반응형

산호는 산호초를 만들어 해안을 보호하고, 신약물질을 제공하며, 막대한 관광산업 수입을 올리게 하는 매우 중요한 해양생물입니다.

세계적으로 약 5억 명이 산호와 관련된 산업에 종사하고 있으며, 연간 생산액도 약 400조 원에 달합니다.

그런데 산호는 해수 온도가 29~30℃를 넘으면 몸 안에 있던 심바이오디니움을 방출하게 되고, 자신의 몸을 고정하던 석회질만 남게 되어 산호초가 하얗게 변하는 백화현상(coral bleaching)이 일어납니다.

지구 온난화의 영향으로 지난 수십 년 간 20%의 산호초가 백화현상으로 없어졌습니다.

서울대 정해진 교수와 포항공대 이기택 교수, 군산대 이원호 교수, 충남대 신응기 교수, 서울대 유영두 박사(공동교신저자) 등 공동 연구팀이 산호의 공생 미세조류인 '심바이오디니움(Symbiodinium)'이 당초 알려진 식물의 성질 뿐만 아니라 동물의 성질을 동시에 가지고 있음을 세계 최초로 규명했습니다.

연구팀은 심바이오디니움(Symbiodinium)이 빈영양화 상태에서 세균이나 다른 미세조류를 포식하면서 대량번식 할 수 있음을 입증, 광합성에 불리한 빈영양화 해역에서 '식물인 심바이오디니움이 대량으로 존재하며 산호초를 건강하게 유지하게 하는' 역설(paradox)에 대한 해답을 찾아냈습니다.

산호를 떠난 공생미세조류가 세균이나 다른 미세조류들을 포식하면서 번식하며, 산호유생이나 다른 산호에 들어가 건강한 산호를 유지할 수 있게 한다는 모식도


이번 발견으로 산호초에 서식하는 심바이오디니움에게 최적 먹이를 공급하여 번식을 유도할 수 있게 됨에 따라 온난화로 파괴되는 산호초 복원에도 큰 기여를 할 전망입니다.

산호에 공생하는 공생미세조류인 심바이오디니움이 먹이의 일부를 섭식관을 사용하여 포식하는 장면

이번 연구는 산호의 생태 연구 중 가장 어려운 난제를 풀게 된 것으로, 우리나라가 산호 연구의 선도국으로 발돋움 하는데 큰 기여할 전망입니다.

또 심바이오디니움은 산호 뿐만 아니라 말미잘, 해파리, 조개, 해면, 원생동물 등 광범위한 해양생물들과 공생을 하기 때문에 해양저서생태계 연구에 새로운 개념을 제시할 것도으로 보입니다.

연구결과는 미국 국립과학원회보(Proceedings of the National Academy of Sciences USA) 온라인 7월 18일자에 게재되었습니다.
(논문명 : Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium)

 

<연 구 개 요>

산호들은 산호초를 만들어 해안을 보호하고, 주거지를 만들며, 풍부한 해산물을 공급하고, 신약물질을 제공하며, 막대한 관광산업 수입을 올리게 하는 매우 중요한 해양생물이다.
이로 인하여 전 세계적으로 약 5억 명이 산호 관련 산업에 종사하고 있으며, 연간 생산액이 약 400조에 이르는 것으로 알려져 있다.
또한 그동안 산호에 관한 국제학술지 논문이 70만 편 이상 출판될 정도로 가장 많은 주목을 받아 온 해양생물 중 하나이다.

산호는 자신의 몸 안에서 서식하는 공생미세조류인 심바이오디니움(Symbiodinium)으로부터 자신이 필요한 에너지의 80-90%를 얻는다.
산호는 주로 빈영양화 해역에서 사는데, 영양염 농도가 높아질 경우 대형해조류들이 대량 번식하여 산호를 죽이기 때문이다.
이 심바이오디니움은 산호 안에 있다가 밖으로 나가 돌아다니기도 하는데,  이러한 빈영양 환경은 심바이오디니움이 광합성을 하는데 매우 불리한 조건이다.
그 동안 과학자들은 '식물인 심바이오디니움이 광합성에 불리한 환경에서 대량으로 존재하며 산호초를 건강하게 유지하게 하는' 역설(paradox)을 풀기위하여 많은 노력을 해왔다.

본 연구팀은 심바이오디니움이 빈영양화 상태에서 세균이나 다른 미세조류를 포식하면서 대량번식 할 수 있음을 밝혀, 산호의 생태생리 연구 중 가장 어려운 난제를 풀게 되었으며, 앞으로 백화현상으로 파괴된 산호초를 복원하는데 큰 기여를 할 것으로 판단된다.


 
 용  어  설  명

빈영양화 (oligotrophic)
부영양화의 반대로 식물 성장의 필수요소인 질소, 인 등 영양염류가 매우 적은 현상을 말한다.

산호의 백화현상(Coral bleaching)
급격한 수온 변화로 인하여 산호초가 하얗게 변하는 현상을 말한다. 산호의 아름다운 색깔은 원래 몸 안에 살고 있는 공생미세조류인 심바이오디니움(Symbiodinium)의 색깔이다. 수온이 급격하게 상승하면 산호가 심바이오디니움을 방출하게 되고, 아름다운 색깔을 잃게 되다. 결국 자신의 몸을 지탱하기 위하여 분비했던 석회질 색깔만 하얗게 남는다.

산호초 (Coral reef) 
산호는 석회질을 분비하여 자신의 몸을 고정시킨다. 수많은 산호들이 석회질을 분비하고, 이들이 오랜 세월동안 쌓이면 육지도 만들 수 있는데, 산호군락이 만든 거대한  지형을 산호초라고 한다.

심바이오디니움 (Symbiodinium)
심바이오디니움은 와편모류(Dinoflagellate)에 속하는 단세포 생물로, 산호뿐만 아니라 말미잘, 해파리, 조개, 해면, 원생동물 등 다양한 해양동물들 몸 속에 들어가 공생을 하는데, 이들 동물들이 필요한 에너지의 많은 부분을 공급해주는 매우 중요한 생물이다. 심바이오디니움은 해양동물들의 몸 밖으로 나와 수영하며 지내다가 어린 유생들 안으로 들어가 새로운 공생을 시작하기도 한다. 

 

<정해진 교수>

1. 인적사항

  ○ 소 속 : 서울대학교 지구환경과학부(해양학)

2. 학력
  ○ 1982.03-1986.02 :  서울대학교 해양학과 이학사
  ○ 1986.03-1988.02 :  서울대학교 해양학과 이학석사
  ○ 1990.03-1995.02:  미국 캘리포니아 샌디에이고대학교 (University of California, San Diego) 해양학 이학박사

3. 경력사항
  ○ 1995년02월~1995년08월 : 미국 스크립스 해양연구소 박사후연구원
  ○ 1995년09월~2003년08월:  군산대학교 해양학과 전임강사/조교수/부교수
  ○ 2003년09월~현재 : 서울대학교 지구환경과부 부교수/교수
  ○ 2006년06월~2009년07월 : 융합기술원 환경에너지자원연구소 소장
  ○ 2008년06월~현재 : Harmful Algae (Elsevier), Editor
  ○ 2010년06월 ~ 현재 : 교과부-연구재단 해양극지 (해양바이오 기초원천 기술개발사업-해양공생생물 유전체 연구단) 세부연구책임자

4. 주요연구업적
  ○ 2012 교육과학기술부 장관표창
  ○ 2011 2011년도 기초연구사업 우수평가자 100인 선정
  ○ 2011 한국해양과학기술진흥원 공로상
  ○ 2002 제12회 과학기술우수논문상

5. 출판
  ○ SCI급 국제전문학술지 논문 64편 게재
  ○ 국내특허등록 6건, 해외특허출원 2건

 

반응형
반응형

분자전자소자(molecular electronics)는 분자 크기가 수 나노미터 미만으로 매우 작고 자기조립공정이 가능하여, 고집적이면서도 저렴한 전자소자를 만들 수 있어 세계적으로 활발히 연구되고 있습니다.

그러나 지금까지 알려진 분자전자소자는 대부분 실리콘 등 딱딱한 기판 위에서 만들기 때문에 자유자재로 휘어질 수  없었습니다.

반면 기존의 휘어지는 유기전자소자(organic electronics)는 두께가 수 마이크로로 상대적으로 두꺼운 것이 단점이었습니다.

서울대 이탁희 교수팀이 자기조립단분자막을 이용해 극심하게 휘어져도 기능과 성능이 모두 안정한 초박막 분자전자소자를 제작했습니다.

이번 연구는 나노크기의 매우 얇은 단일 분자를 이용해 자유자재로 휘어질 수 있는 유연한 분자전자소자를 개발할 수 있는 가능성을 제시한 것입니다.

이에 따라 향후 휴대용 기기 뿐만 아니라 다양한 전자소자에서 매우 가볍고 쉽게 휘어질 수 있는 초소형 전자소자가 개발될 전망입니다.

연구팀은 박막 두께가 1~2나노미터인 자기조립단분자막을 휘어지는 플라스틱 기판 위에 전자소자로 제작하는데 성공했습니다.

특히 이 교수팀의 나노 크기의 휘어지는 유기전자소자는 반복적인 휨 현상이나 다양하게 휘어진 환경에서도 전기적 전도 특성이 안정적으로 제어됐습니다.

