학교실 박사후연구원

4. 주요연구업적

Lee YJ, Ko EH, Kim JE, Kim E, Lee H, Choi H, Yu JH, Kim HJ, Seong JK, Kim KS, Kim JW. Nuclear receptor PPARγ-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis. Proc. Natl. Acad. Sci. USA. 2012
( in press)

Jung HS, Lee YJ, Kim YH, Paik S, Kim JW, Lee JW. Peroxisome Proliferator-Activated Receptor Gamma/Signal Transducers and Activators of Transcription 5A Pathway Plays a Key Factor in Adipogenesis of Human Bone Marrow-Derived Stromal Cells and 3T3-L1 Preadipocytes
Stem Cells and Development. February 10, 2012, 21(3): 465-475.

Lee H, Lee YJ, Choi H, Ko EH, Kim JW. Reactive Oxygen Species Facilitate Adipocyte Differentiation by Accelerating Mitotic Clonal Expansion. The Journal of biological chemistry. 2009 April 17; 284(16): 10601?10609

Koh YK, Lee MY, Kim JW, Kim M, Moon JS, Lee YJ, Ahn YH, Kim KS. Lipin1 is a key factor for the maturation and maintenance of adipocytes in the regulatory network with CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma 2. The Journal of biological chemistry. 2008 Dec 12;283(50):34896-906

 

 

반응형

+ Recent posts