반응형

일반적으로 피부와 같이 내부 구조가 복잡한 매질은 들어오는 빛의 대부분을 그대로 반사시키고, 10% 이하의 극히 적은 빛만 투과시킵니다.

따라서 빛을 이용해 효과적으로 질병을 치료하기 위해서는 매질을 손상시키지 않고 빛 에너지를 원하는 깊이까지 그대로 전달해야 합니다.

■ 고려대 최원식 교수와 박규환 교수, 명지대 김재순 교수팀이 빛 에너지를 피부 속 깊은 곳까지 그대로 전달하는 방법을 개발해 빛을 이용한 질병치료의 효율을  높일 수 있는 가능성이 열었습니다.

연구팀은 우선 나노 입자로 구성된 복잡한 매질을 높은 투과도로 통과할 수 있는 특정한 빛의 패턴을 찾아냈습니다.

이어 액정을 이용한 디스플레이 장치로 특정한 패턴의 빛을 만든 후 복잡한 매질에 쏘여, 복잡한 매질 속을 투과하는 빛이 이론적으로 도달할 수 있는 최대까지(기존의 4배) 증폭시키는 실험에 처음으로 성공했습니다.

이번 성과는 물리적으로 복잡한 매질 내부에서 강한 보강간섭을 일으키는 공명모드를 찾아내고, 이 공명모드에 해당하는 빛을 쬐어 빛의 투과 에너지를 최대화시켰다는 것입니다.

또 이번 연구결과는 광열 치료와 광역학 치료 등 피부 손상 없이 높은 빛 에너지가 피부 속으로 전달되어야만 효율적으로 치료할 수 있는 광 치료기술에 모두 적용할 수 있기 때문에 향후 빛을 이용한 암세포치료 등의 효율성을 높이는데 크게 기여할 전망입니다.

이번 연구는 지난 30년간 물리학에서 이론적으로만 예측되었던 복잡 매질 속 공명모드의 존재를 가장 직접적으로 증명한 연구로 평가받고 있습니다.

연구결과는  광학 및 포토닉스 분야의 권위 있는 국제학술지인 'Nature Photonics (IF=29.278)'에 온라인으로(7월 22일) 발표되었습니다.
(논문명 : Maximal energy transport through disordered media with the implementation of transmission eigenchannels)

(오른쪽 위 그림)
연구팀은 선행연구로 간유리와 같은 복잡 매질 반대편에 있는 물체를 볼 수 있는 새로운 이미징 방법을 개발한 바 있으며 (Physical Review Letters, 107 023902 (2011)) 그 결과 일반적인 현미경에서는 간유리에 가려 볼 수 없던 물체(왼쪽 위 그림)를 선명하게 볼 수 있도록 하였다.
(오른쪽 아래 그림)
이번 결과는 이 이미징 방법을 한 단계 발전시켜, 복잡한 매질 내부에서 강한 보강간섭을 일으키는 공명모드를 찾아내고, 이 공명모드에 해당하는 빛의 패턴을 입사시킴으로써 빛의 투과 에너지를 최대화하였다. 이를 통해 일반적인 경우(왼쪽 아래 그림)보다 네 배나 많은 에너지를 전달할 수  있었다.

<연 구 개 요>

Maximal energy transport through disordered media
with the implementation of transmission eigenchannels

Moonseok Kim1, Youngwoon Choi1, Changhyeong Yoon1, Wonjun Choi1,
Jaisoon Kim2, Q-Han Park1and Wonshik Choi1*
1Department of Physics, Korea University, Seoul 136-701, Korea
2Department of Physics, Myongji University, Yongin 449-728, Korea
*Corresponding author: Wonshik Choi wonshik@korea.ac.kr


1. 연구 배경
최근 30여 년간 광학을 이용한 기술들이 질병 진단의 중요한 도구로 자리매김해 왔다.
생명공학에 광학 기술이 관심을 받아온 이유는 기존의 심층 영상 장비들 (MRI, PET, CT 및 초음파 영상 등)에 비해 해상도가 높아 대장암, 위암, 자궁암 및 피부암 등 각종 인체 질환의 초기 발병 시 수반되는 국지적인 생체 조직의 변화를 관측하는 것이 가능하기 때문이다. 그러나 광학을 이용한 기술들은 근본적인 한계를 안고 있는데, 그것은 바로 빛이 생체조직 깊이 투과하지 못한다는 점이다.
단백질, DNA 및 lipids 등 생체 세포를 구성하는 대부분의 분자들은 세포 내부에서 밀도에 따라 빛의 속도, 즉 굴절률을 변화시킨다. 복잡한 구조의 생체조직은 굴절률 분포가 불균일하여 빛을 다중 산란시키므로 빛이 피부 속으로 깊이 투과하지 못한다.