또 점차적으로 휘거나, 매우 심하게 혹은 다양한 형상의 휨 환경에서도 안정적이고, 1000회 이상의 반복적인 휨 테스트에서도 고유의 상태를 유지했습니다.

이탁희 교수는 지난 2009년에도 단일 분자 한 개가 트랜지스터 소자로 작동될 수 있음을 세계 최고 권위지 '네이처'에 발표하였는데, 이번 연구는 이러한 분자소자가 플렉시블한 환경에서도 정상적으로 구동될 수 있음을 검증한 연구결과입니다.

이번 연구는 이탁희 교수가 주도하고, 박성준 박사과정생(광주과기원), 왕건욱 연구원, 윤명한 교수(광주과기원) 등이 참여했습니다.

연구결과는 'Nature Nanotechnology ' 7월 4일자에 게재되었습니다.
(논문명 : Flexible molecular-scale electronic devices)

<연 구 개 요>

Flexible molecular-scale electronic devices
Sungjun Park, Gunuk Wang, Byungjin Cho, Yonghun Kim, Sunghoon Song, Yongsung Ji, Myung-Han Yoon, and Takhee Lee
(Nature Nanotechnology, 2012. 7. 4. 출판)

1. 배경

분자전자소자(molecular electronics) 분야는, 단일 분자를 이용하거나, 소자의 중심 역할을 하는 활성층이 단 분자 단위로 만들어진 분자박막을 이용한 전자소자에 대한 연구 분야이다.
분자전자소자가 폴리머(polymer) 물질을 기본으로 하는 유기전자소자(organic electronics)와의 차별 점은 분자전자소자의 경우는 단일 분자 단위를 갖는 방향으로 전기장이 가해지므로 분자 내의 분자 궤도에 영향을 주어 분자의 특성을 변화시키고 이를 이용한 소자의 구동이 가능하다는 점이다.
그리고 분자를 이용할 경우, 그 크기와 기능면에서 대량 공정과 소자의 집적화의 부분에서 기존의 반도체 소자에 비해 유리한 장점이 있다.
현재까지 분자전자소자 연구는, 단단한 기판 위(예를 들어, 실리콘 기판)에서의 제작 공정을 거쳐, 전기적 신호의 분석을 통해 물성에 대한 이해와  이론을 바탕으로 다양한 소자로의 적용에 대한 연구가 진행되어 왔다.
하지만, 본 연구진은 이러한 전통적인 연구 관점에서 벗어나, 유기 물질의 유연한 물리적 특성을 이용하여, 2 nm 정도의 두께를 가지는 초박막 단분자박막을 이용한 분자전자소자를 제작하였다.
그리고 제작된 분자전자소자의 다양한 구부러진 상태에서의 전하수송 특성 및 그 메커니즘을 규명하였으며, 나아가 유연전자소자(flexible electronics) 연구 분야에 무한한 접목 가능성과 연구적 가치의 중요성을 제시하였다.

2. 연구결과

유연한 분자전자소자의 모식도

그림 a. 실험에 사용된 유연한 분자전자소자 개략도 (아래부터 위 순서로, 플라스틱 기판, 하부 전극 (Au/Ti), 감광제 (photo-resistor), 전도성 고분자, 상부 전극 (Au))
그림 b. 실제 실험에 사용된 유연한 분자전자소자 사진 (총 512 개의 소자가 있음)

그림 1(a) 는 유연한 분자전자소자 개략도를 보여준다. 소자의 제작공정은 아래의 표 1처럼 유연한 분자전자소자 제작 공정에 설명되어 있다. 총 512개의 소자가 가로 3 cm × 세로 3 cm 크기의 플렉시블 기판에 만들어 졌으며 그림 1(b)에 실제 소자 사진이 포함되어 있다.

유연한 분자소자의 휨 상태에서의 전하수송 특성

그림 a. 소자가 인장(tensile)응력을 받았을 때의 이미지
그림 b. 점차적인 인장응력을 받았을 때의 전류 값을 도시하였음
       (0.6 V~1.0 V 범위에서 의 각 포인트 전류 값을 도시)
그림 c. 5 mm 의 인장응력의 휨 반경 상태에서의 저온 측정 데이터
그림 d. 소자가 압축(compressive)응력을 받았을 때의 이미지
그림 e. 점차적인 압축응력을 받았을 때의 전류 값을 도시하였음.
       다시 회복 시, 전류 값의 변화가 없음이 보임.
       (0.6 V~1.0 V 범위에서 의 각 포인트 전류 값을 도시)
그림 f. 5 mm 의 압축 응력의 휨 반경 상태에서의 저온 측정 데이터

그림 2는 분자 소자의 bending test에 대한 데이터이다.
분자 소자가 인장 또는 압축 응력을 받았을 때의 전기적 신호를, 분석을 통하여 소자의 휨 환경에서의 안정성을 규명 하였다.
구부러진 상태에서 온도 변화에 따른 전기 신호를 분석함으로써, 분자의 전자 전달 경로(tunnelling)가 구부러진 상태에서도 유지됨을 알 수 있다.

다양한 휨 상태에서의 분자 소자의 안정성

그림 a. 이쑤시개에 걸쳐져 있는 상태에서의 소자 특성 (-0.8 V 와 0.8 V의 구간 측정)
그림 b. 소자를 특정 각도에 따라 꼬았을 때의 전류 값에 대한 데이터
그림 c. 유리막대 위 나선형으로 감겨진 분자 소자의 실제 이미지

그림 3으로부터, 매우 극심한 환경이나 다양한 휨 환경에서의 소자 안정성을 확인 할 수 있다.
그림 3(a)에서 볼 수 있듯이 아주 작은 이쑤시개에 감겨진 상태에서도 약 10,000 초(약 2시간 30분) 동안 소자의 성능 저하는 볼 수 없었으며, 그림 3(b)에서 한 축을 돌리거나(각도 > 35°), 혹은 그림 3(c)에서처럼 유리 막대에 사선 형으로 감겨져 있는 상태에서도 소자의 성능은 꾸준한 견고함을 보여 주었다.

 

 용  어  설  명

분자전자소자 (Molecular electronics)
분자전자소자는 분자 크기의 다양한 기능성 소재를 전자소자의 핵심적인 구성요소로 사용한다는 개념으로, 주로 분자소자의 제작과 전하수송 특성을 연구하는 과학기술분야이다. 분자 고유의 크기가 보통 수 나노미터(nm) 이하로 매우 작고, 자기 조립에 의한 상향식 공정이 가능하여, 고집적 저비용의 전자소자를 제조할 수 있다. 이러한 장점으로 인해 기존의 실리콘 반도체 소자들이 가지는 집적도의 한계를 보완할 수 있어 미래 핵심기술로 평가 받고 있으며, 세계 일류 대학들과 연구기관들이 이 분야에 대해 활발히 연구하고 있다.

자기조립단분자 박막 (Self-assembled monolayer)
자유로운 계(system) 내에서 용액 내 분자가 촉매 혹은 이동을 위한 특정 에너지의 주입이 없이, 자발적으로 상호작용을 통해 다른 물질과 접합이 되는 현상을 의미한다. 접합 하는 과정에 있어서, 용액 내에 있던 비방향성으로 움직이는 분자들은 짧은 범위의 반경 내에서 정렬을 일으키며 접합을 하며, 위 과정에서 자유에너지가 낮아지고, 평형 상태로 존재 하게 된다.

그림 a. 용액 내 존재하는 분자들의 박막 금속 위에서 자가 조립되는 원리 개략도그림 b. 금속 전극 사이에 자기조립된 단분자 박막 모식도.

 

<원문보기>

Flexible molecular-scale electronic devices(요약)

Flexible molecular-scale electronic devices(원문)

<이탁희 교수>

1. 인적사항

 ○ 소 속 : 서울대학교 물리천문학부(물리학)

2. 학력
  ○ 1992 :  서울대학교 물리학 학사
  ○ 1994 :  서울대학교 물리학 석사
  ○ 2000 :  미국 퍼듀대학교 물리학 박사

3. 경력사항
○ 2000년 ~ 2004년 : 미국 예일대학교 박사후연구원
○ 2004년 ~ 2011년 :  광주과학기술원 신소재공학과 조교수/부교수/교수
○ 2011년 ~현재 : 서울대학교 물리천문학부(물리학전공) 부교수
○ 2007년 ~ 2012년 6월 : 교과부?연구재단 중견연구자(도약연구) 연구책임자
○ 2012년 5월 ~ 현재 : 교과부?연구재단 리더연구자(창의적연구) 연구책임자

4. 주요연구업적
○ 연구 분야 :
- 분자전자소자
- 유기물 기반 메모리 소자
- 반도체 나노와이어 기반 전자소자 및 그래핀 전극 기반 광전자 소자

○ 주요 연구업적 :
1.  Hyunwook Song et al. "Observation of Molecular Orbital Gating", Nature 462, 1039-1043 (2009) (issue of December 24, 2009).
2.  Gunuk Wang et al. "New approach for molecular electronic junctions with multi-layer graphene electrode", Advanced Materials, 23, 755 (2011). Cover Picture Article.
3.  Sangchul Lee et al. "Enhanced Charge Injection in Pentacene Field Effect Transistors with Graphene Electrodes ", Advanced Materials, 23, 100 (2011).
4.  Yongsung Ji et al. "Stable switching characteristics of organic non-volatile memory on a bent flexible substrate", Advanced Materials, 22, 3071 (2010). Cover Picture Article.
5.  Byungjin Cho et al. "Rewritable Switching of One Diode?One Resistor Nonvolatile Organic Memory Devices", Advanced Materials, 22, 1228 (2010). Cover Picture Article.
6.  Sunghoon Song et al. "Three-dimensional integration of organic resistive memory devices", Advanced Materials, 22, 5048-5052 (2010). Cover Picture Article.
7.  Gunho Jo et al. "Hybrid Complementary Logic Circuits of One-Dimensional Nanomaterials with Adjustment of Operation Voltage", Advanced Materials, 21, 2156 (2009). Cover Picture Article
8.  Gunuk Wang et al. "Enhancement of field emission transport by molecular tilt configuration in metal-molecule-metal junction", J. Am. Chem. Soc. 131, 5980 (2009).
9.  Woong-Ki Hong et al. "Tunable Electronic Transport Characteristics of Surface Architecture-Controlled ZnO Nanowire Field Effect Transistors", Nano Lett. 8, 950 (2008) and about 140 more papers.

* Detailed publication list can be found at http://mnelab.com

<박성준 박사과정생>

1. 인적사항

 ○ 소 속 : 광주과학기술원 신소재공학과

2. 학력
 ○ 2010년 : 아주대학교 신소재공학 학사
 ○ 2011년 : 광주과학기술원 신소재공학과 석사
 ○ 2011년 ~ 현재 : 광주과학기술원 신소재공학과 박사과정
   
3. 주요발표논문 (Selected journal articles)    
1. Sungjun Park, Gunuk Wang, Byungjin Cho, Yonghun Kim, Sunghoon Song, Yongsung Ji, Myung-Han Yoon & Takhee Lee, "Flexible molecular-scale electronic devices", Nature Nanotechnology (2012)
2. Jun-seok Yeo, Jin-Mun Yun, Dong-Yu Kim, Sungjun Park, Seok-Soon Kim, Myung-Han Yoon, Tae-Wook Kim, and Seok-In Na, "Significant Vertical Phase Separation in Solvent-Vapor-Annealed Poly(3,4-ethylenedioxythiop hene):Poly(styrene sulfonate) Composite Films Leading to Better Conductivity and Work Function for High-Performance Indium Tin Oxide-Free Optoelectronics" ACS Appl. Mater. Interfaces (2012) Online publised.
3. Gunuk Wang, Seok-In Na, Tae-Wook Kim, Yonghun Kim, Sungjun Park, and Takhee Lee, "Effect of PEDOT:PSS-molecule interface on the charge transport characteristics of the large-area molecular electronic junctions", Organic Electronics 13, 771  (2012).

 

반응형
반응형

p53 유전자는 세포의 이상증식을 억제하고 암세포 사멸을 촉진하는 유전자로, 항암 유전자라고도 불립니다.

현재까지 가장 강력한 암 억제 유전자로 알려진 p53을 타깃으로 암 치료제를 개발하려는 노력이 계속되고 있지만, 임상실험에서는 기대와 달리 효과가 거의 없었고, 또 부작용 등의 문제점이 나타났습니다.

이것은 p53을 조절하는 원리를 정확히 이해하지 못했기 때문으로, 최근 과학자들은 p53의 조절원리와 상호작용을 정확히 규명하기 위한 연구를 진행 중입니다.

PIMT의 발현에 따른 폐암 및 유방암 환자의 생존율을 보여 준다. PIMT의 발현이 많을 경우 생존율이 낮음을 알 수 있다.


성균관대 한정환 교수팀이 노화된 단백질을 회복시키는 효소로만 알려진 핌트(PIMT)가 암을 억제하는 역할을 하는 유전자(p53)의 기능을 억제해 암을 유발하거나 촉진한다는 사실을 밝혀냈습니다.

연구팀은 메칠화 효소인 핌트가 강력한 암 억제 기능을 지닌 p53을 감소시켜, 궁극적으로 암 발생을 촉진한다는 새로운 원리를 규명했습니다.

연구팀은 핌트의 발현이 증가한 여러 종류의 악성 암세포에서 p53이 감소되었음을 확인하였는데, 특히 핌트가 지나치게 발현된 암환자의 생존률이 그렇지 않은 환자에 비해 약 20% 낮다는 사실을 밝혀냈습니다.
 
특히 핌트가 p53을 메칠화시키고, 이를 통해 p53의 기능을 억제하여 암을 일으키는 암 유발 효소임이 처음으로 밝혀졌습니다.

이는 핌트가 p53을 메칠화시키고, 이 메칠화는 p53의 유비퀴틴화를 촉진함으로써, 결국 p53의 양을 감소시켜 암을 유발한다는 것입니다.


PIMT를 억제시켰을 경우 암 억제 단백질인 p53이 증가하며(좌측), 암세포의 성장이 억제됨(우측)을 보여준다.


PIMT 효소에 의하여 암 억제 단백질인 p53의 특정 잔기에 메칠화가 일어남을 의미한다.

연구팀은 핌트가 p53의 기능을 억제해 결국 암을 촉진한다는 이번 연구결과가 인간의 암세포에만 특이적으로 적용되는 원리라는 것도 확인했습니다.


PIMT에 의하여 암 억제 단백질과 p53의 결합이 조절됨을 의미하며(좌측), 이를 통하여 p53의 안정성이 영향 받음을 나타낸다(우측).

p53의 특정 잔기의 카복실 메칠화가 p53 단백질의 안정성에 핵심적인 역할을 함을 보여준다.



이번 연구는 한정환 교수가 주도하고, 이재철 박사와 하신원 학생이 참여했습니다.

연구결과는 네이처(Nature)의 자매지인 'Nature Communications' 6월 27일자에 게재되었습니다.
(논문명 : Protein L-Isoaspartyl Methyltransferase regulates p53 Activity)

<연 구 개 요>

암은 국내에서 사망률 1위의 질환이며 세계적으로 그 치료를 위한 많은 연구가 진행되고 있다.
현재까지 알려진 가장 강력한 암 억제인자인 p53을 타깃으로 암 치료제를 개발하려는 노력이 있었으나 이를 대상으로 실시한 임상 실험에서는 기대와는 달리 미미한 효과와 부작용 같은 문제점들이 대두되었다.
최근에는 이러한 문제점들이 p53을 조절하는 기전에 대한 이해 부족에서 기인하는 것으로 여겨지고 있다. 따라서 이러한 문제점을 해결하기 위해 p53의 조절 기전 및 상호작용에 대한 연구의 필요성이 부각되고 있으며, 그에 대한 연구가 활발하게 진행 중 이다.
○ 본 연구에서는 p53의 단백질 양이 카르복실 메칠화 효소인 PIMT (Protein L-Isoaspartyl Methyltransferase)에 의하여 감소되는 현상을 확인하였다. 또한 PIMT에 의하여 p53의 기능 역시 현저하게 억제됨을 확인하였으며 PIMT가 과발현하고 있는 암환자의 생존률이 감소함을 관찰하였다.

○ 본 연구진은 일련의 실험을 통하여 PIMT에 의하여 p53이 카르복실 메칠화 됨을 확인하였으며 이러한 현상이 p53의 기능 조절에 연관됨을 밝혀내었다.


○ p53 단백질 양을 조절하는 인자인 HDM2는 p53과 결합하여 p53을 degradation 시키는 것으로 알려져 있다. 본 연구진은 PIMT가 p53의 카르복실 메칠화를 통하여 p53과 HDM2의 결함을 촉진시키고 결과적으로 p53을 감소시키는 것을 확인하였다.


○ 본 연구진은 이와 같은 결과를 통해 PIMT가 p53의 기능을 억제하여 암을 유발시키는 암 유발 단백질임을 최초로 규명하였다.


○ 현재, 암을 치료하기 위한 새로운 암 치료제 개발이 전 세계적으로 진행되고 있다. 특히 가장 강력한 암 억제 인자인 p53을 타깃으로 하는 암 치료제 개발을 위해서는 p53의 조절 기전에 대한 이해가 선행되어야할 과제로 남아 있다. 본 연구 결과는 PIMT에 의한 p53의 새로운 조절 기전을 제시하였으며 이는 p53을 대상으로 하는 암 치료제 개발 및 암 조절 기전연구의 중요한 기초자료로 활용될 수 있을 것으로 기대한다.



 용  어  설  명

카르복실 메칠화 (carboxyl methylation)
메칠화란 단백질의 전사 후 변형(post-translational modification)의 일종으로 특정 단백질의 특정 아미노산 잔기에 메칠기(CH3-)가 결합하는 현상을 의미함.
카르복실 메칠화는 아미노산의 카르복실 잔기(CHOO-)에 일어나는 메칠화로 일반적으로 많이 알려져 있는 lysine, arginine 메칠화에 비하여 그 연구가 미미 하였다. 본 연구에서는 이러한 카르복실 메칠화의 세포내 의미를 찾고 그 조절 기전을 분석하였다.