입사한 빛을 다중 산란시키는 이러한 복잡매질에서의 빛의 진행은 물리법칙으로 설명하기 어려운 무질서한 현상처럼 보인다.
그러나 내부구조가 아무리 복잡한 산란 매질이라 하더라도 그것은 여전히 선형시스템으로 해석할 수 있다. 즉, 두 개의 입사파가 매질을 통과할 때, 그 매질의 전체 투과파는 각각의 투과파의 선형 합과 같다. 따라서 무작위 매질에 대한 입사파와 투과파의 관계는 투과행렬(transmission matrix)로 설명할 수 있다.
80년대 초반 처음 제안된 무작위 매질 이론(random matrix theory)은 투과행렬을 이용하면 임의의 복잡매질에 대해 투과에너지가 최대가 되는 특정한 입사파가 존재함을 이론적으로 제시하였다.
투과 에너지가 최대가 되는 입사파는 수학적으로는 투과행렬의 eigenchannel 중 eigenvalue가 최대가 되는 것이고, 물리적으로는 복잡 매질을 통과한 빛의 보강간섭을 최대화하는 공명 모드를 의미한다.
지금까지 많은 사람들이 이러한 eigenchannel을 구현하고 투과에너지가 최대화 하기위해 노력해 왔지만 지금까지는 성공하지 못했었다.

2. 연구결과 및 기대효과
연구팀은 선행 연구로 개발한 3차원 위상현미경을 사용하여 무질서도가 매우 높은 복잡매질의 투과행렬을 측정하였고, 이로부터 복잡매질 통과 시 보강간섭을 이루는 공명모드, 즉 eigenvalue가 최대가 되는 eigenchannel을 실험적으로 생성시켜 투과에너지를 극대화하였다.
이번 연구는 그 결과의 중요성을 인정받아 Nature Photonics지에 게재되었다.
연구에서 구현한 공명모드는 이론적으로 도달할 수 있는 투과에너지가 최대인 상태이고, 이 때 투과에너지의 증가율은 거의 네 배에 가까워 지금까지 학계에 보고된 것 중 최대이다.

본 연구 결과는 다양한 분야에 응용가능성이 있으며, 특히 생체조직 속 광에너지 심층전파로 발전시켜 의학기술 전반에 적용될 수 있을 것으로 기대한다.
현재 기술들은 피부 속으로 빛을 많이 전달하고자 할수록 피부 표면을 더욱 손상시키기 때문에 진단 및 치료의 효율성이 크게 제한된다.
그러나 본 연구를 통해 개발한 기술을 응용하면 빛을 이용하여 피부 속 깊이 존재하는 질병 세포들을 효율적으로 진단할 수 있게 할 것이고, 표면의 손상 없이 질병세포 만을 선택적으로 제거할 수 있을 것으로 기대한다.

3. 기타사항
□ 연구팀 홈페이지
 ○ 고려대학교 물리학과 바이오 이미징 연구실 http://bioimaging.korea.ac.kr/
 ○ 고려대학교 물리학과 바이오 이미징 연구실 http://nol.korea.ac.kr/
 ○ 명지대학교 물리학과 첨단 광응용 연구실 http://nemo.mju.ac.kr/

 

 용  어  설  명

투과행렬(transmission matrix)
빛이 복잡매질을 통과할 때 입사-투과 관계를 보여주는 행렬이다. 여러 각도의 입사파에 대한 투과파의 측정을 통하여 복잡매질의 투과행렬을 얻는다.