유비퀴틴화(ubiquitination) 
특정 단백질에 유비퀴틴(76개 아미노산으로 구성된 단백질로, 다른 단백질과 결합해 분해를 촉진함) 단백질이 결합하는 현상

Nature Communication
세계  최고 권위 Nature 자매지 중 최초의 online 저널로, multidisciplinary 분야에서 권위 있는 과학전문지

 

<한정환 교수>

1. 인적사항
 ○ 소 속 : 성균관대학교 약학대학                 
               

2. 학력
  1978 - 1982  성균관대학교 약학대학 약학학사   
  1982 - 1984  성균관대학교 약학대학 약학석사  
  1987 - 1991  독일, Ruhr University Bochum, 이학박사
  
3. 경력사항
  1992 - 1992 독일, Ruhr University Bochum, Post-doc
  1992 - 1995 스위스, Friedrich Miescher Institute, Post-doc 
  1996 - 2006 성균관대학교 약학대학, 부교수
  1997 - 2006 경기의약연구센터, 연구기획간사
  2006 - 현재 성균관대학교 약학대학 교수
  2007 - 현재 성균관대학교 생명의약협동과정 책임교수
  2010 - 현재  교육과학기술부?한국연구재단 선도연구센터 (MRC, 에피지놈 제어 연구센터) 센터장

4. 전문 분야 정보
- 대한약학회 국제 협력위원장
- 암정복추진기획단 추진위원
- 대한약학회 국제 협력 위원장
- 중앙약사심의위원회 심의위원
  - 응용약물학회, 편집위원 
  - Archives of Pharmacal Research, 편집위원
- 한국분자생물학회 회원
- 저서: 리핀코드의 그림으로 보는 생화학, 약품생화학총정리 등

5. 주요 논문 업적
 - 1990년대 후반기부터 약 20년 동안 에피지놈 분야에서 활동하여 국제학술지(190편), 국내외학술회의(134여회) 발표를 하였음. 아래는 한정환 교수의 최근 주요 대표 논문업적 6편

1. Protein L-Isoaspartyl Methyltransferase regulates p53 Activity. Nat. Commun. Accepted (2012)
2. Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proc Natl Acad Sci U S A. 108(1):85-90 (2011)
3. Depletion of embryonic stem cell signature by histone deacetylase inhibitor in NCCIT cells: involvement of Nanog suppression. Cancer Res. 69(14):5716-25 (2009)
4. Reversine increases the plasticity of lineage-committed cells toward neuroectodermal lineage. J Biol Chem. 284(5):2891-901 (2009)
5. Histone deacetylase inhibitor apicidin downregulates DNA methyl-transferase 1 expression and induces repressive histone modifications via recruitment of corepressor complex to promoter region in human cervix cancer cells. Oncogene. 27(10):1376-86 (2008)
6. Histone chaperones regulate histone exchange during transcription. EMBO J. 26(21):4467-74 (2007)

 

반응형
반응형

한국기계연구원은 자체 발간한 월간 정책분석지 '기계기술정책' 6월호에서 곽기호 선임연구원이 작성한  '대만 기계산업 동향 분석'을 분석한 결과, 대만 기계산업의 대중(對中) 수출 증가율이 지난 2011년 1월 중국과 대만 간의 경제협력기조협정(ECFA)이 EHP를 통해 조기 실시된 후 우리나라를 앞선 것으로 나타났습니다.

또 주요 품목에서의 수출경합도도 심화되고 있어, ECFA 후속 협상 타결 이전 우리나라 기계산업의 대응책 마련이 시급한 것으로 분석됐습니다.

보고서에 따르면 대만 기계산업 생산액은 2011년 기준 약 327.5억 달러로 우리나라의 약 1/3 수준이나, ECFA EHP 실시에 힘입어 對中 수출액은 2010년 대비 22.0% 증가한 71.5억 달러를 기록해 2004년 이후 최고 수준의 증가율을 보였습니다.

같은 기간 우리나라의 대중 수출액도 17% 증가하였으나 대만의 증가세에 뒤쳐졌으며, 2012년 상반기 중국의 경기 둔화 속에서도 대만의 對中 수출(1월~5월)은 24.8억 달러로 전년 동기 대비 19.5% 떨어졌습니다.

특히 기계산업 세부 품목 가운데 섬유기계, 공작기계류, 밸브, 동력 전달장치, 비전기식 기계류 부품 등은 이미 우리나라보다 對中 수출 규모가 크고 점차 수출 경합도가 심화되고 있어, 향후 ECFA 후속 협상 타결 시 국내 관련 업계가 어려움에 봉착할 가능성이 높은 것으로 나타났습니다.

이 보고서는 ECFA 후속 협상에 따른 관세 인하 효과가 더욱 커지기 전에 중국 현지화 전략 강화와 제품 서비스 통합 솔루션 제공을 통한 차별화, 고객선 유지 확보 노력 등이 강화되어야 함을 제시했습니다.

또 중국시장 진출 시 대만 기업을 활용하고, 풍력발전, 태양전지 등의 신재생에너지 분야에서 중국과 기술 협력을 하는 방안도 고려해야 할 것으로 분석했습니다.

 

 용 어 설 명

ECFA(Economic Cooperation Framework Agreement, 중국-대만 양안간 경제협력기조협의)
중국과 대만이 양안 간 경제협력 확대 및 통합을 목적으로 2010년 6월 29일 서명한 FTA 협정

EHP(Early Harvest Program, 조기수확프로그램)
협정 전체가 발효되기 전에 관세 양허가 가능한 일부 제품부터 조기에 무관세화    하는 조치

수출경합도(Export Similarity Index)
양국의 수출상품구조가 유사할수록 경쟁가능성이 높다는 가정 하에 특정시장에 대한 양국 수출상품구조의 유사성 정도를 계량화한 지수

 


반응형
반응형

차세대 에너지 생산기술 중 무한한 태양 빛을 이용한 태양전지는 소재나 사용목적, 효율 등에 따라 기술이 세분화됩니다.

그 중 식물의 광합성 원리를 이용한 염료감응형 태양전지는 현재 상용화된 실리콘이나 고분자 전지에 비해 만들기 쉽고, 경제적이며, 투명하게도 만들 수 있어 건물의 유리창 등에 직접 활용할 수 있는 차세대 고효율 전지로 각광 받고 있습니다. 

염료감응형 태양전지는 요오드를 포함하는 액체 전해질을 주로 사용하는데, 액체 전해질은 고온에서 팽창하여 새거나 안정성이 낮아 전극을 부식시키는 등 심각한 문제를 유발하기 때문에 고체 전해질로 대체하기 위한 연구가 진행 중입니다.

■ 연세대 김은경, 김종학 교수팀이 나노패턴기술을 이용해 더 많은 햇빛을 흡수해 전기를 만드는 태양전지를 개발했습니다. 

이번 연구는 나노패터닝이 광학적 특성을 변화시켜 빛의 반사를 통해 새어나가는 빛까지도 흡수하여 상당히 많은 양의 빛을 수확할 수 있다는 사실을 밝혀낸 것이 특징입니다.

연구팀은 나노미터 크기의 미세한 구멍을 메울 수 있는 전도성 고분자와 나노패터닝 기술을 이용해 안정하면서도 효율이 높은 전도성 고분자 기반의 염료감응형 태양전지를 개발했습니다.

이번 성과는 염료감응형 태양전지에 처음으로 나노패턴을 도입하여 빛 수확기술(Light Harvesting)을 활용했다는 점이 특징입니다.

빛 수확기술은  태양 빛을 흡수하여 전기로 바꿀 때 일정한 면적에서 더 많은 빛을 손실 없이 흡수해 전기를 생산하는 태양전지의 핵심 기술로, 실리콘 태양전지와 고분자 태양전지에서 이미 개발되어 효과가 입증되었습니다.

그러나 연료감응형 태양전지에서는 나노입자를 광전극으로 사용하고 이를 패터닝해야 하기 때문에 어려움이 많았습니다.

전도성 고분자와 고분자 전해질은 전도도가 높고, 기존의 염료감응형 태양전지의 액체전해질 단점을 극복할 수 있는 장점이 있지만, 대부분의 고분자는 크기가 크기 때문에 햇빛이 태양전지의 무기나노입자 사이의 구멍으로 침투할 수 없어 효율이 높은 태양전지 개발에 어려움이 있었습니다.   

특히 연구팀은 무기나노입자를 직접 나노크기로 작게 패터닝하여 광전극을 만들고, 흡수되지 못해 투과되는 빛까지도 반사시켜 빛을 수확하여 광전변환효율을 극대화시켰습니다.

PDMS 탄성체 스탬프를 이용한 나노패터닝 프로세스 및 대면적 광전극. (왼쪽 세 개의 그림) 나노 스탬프를 이용하여 패터닝을 하여 좋은 빛 반사특성을 갖는 광전극 제조. 여러 개의 나노스탬프를 이용하여 대면적의 광전극(400 cm2)을 만든 실제 사진. 여러 개의 스탬프나 큰 면적의 스탬프를 이용하여 더 넓은 면적의 광전극과 태양전지 모듈을 만들 수 있는 가능성을 제시하였다.


■ 연구팀의 기술은 기존 태양전지를 만드는 과정에서 1~2단계의 간단한 추가공정으로 나노패턴을 제작할 수 있기 때문에, 고가의 패턴장비와 노광장비가 필요한 공정에 비해 매우 간단해졌습니다.

또 스탬프의 크기와 개수를 조절하여 원하는 면적만큼 넓게 만들 수 있기 때문에 대면적화가 가능하고, 패턴스탬프를 여러 번 재사용해도 전혀 문제없어 경제적이며, 대량생산도 가능합니다.

아울러 마이크로미터에서 수백 나노미터까지 다양한 크기의 패턴과 다양한 모양의 패터닝이 가능하고, 이 기술을 빛 수확능력이 탁월한 광전극을 이용해 다양한 태양전지와 소자에도 활용할 수 있습니다. 

연구팀이 개발한 빛 수확용 광전극은 기존의 전도성 고분자 기반의 염료감응형 태양전지의 전류생산량을 40% 증대시키는 효과를 보이고 있습니다.

또 기존에 발표된 전도성 고분자 기반의 태양전지는 2~3%의 낮은 효율을 보이는 반면 이 기술을 적용하고 전도성 고분자 고체 전해질을 이용하면 7.03%의 높은 광전효율을 나타내고 있습니다.

연구팀은 이번 연구에 앞서 지난해 처음으로 열에 의해 중합되는 전도성 고분자 단량체를 나노크기의 구멍에 넣은 후, 그 속에서 직접 전도성 고분자를 키워 그것을 전해질로 이용해 효율이 높은 전도성 고분자 기반의 염료감응형 태양전지를 개발한바 있습니다.(Advanced Materials 지, 23, 1641-1646, 2011, 인용지수: 13.877) 

이번 연구는 연세대 김은경, 김종학 교수가 주도하고, 김정훈 박사, 고종관, 김병관 박사과정생이 참여했습니다.

연구결과는 '앙게반테 케미(Angewandte Chemie International Ed., IF=13.455)'지 7월 9일 온라인판에 속표지논문으로 게재되고, 'Hot Paper'로 선정되었습니다.     
(논문명 : Nanopatterning of Mesoporous Inorganic Oxide Films for Efficient Light Harvesting of Dye-Sensitized Solar Cells)

나노패턴이 형성된 광전극이 들어오는 빛을 흡수하여 전기로 변환시키고, 흡수되지 못하고 투과되는 빛을 반사시켜 다시 전기에너지로 바꾸는 그림 (왼쪽아래). 20 나노미터 크기의 티타늄 산화물을 300 나노미터 크기의 패턴으로 만든 주사전자현미경 사진 (돋보기 안). 결함 없이 대면적 패턴이 가능함을 보여주는 주사전자현미경 사진 (둥근 바탕화면). 전도도가 높은 전도성 고분자를 의미하는 그림 (화학구조)

 

<연 구 개 요>

Nanopatterning of Mesoporous Inorganic Oxide Films for Efficient Light   Harvesting of Dye-Sensitized Solar Cells
Jeonghun Kim†, Jong Kwan Koh†, Byeonggwan Kim, Jong Hak Kim*, Eunkyoung Kim* 
(Angewandte Chemie International Edition, 51, 28, 6864-6869 (2012) 7월 9일 출판)

○ 전도성 고분자와 태양전지

전도성 고분자는 전기를 흐르게 하는 기능성 고분자로서 전기로 색이 변하는 디스플레이부터 높은 전도도를 이용한 전극제조, 정공 전달 특성을 통한 LED, 태양전지 등 다양한 응용분야에 사용되고 있는 스마트 재료이다.
화학적 구조 변화를 통하여 다양한 특성을 제어할 수 있으며, 연구가 활발히 진행되고 있다.
미래 에너지 생산 기술가운데, 무한한 태양 빛을 이용하는 태양전지는 자연으로부터 많은 에너지를 얻을 수 있는 기술로서, 다양한 소재, 사용 목적, 효율에 따라 많은 기술로 세분화 되며, 상용화 및 저가화를 위해 많은 기술 개발이 활발히 이루어지고 있다.
이중, 염료감응형 태양전지는 실리콘, 고분자 태양전지에 비해 제조가 쉽고, 단가가 낮으며 상대적으로 높은 효율을 갖기 때문에 미래 태양전지중의 하나로 각광받고 있다.
염료감응형 태양전지는 요오드(I2)를 포함하는 액체전해질을 주로 사용하는데, 이 액체전해질은 고온에서의 팽창으로 인한 누출 및 낮은 안정성을 갖고, 전극의 부식과 같은 심각한 문제를 유발하기 때문에, 이를 고체전해질로 대체하기위한 기술이 활발히 진행되고 있다.
본 연구진은 열에 의해 중합이 되는 높은 전도도를 갖는 전도성 고분자를 정공전달물질로 이용하여 고체태양전지를 개발하였으며, 높은 성능을 보여주었다.
본 논문에서도 전도도가 높은 전도성 고분자를 이용하여 고체전해질로 사용하였으며, 높은 효율을 보여주었다.     

○ 빛 수확기술

최근 들어 세계적으로 태양전지 개발은 동일 면적에서 더 많은 빛을 손실 없이 흡수하여더 많은 전기를 생산해 낼 수 있는 기술개발에 많은 연구가 진행되고 있다.
빛 수확기술에는 나노와이어, 나노튜브, 광결정과 같은 나노구조를 이용하거나 반사필름의 부착, 산란을 일으키는 전해질 등, 빛을 효과적으로 이용하려는 시도가 활발히 이루어지고 있다.  
나노 패턴을 이용한 빛 수확기술은 실리콘 태양전지, 고분자 태양전지에서 이미 개발되어 효과를 증명하였지만, 태양전지의 큰 주축인 염료감응형 태양전지에서는 나노입자를 광전극으로 사용하고 이를 패터닝 해야 하기 때문에 어려움이 있었다. 

(그림 1) 나노패턴이 형성된 광전극 제조 방법. (a) 나노스탬프의 전자현미경 사진 및 실제 사진 (b) TiO2 계면 코팅 (c) 산성 TiO2 페이스트를 이용한 TiO2 층 제조. (d) 중성 TiO2 페이스트를 코팅. (e-g) 나노스탬프를 이용한 패터닝 공정.

본 연구에서는 PDMS 탄성체 패턴 스탬프를 이용하여 기존의 광전극 위에 간단한 방법으로 무기산화물 나노입자의 패턴을 효과적으로 제조하였다.
[그림 1] 기존의 광전극 제조에 사용되는 나노입자 코팅액은 입자간의 밀집도를 높이기 위하여 산성 물질이 들어있다. 산성을 띄는 물질은 PDMS 탄성체의 표면을 -OH 작용기로 바꾸게 되고, 이 작용기는 TiO2 나노입자 표면에 존재하는 -OH와 반응하여 결합을 하게 되는데, 패터닝 공정에서 건조 후 나노스탬프를 떼어 내는 공정에서 소수성 성질을 갖는 PDMS가 뜯기어 TiO2 표면에 남게 된다.
이는 광전극 패턴 공정 후 친수성 염료용액을 이용하여 염료를 흡착할 때 친수성 용액이 소수성 TiO2 표면을 통해 들어갈 수 가 없고 염료가 흡착되지 않아 태양전지를 제조할 수 없게 된다.
[그림 2d-e] 반면에 중성을 띄는 TiO2 코팅액은 PDMS 표면과 반응하지 않아 PDMS 잔류물 없이 떼어진다. 따라서 염료가 효과적으로 흡착되게 된다.
[그림 2b-c] 이 후에 전도성 고분자를 투입시켜 중합한 후[그림2 f-h] 최종적으로 요오드가 들어가 있지 않은 고체상 염료감응태양전지를 제조한다.[그림 2a] 

(그림 2) (a) 제조된 태양전지 구조. (b-c) 중성 페이스트로 만든 TiO2 광전극의 염료흡착실험. (d-e) 산성 페이스트로 만든 TiO2 광전극의 염료흡착. (f-h) 광전극의 나노구멍에 전도성 고분자 투입. (i) 대면적 전극 위에 나노패턴 생성 후 바로 찍은 사진. (j) 고온에서 열처리 한 후 만든 광전극. (k-l) 염료가 흡착된 빛 반사특성을 가지는 대면적 광전극.

○ 나노 패턴 및 광학적 성질

본 논문에서는 주기가 600nm 이고 패턴 사이즈가 300nm 인 나노패턴 형성을 목표로 하였으며, 최적 패턴사이즈를 빛 반사 성능을 수식으로 부터 시뮬레이션을 통해 확인하였다.

(그림 3) (a) 산성페이스트로 만든 광전극 표면 전자현미경 사진. (b-c) 산성페이스트로 만들어진 광전극위에 중성 페이스트를 이용하여 만든 나노패턴 단면 및 표면 전자현미경 사진. (d-e) 그림 b-c의 확대 전자현미경 사진. (f) 나노스탬프를 재사용하여 만든 나노패턴 전자현미경 사진. (g-h) 나노스탬프의 원자현미경 사진. (i-j) 나노패턴이 형성된 광전극의 표면 원자현미경 사진.

그림 3과 같이 전자현미경과 원자 현미경을 이용하여 나노스탬프와 패턴이 형성된 나노입자를 확인하였다.
고온에서 열처리 중에 유기물이 타면서 패턴 사이즈가 원래 사이즈에서 조금 줄긴 하였지만, 주기는 600nm로 유지하고 있음을 확인하였으며, 결함 없이 나노 선 패턴이 성공적으로 형성되었음을 확인하였다.
본 연구진은 마이크로부터 수백 나노 크기의 패턴까지 다양한 크기의 패턴과 다양한 모양의 패터닝이 가능하다는 것을 실험을 통해 밝혔다.
또한 사용한 스탬프는 계속 재사용할 수 있다는 것을 확인하였으며[그림 3f], 이를 통해 대량생산 공정에도 적용 가능함을 보여주었다.