Eigenchannel
측정한 투과 행렬을 singular value decomposition(선형대수학의 행렬 대각화 방법) (T = USV*)하여 얻은 eigenvector이다. 여기서 S는 양의 실수인 singular value를 대각 원소로 갖는 정사각행렬이다. V 와 U는 eigenchannel의 input과 output을 그 열로 갖는 unitary 행렬이다. eigenvalue는 singular value의 제곱으로 얻을 수 있고 이것의 물리적 의미는 각 eigenchannel의 투과율의 기댓값이다.

공명모드
일반적으로 알고 있는 선형 공진기는 거울 두 개가 마주보고 있는 단순한 구조로 공진기의 크기에 맞는 조건의 파장의 빛에 대하여 보강간섭을 이루는 공명모드를 형성한다. 본 연구에서는 선형 공진기가 아닌 임의의 복잡매질에서의 보강간섭이 최대가 되는 공명모드를 구현하였다. 이 상태는 eigenvalue가 최대값을 갖는 eigenchannel이다.

매질(媒質, medium)
파동을 전달시키는 물질로, 대부분 매질의 탄성에 의해 파동이 전달됨

보강간섭(constructive interference)
같은 위상의 두 파동이 중첩될 때 일어나는 간섭으로, 마루와 마루 또는 골과 골이 만나 합성파의 진폭이 2배로 커짐

Nature Photonics
광학 및 포토닉스 분야의 가장 획기적인 연구 논문을 출판하는 저널로, 피인용지수(Impact Factor)는 2011년 기준 29.278 이며, 이는 광학 및 포토닉스(Optics and Photonics) 분야에서 1위이다 (SJR 기준).

 

 

<최원식 교수>

1. 인적사항
 ○ 성 명 : 최원식 (38세) 
 ○ 소 속 : 고려대학교 물리학과

2. 학력

 ○ 1993~1997  서울대학교 물리학과 학사
 ○ 1997~1999  서울대학교 물리학과 석사
 ○ 1999~2004  서울대학교 물리학과 박사

3. 주요경력
 ○ 2004~2005  서울대학교 물리학과 연구원
 ○ 2006~2009  Massachusetts Institute of Technology 연구원
 ○ 2009~현재  고려대학교 이과대학 물리학과 조교수
 ○ 2010~현재  Associate Editor, Biomedical Optics Express (SCI journal)

4. 주요업적
 ○ Nature Methods 논문 (2007년), The Economist, printed edition에 소개됨
 ○ Physical Review Letters 논문 (2011년), New Scientist 올해의 10대 뉴스에 선정됨
 ○ 연구 논문 40여 편

<박규환 교수>

1. 인적사항
 ○ 성 명 : 박규환 (53세) 
 ○ 소 속 : 고려대학교 물리학과

2. 학력
 ○ 1978 - 1982  서울대학교 물리학과 학사
 ○ 1982 - 1987  미국 Brandeis University 물리학과 박사

3. 경력사항
 ○ 1987 ? 1988  미국 Brandeis University 박사후연구원
 ○ 1988 ? 1990  미국 University of Maryland 연구원
 ○ 1990 ? 1992  영국 University of cambridge 연구원
 ○ 1992 - 2001  경희대학교 물리학과 조교수, 부교수
 ○ 2002 - 현재  고려대학교 물리학과 교수

4. 수상 경력
 ○ 2010 올해의 성도광과학상

<김재순 교수>

1. 인적사항


 ○ 성 명 : 김재순 (56세) 
 ○ 소 속 : 명지대학교 이과대학 물리학과

2. 학력
 ○ 1975~1980  서울대학교 물리교육학과 학사
 ○ 1980~1987  서울대학교 물리교육학과 석사
 ○ 1995~1999  고려대학교 물리학과 박사

3. 주요경력
 ○ 1990~현재  EOSYSTEM(주) 연구소장
 ○ 1999~2000 부원광학(주) 연구소장
 ○ 2000~현재  제노시스(주) 기술이사
 ○ 1998~현재  산업자원부 기술기획평가단 위원
 ○ 2000~2002  인천대학교 겸임교수
 ○ 2002~현재  KIST 외부위촉연구원
 ○ 2004~2010 지식경제부 차세대 핵심요소 기술개발 나노프로젝트 단장
 ○ 2002~2009 서울대학교 부교수
 ○ 2010~현재 명지대학교 교수
 ○ 2012~현재 지식경제부 반도체 디스플레이 검사장치개발 총괄책임

 

반응형

+ Recent posts