(그림 4) (a) 빛의 반사를 이용한 빛 수확기술의 모식도. (b) 나노패턴이 있는 전극과 없는 전극의 반사율 측정. (c) 제조된 염료감응태양전지의 단면 전자현미경 사진. (d) 전도성 고분자의 효과적인 침투를 확인하기 위한 염료감응태양전지의 단면 SEM-EDS 사진 (원소분석). (e) 제조된 태양전지의 전압-전류 그래프. (f) 제조된 태양전지의 양자효율 측정 그래프.


그림 4a는 광전극의 투명한 성질 때문에 광전극에서 모두 흡수되어 사용되지 못하고 나가는 빛이 나노패턴에서 반사되어 다시 광전극으로 들어와 흡수되어 빛이 수확되는 "빛 수확 (light harvesting)" 현상을 보여준다.
그림 4b에서 보는 바와 같이 나노패턴이 형성된 광전극은 가시광선 전 영역에서 기존의 광전극 보다 2배 가까운 빛 반사특성을 보여 기존의 염료감응형 태양전지가 모든 빛을 다 사용하지 못하고 투과시켜 버려지는 빛을 수확할 수 있다는 것을 확인하였다. 또한 전도성 고분자가 메조포러스 기공에 효과적으로 침투된다는 것을 SEM-EDS를 통해 확인할 수 있었다.[그림 4c-d]

○ 태양전지의 효율 및 다양한 응용가능성

패턴이 형성된 태양전지는 패턴이 없는 태양전지보다 전류밀도가 40% 증가하였으며, 전체적으로 태양전지 광전변환효율은 33% 증가하였다.
[그림 4e-f] 나노패턴만을 이용하여 이정도의 효과는 보고된 바는 없다는 사실에서 효과적인 기술임이 입증되었다. 

이 기술은 나노입자를 효과적으로 마이크로사이즈로부터 나노사이즈까지 이르는 패터닝 공정을 제시한 것으로써, 다양한 염료, 전해질, 무기 나노입자, 재료를 사용하는 염료감응형 태양전지뿐만 아니라 하이브리드 태양전지 및 다양한 광전소자에도 응용될 수 있으며, 패턴의 사이즈와 개수를 늘려 대면적화가 가능하고 나노스탬프를 계속적으로 사용될 수 있기 때문에 대량생산 및 모듈화가 가능한 나노패터닝 공정을 제시했다는 점에서 큰 의의가 있다.

 

 용  어  설  명

염료감응형 태양전지 (Dye-Sensitized Solar Cell, DSSC)
염료(색소)를 이용하여 태양 빛을 전기로 바꾸는 태양전지

전도성 고분자 (Conductive Polymer)
전기를 흐를 수 있게 하는 고분자이며, 공액구조 길이와 단분자 구조에 따라 광전특성이 제어되는 가볍고 유연한 전자 소재임. 디스플레이, 투명전극, 태양전지, 발광소자 등에 두루 사용되고 있는 핵심 기능성 고분자.

광전변환 효율 
빛을 전기로 바꾸는 효율로, 높을수록 더 많은 전기를 생산할 수 있음

전도성 고분자 
전기를 흐를 수 있게 하는 고분자로서, 태양전지 개발에 핵심이 되는 기능성 고분자

패터닝(patterning)
일정한 크기와 형태를 갖도록 만드는 작업

빛 수확기술(Light Harvesting)
태양 빛을 흡수하여 전기로 바꿀 때 일정한 면적에서 더 많은 빛을 손실 없이 흡수하고 이용하여 더 많은 전기를 생산하는 태양전지의 효율 증대를 위한 핵심기술

중합(polymerization)
단량체 화학반응으로 2개 이상 결합하여 분자량이 큰 화합물을 생성하는 반응 

단량체(monomer)
고분자화합물을 구성하는 단위가 되는 분자량이 작은 물질

Angewandte Chemie International Ed. 
응용화학 연구 분야에서 최고의 권위를 인정받고 있는 대표과학전문지 ,전 과학 분야에서 상위 1.1% 이내에 랭크되는 학술지로, 융합(Multidisciplinary) 분야에서 4.6%(7위/152개) 이내에 든다. (피인용지수: 13.455)

Advanced Materials 
재료과학 연구분야에서 최고의 권위를 인정받는 학술지로, 화학 (Chemistry)과 융합(Multidisciplinary)분야에서 3.9%(6위/152개) 이내 재료과학(Materials Science)과 융합(Multidisciplinary)분야 2.6%(6위/231개)안에 든다. (피인용지수: 13.877) 

Advanced Functional Materials
재료과학 연구분야에서 최고의 권위를 인정받는 학술지로, 화학 (Chemistry)과 융합(Multidisciplinary)분야에서 6.5%(10위/152개) 이내  재료과학(Materials Science)과 융합(Multidisciplinary) 분야 4.3%(10위/231개)안에 든다. (피인용지수: 10.179)

 
<광전극 제조 프로세스 동영상>

1. 동영상 #1: 나노스탬프를 이용한 나노패터닝
링크:http://web.yonsei.ac.kr/eunkim/Supplementary.htm 
다운로드:http://webhard.yonsei.ac.kr/pub.php?get=YXZ0aTYrWVlQV3FBRlJ5WHd2VWtXQT09.avi

2. 동영상 #2: 결함 없는 탈착공정
링크 :http://web.yonsei.ac.kr/eunkim/Supplementary.htm
다운로드:http://webhard.yonsei.ac.kr/pub.php?get=eWQ5clM2YUlsTzVrTUhjT0JSTXgxdz09.avi

3. 동영상 #3: 나노패턴이 형성된 대면적 광전극
링크:http://web.yonsei.ac.kr/eunkim/Supplementary.htm
다운로드:http://webhard.yonsei.ac.kr/pub.php?get=S3NuMlBVN21weDlLb0FPSUEvOUVEdz09.avi

 

<김은경 교수>

1. 인적사항

 ○ 소 속 : 연세대학교 화공생명공학과                   
 ○ home-page: http://web.yonsei.ac.kr/eunkim    http://web.yonsei.ac.kr/APCPI

2. 학력
 ○ 1978 - 1982  연세대학교 화학과 학사    
 ○ 1982 - 1984  서울대학교 화학과 석사   
 ○ 1985 - 1990  미국 University of Houston, 화학과 박사

3. 경력사항
 ○ 1990 - 1992  University of Houston, 화학과, Visiting Assistant Professor
 ○ 1992 - 2004  한국화학연구원, 화학소재부, 책임연구원
 ○ 2004 - 현재  연세대학교 화공생명공학과 교수   
 ○ 2004 - 현재  Adjunct Principal Research Scientist, KRICT
 ○ 2006, 2007, 2009  Invited Professor, Ecole Normale Superieure de Cachan,   Paris-6 Univ., Rennes Univ., France 
 ○ 2006 - 2010 나노기술을 이용한 바이오 융합사업 혁신클러스터, 센터장
 ○ 2007 - 현재  ERC (패턴집적형 능동폴리머 소재연구센터) 센터장 
 ○ 2012 Invited Professor, Ecole Normale Superieure de Lyon, France

4. 전문 분야 정보
 ○ 교육과학기술부?한국연구재단 선도연구센터(ERC) 센터장 (2007 - 현재)
 ○ 나노기술을 이용한 바이오 융합산업 혁신 클러스터, 센터장, (2006 - 2011)
 ○ SCI 논문 136편 및 특허 100 건 이상

5. 수상 경력
 ○ 2001 제1회 올해의 여성 과학기술자상, 과학기술부 
 ○ 2006 일본화상학회 회장특상
 ○ 2009 제4회 아모레퍼시픽(AMOREPACIFIC) 여성과학자상 대상 외 다수 

6. 주요 논문업적
- 유기합성을 기반으로 한 공액구조의 기능성고분자 합성 및 응용에 대한 연구를 지향하며, 특히 전도성고분자, 형광고분자를 이용한 디스플레이, 센서, 태양전지, 줄기세포 연구 등의 다양한 응용분야에 폭넓은 연구를 진행하고 있으며, 패터닝 공정을 이용한 광전기적 특성을 제어하는 연구를 활발히 진행하고 있다. Angewandte ChemieInt. Ed., Advanced Materials, Advanced Functional Materials, ACS nano, Chemical Communications, Journal of Materials Chemistry, Macromolecules의 최상급 저널을 포함하여 136편 이상의 SCI 논문을 발표. 국내외 특허 출원 및 등록 100여건 이상.

<김종학 교수>

1. 인적사항
 ○ 소 속 : 연세대학교 화공생명공학과             
 ○ home-page: http://web.yonsei.ac.kr/EML

2. 학력
 ○ 1998   연세대학교 화학공학과 공학사 
 ○ 2000   연세대학교 화학공학과 공학석사
 ○ 2003   연세대학교 화학공학과 공학박사
 ○ 2005   MIT 재료공학과 박사후 연구원 

3. 경력사항 
 ○ 연세대학교 화학공학과 공학사 (1998)
 ○ 연세대학교 화학공학과 공학석사 (2000)
 ○ 연세대학교 화학공학과 공학박사 (2003)   
 ○ MIT 재료공학과 박사후 연구원 (2005)
 ○ 연세대학교 화공생명공학과 조교수, 부교수 (2005-현재)

4. 전문 분야 정보
 ○ 2006 - 현재: 한국 막학회 학술이사, 편집이사, 기획이사
 ○ 2007 - 현재: 한국 화학공학회 NICE지 편집위원
 ○ 2011 - 현재: 한국 광과학회 이사
 ○ 2012 - 현재: 한국 청정기술학회 이사
 ○ 2007년 연세대 우수강의 교수상 
 ○ 2009년, 2011년 연세대 우수업적 교수상 
 ○ 2011년 한국막학회 논문상 수상

 5. 주요 논문업적
- 신에너지 전기화학 소재 분야와 (태양전지, 연료전지, 리튬전지 등), 기능성 고분자, 유무기 나노소재, 나노 복합체, 고분자 전해질, 나노입자 그리고 나노 분리막 분야의 연구를 지향하며, Angewandte ChemieInt. Ed., Advanced Materials, Advanced Functional Materials, Chemical Communications, Journal of Materials Chemistry, Journal of Physical Chemistry, Macromolecules, Journal of Membrane Science 등 총 160여 편 게재. 국내외 특허 출원 및 등록 50여건. 

 

반응형
반응형

<한국항공우주연구원 제공>

나로호 3차 발사가 오는 10월로 확정됐습니다.

교육과학기술부는 19일 제5차 ‘국가우주위원회’를 열고 한국항공우주연구원이 제출한 ‘나로호 3차 발사 계획서’에 대해 원안대로 심의·의결했습니다.

그동안 한국항공우주연구원은 지난 나로호 1, 2차 발사 실패 원인을 분석해 나로호 상단부의 보완 조치를 완료했습니다.

또 지난 5일 이송준비 검토회의를 갖고 나로호 상단부를 전남 고흥 나로우주센터로 이송하기 위한 최종 점검을 완료한 상태입니다.

나로우주센터의 발사대 시스템은 지난 5월부터 성능확인 시험을 수행 중입니다.

아래 사진은 지난 1차 발사 때 한 쪽 덮개가 전개되지 않았던 것을 보완한 페어링 분리 시험입니다.

<한국항공우주연구원 제공>

■ 이번 나로호 3차 발사에 탑재되는 위성은 '검증위성'입니다.

원래 나로호 실릴 위성은 과학기술위성 2호로, 만약의 경우에 대비해 동일한 규격의 2A호와 2B호가 함께 제작됐습니다.

그러나 두 차례의 발사 실패로 모두 사라졌고, 이후 3차 발사 준비까지 동일한 위성을 다시 만들 시간이 부족해 약간의 기능이 축소된 검증위성을 싣게 된 것입니다.

하지만 성능은 당초 계획된 과학기술위성 2호와 대부분 동일하다고 합니다.

현재 이 위성은 KAIST 인공위성연구센터에서 최종 조립을 마치고 성능 검증작업이 진행 중입니다.

<한국항공우주연구원 제공>

반응형
반응형

[성명서]

연구현장 무시하는 출연연 통폐합 재추진을 강력히 규탄한다!

 

정부가 올해 초 일방적으로 추진하려다 노동조합과 연구현장 종사자들의 강력한 투쟁으로 무산되었던 출연연 통폐합을 재추진하고 있다.
정부는 7월 10일 국무회의에서 지난 18대 국회 임기 만료로 폐기된 정출연법 개정법률(안)을 다시 심의, 확정했다. 지난 2월에 정부가 일방적으로 추진했던 출연연 통폐합(단일법인화) 그대로 되살려낸 것이다.
지난 2월 이후 지금까지 연구현장의 의견 수렴과 노동조합과 소통하려는 노력 한번 제대로 하지 않고 무작정 폐기된 법률안을 되살리다니, 참으로 후안무치하고 막가파식 이명박 정부의 본색을 그대로 드러내고 있다. 
 

우리 양 노동조합, 그리고 출연연 종사자들은 지난 겨울 매서운 추위에도 불구하고 정부의 출연연 통폐합 방침에 맞서 국가과학기술위원회와 국회 앞 총력투쟁, 통폐합 반대서명, 길거리 천막농성 등 끈질기고 강력한 투쟁을 전개했다.
과학기술계에서도 반대 목소리가 드높았고, 18대 국회 여야 의원들도 정부 개정안의 내용과 섣부른 추진을 비판하고 논의 자체를 아예 하지 않았다.
그 결과 정부의 일방적인 출연연 통폐합은 사실상 일단락되었는데 정부는 불과 몇 달 전의 기억을 새까맣게 잊었단 말인가?
 

우리 양 노동조합이 누누이 주장했듯이 정부가 추진하려는 출연연 통폐합 안은 연구 현장의 의견을 무시한 채 국과위의 욕심과 지식경제부 등의 부처 이기주의가 야합한 결과물에 불과하다. 한나라당이 절대 다수를 차지했던 18대 국회에서 정부가 제출한 법률(안)을 심의조차 하지 않은 것은 정부안이 설득력을 전혀 갖추지 못하고 있으며 연구현장의 민심에 역행하고 있다는 증거이다.  

현재 출연연과 과학기술계는 올해 대선을 통하여 국가과학기술정책의 패러다임을 새롭게 할 것을 요구하고 있고, 여야 정치권에서는 과학기술 전담부처를 부활하겠다는 공약을 잇따라 제시하고 있다.
이러한 흐름은 이명박 정부의 과학기술정책 실패와 공공성 파괴에 대한 분노와 비판이 광범위하게 축적되고 있음을 의미한다.
지금은 출연연 통폐합을 다시금 추진할 때가 아니라 이명박 정부가 깊이 반성하고 출연연 종사자들에게 석고대죄할 때이다.
 

우리 양 노동조합은 정부의 출연연 통폐합 재추진을 강력히 규탄하며 즉각 중단할 것을 촉구한다.
정부가 일방적으로 강행할 경우에
우리 양 노동조합은 지난 1, 2월에 이어 다시 한번 출연연 모든 종사자들과 함께 연구현장을 망치는 정부의 획일적인 통제와 관료주의에 맞서 강력한 투쟁을 전개할 것이다.

                                                                             2012년 7월 16일

 

전국공공연구노동조합                   전국과학기술연구전문노동조합

반응형
반응형

■ 대장균은 생명현상을 이해하기 위한 대표적인 모델로, 산업적으로도 매우 중요한 미생물입니다.

대장균 연구를 통해 의약용 단백질 등 다양한 유용 재조합단백질 생산과 석유화학을 이용해 만든 각종 화학물질을 대체하는 친환경 바이오화학제품을 개발합니다.

또 바이오에탄올 등 저탄소 신재생연료를 생산할 수 있기 때문에 대장균을 '작은 세포공장(cell factory)'이라 부르기도 합니다.

■ 최근 석유자원의 고갈과 석유화학제품의 대규모 사용에 따른 지구 환경오염 및 온난화의 문제가 심각해지면서  친환경 녹색기술 개발은 그 어느 때보다 중요합니다.

에너지원으로 이용되는 식물과 미생물 등 바이오매스를 활용해 바이오에너지와 바이오화학제품을 생산하는 고효율 맞춤형 미생물 바이오공장을 개발하기 위해서는 생체 네트워크에 대한 시스템 수준의 이해가 선행되어야 합니다.

지금까지는 대장균을 비롯한 세포공장의 유전자 정보는 물론 대사와 생리 및 기능에 대한 종합적인 정보가 부족해 무작위로 하나씩 맞춰보는 단순 시행착오 방식(trial and error)으로 연구개발이 진행됐습니다.

그러나 만일 모든 오믹스 정보를 확보한다면 산업미생물의 생체 네트워크를 이해할 수 있을 뿐만 아니라 맞춤형 유전체 설계가 가능해 각종 유용단백질, 바이오화학제품과 바이오에너지 생산에  가장 적합하고 효율적인 미생물을 개발할 수 있게 됩니다.

■ 연세대 김지현 교수, 한국생명공학연구원 윤성호 박사, KAIST 이상엽 교수 공동 연구팀이 '대장균'의 생명현상과 관련된 중요한 생체 정보, 즉 오믹스(Omics)를 규명했습니다.

오믹스 특정 세포 속에 들어 있는 생리현상과 관련된 대사에 대해 전사체와 단백질체, 형질체 등 대량의 정보를 통합적으로 분석하여 생명현상을 밝히는 학문입니다.

연구팀은 가장 많이 활용되는 대장균 B와 K-12의 각종 오믹스 정보를 확보하고, 인실리코 분석 및 검증 등 컴퓨터 모델링을 이용해 시스템 수준에서 대장균의 대사 네트워크를 재구성하고 대장균 2종을 비교 분석하는데 성공했습니다.

대장균 B 균주에 대해 유전자 암호가 mRNA로 전사되고 이로부터 단백질이 만들어져 여러 대사회로를 통해 형질로 나타나는 전 과정의 다중 생체 정보를 확보하고, 시스템 수준에서 통합적으로 분석하여 컴퓨터 시뮬레이션을 통해 생체 네트워크를 재구성하여 확인한 것은 이번이 처음입니다.

연구결과  대장균 B 균주가 K-12에 비해 아미노산 생합성 능력이 뛰어나고 단백질분해효소가 적으며 편모가 없어, 인슐린, 섬유소분해효소(cellulase)와 같은 외래 재조합 단백질을 생산하는데 매우 적합한 특성을 가지고 있다는 사실을 밝혀냈습니다.

또한 대장균 B 균주는 단백질 분비 시스템을 2개나 보유하고 있고, 단백질 분비에 유리한 세포벽과 세포외막을 구성하고 있어 생산된 단백질을 세포 밖으로 배출하는데 유리하다는 것을 확인했습니다.

반면 K-12 균주는 고온에 노출되면 이에 대응하는 유전자를 더 많이 발현하고, 몇 가지 스트레스 조건에 덜 민감했습니다.

연구팀은 이번 연구에 활용된 대장균 B와 K-12의 유전자들이 어떻게 상호작용하는지를 분석하는 마이크로어레이 DNA칩을 제작해 국내외 연구자들에게 무상으로 제공했습니다.

이번 연구로 바이오의약, 바이오화학, 바이오에너지 등 친환경 녹색 바이오산업을 위한 기술 개발에 청신호가 켜질 전망입니다.

연구팀은 앞서 지난 2009년 다중 오믹스 정보를 이용한 시스템 수준의 분석 연구를 통해 대장균 유전체 지도 정보와 유전체 진화 양상을 국제 학술지에 게재한 바 있습니다.

이번 연구결과는  'Genome Biology(IF = 9.036)'에 온라인으로(6월 29일) 게시되었습니다.
(논문명 : Comparative multi-omics systems analysis of Escherichia coli strains B and K-12)

대장균 B와 K-12 균주의 전사체, 단백체 및 형질체 비교

대장균 B와 K-12 균주의 각종 오믹스 정보를 시스템 수준에서 통합적으로 분석하였으며 그 결과, B 균주가 우수한 아미노산 생합성 능력과 적은 수의 단백질분해효소, 그리고 편모 부재 등 재조합 단백질을 생산하는데 적합한 특성을 가지고 있다는 것과 단백질을 세포 밖으로 분비하는 시스템을 2개나 보유하고 있고 단백질 분비에 유리한 세포벽과 세포외막 구성을 가지고 있다는 것을 밝힘. 이에 비해 K-12 균주는 고온에 노출되었을 때 이에 대응하는 유전자를 더 많이 발현하고 몇몇 스트레스 조건에 덜 민감하였음

 

<연 구  개 요>

Comparative multi-omics systems analysis of Escherichia coli strains B and K-12
Sung Ho Yoon, Mee-Jung Han, Haeyoung Jeong, Choong Hoon Lee, Xiao-Xia Xia, Dae-Hee Lee, Ji Hoon Shim, Sang Yup Lee, Tae Kwang Oh and Jihyun F Kim*
*Corresponding author: Jihyun F. Kim jfk1@yonsei.ac.kr
http://genomebiology.com/2012/13/5/R37

1. 연구 배경
대장균(Escherichia coli)은 가장 집중적으로 연구된 모델 미생물의 하나로서 과학적 연구뿐만 아니라 산업적 응용을 위해 널리 사용되고 있다. 가장 많이 사용되는 대장균은 K-12와 B로서 유전적, 생화학적 연구와 더불어 바이러스(박테리오파지), 제한효소, 돌연변이, 진화 연구에 활용되어왔다.
김지현 박사 연구팀에서는 지난 2009년 장기 실험진화(experimental evolution) 모델인 REL606 균주와 재조합 단백질, 바이오연료, 바이오소재 등을 대량 생산하는데 쓰이는 세포공장(cell factory)인 BL21(DE3)의 유전체 서열을 해독하여 'Journal of Molecular Biology'에 표지논문으로 발표하였고, 장기 실험진화에서의 유전체 진화 양상을 규명하여 'Nature'지에 아티클 논문으로 게재하였다.
유전형(genotype)과 표현형(phenotype)의 관계를 밝히는 것은 생명체를 시스템 수준에서 이해하는데 필수적이다. 하지만 유전체 서열 비교만으로는 유전형과 표현형 사이의 관계에 대해 제한적인 정보밖에 제공할 수 없다. 연구팀은 이 논문을 통해 컴퓨터 모델링 기법과 접목한 다중 오믹스 데이터의 비교 분석이 유전체 서열 정보가 해독된 생명체의 형질적 특징을 파악하는 새로운 접근 방식임을 전거하였다.

2. 연구 결과
본 연구에서는 대장균(E. coli) B와 K-12 균주의 차이점을 알아내기 위해 유전체(genome), 전사체(transcriptome), 단백체(proteome), 형질체(phenome)와 같은 시스템 전체 수준에서 여러 측면으로 측정한 지표들의 총체적인 정보를 종합하여 분석한 결과를 정리하였다. 또한 대장균 B 균주의 대사 네트워크(metabolic network)를 유전체 수준에서 재구성하였고, K-12 균주와 비교할 때 B 균주에 특징적인 형질들의 유전적 근거를 in solico complementation test를 통해 동정하였다.
이 시스템 분석(systems analysis)을 통해 밝혀낸 K-12 균주와의 차이점은 B 균주가 우수한 아미노산 생합성 능력과 적은 수의 단백질분해효소, 그리고 편모 부재 등 재조합 단백질을 생산하는데 적합한 특성을 가지고 있다는 것과 단백질 분비 시스템을 두 개나 보유하고 있고 단백질 분비에 유리한 세포벽과 세포외막 구성을 가지고 있는 등 생산된 단백질을 세포 밖으로 배출하는데 유리하다는 것이다. 이에 반해 K-12 균주는 고온에 노출되었을 때 이에 대응하는 유전자를 더 많이 발현하고 몇몇 스트레스 조건에 덜 민감하였다.

3. 연구 결론
초고속 대용량 분석 기술의 발전에도 불구하고, 성격이 다른 여러 오믹스 데이터 세트에서 의미 있는 생물학적 지식을 도출하는 것은 여전히 풀기 힘든 과제이다. 이 연구에서는 다중 오믹스 정보를 통합하고 총체적으로 분석하여 대장균 B와 K-12 균주 사이의 세포 대사와 생리상의 차이점을 밝혔다.
이러한 통합적 시스템 분석 방식은 고해상도의 시스템 전체 수준 정보 및 분석 능력과 더불어 대장균 B와 K-12와 같이 매우 유사한 균주가 어떻게 뚜렷이 구별되는 형질을 보여주는지에 대한 통찰을 가능케 한다. 따라서 생명체의 생리와 대사에 대한 체계적인 이해는 이들의 배양 조건과 재조합 균주를 디자인하는데 필수적이다. 

유전체, 전사체, 단백체 정보를 통합 분석하여 도출한 B 균주의 형질

4. 기타사항
□ 연세대는 생명현상을 본질적으로 이해하기 위해서는 분자생물학, 생화학, 생명공학 등이 함께 어우러지고 나아가 NT, IT, MT 등과 융합된 시스템생물학 연구와 교육이 필요하다는 인식 아래 21세기 생명과학 시대를 주도할 우수한 인재를 양성하기 위해 지난 2008년 이과대학 생물학과와 생화학과 그리고 공과대학 생명공학과를 통합하여 생명과학기술과 의생명 분야가 융합된 생명시스템대학(http://bio.yonsei.ac.kr/)을 설립하였다.
□ 우리나라 생명공학의 메카로도 불리는 생명연(http://www.kribb.re.kr/)은 국내 유일의 바이오전문 정부출연 연구기관으로서 생명현상의 이해와 더불어 보건의료, 농업생명, 바이오소재, 환경에너지 분야의 연구개발을 통해 국민보건 향상 및 바이오산업 발전에 기여하고 있다. 또한 생명연은 국내 최고의 유전체 및 생물정보 연구 전문기관으로서 BT와 IT, NT, CT 등 융합기술 연구개발에도 선도적인 역할을 수행하고 있다.
□ 연구팀 홈페이지
 ○ 미생물유전체정보기지(Genome Encyclopedia of Microbes; GEM) https://www.gem.re.kr
 ○ 시스템생명공학연구그룹(Systems Biotechnology Research Group; SyBiRG) http:// sybirg.kribb.re.kr

 


 용  어  설  명

오믹스(omics)
세포 또는 개체 내에서 발현되는 RNA, 단백질 등 생명현상과 관련된 중요한 물질에 대하여 대사체, 단백체 등 개개의 성격이 아닌 각 통합적으로 분석하여 생명현상을 밝히기 위한 학문
 * 대사체 : 생체 내 특정한 대사작용에 의하여 생성되는 대사물질 전체
 * 단백체 : 세포 또는 개체 내에서 발현되는 단백질의 총합

인실리코(in silico)
컴퓨터 모의실험 혹은 가상실험을 이용하여 생명현상을 연구하거나 설계하는 기술. 미생물의 경우 사이버 생명체인 가상세포 실험을 통하여 연구실에서 수행하는 실험과 동일한 결과를 얻을 수 있음

바이오리파이너리(biorefinery)
식물, 미생물 등 태양에너지를 받는 생명체로부터 생물공학적, 화학적 기술을 이용하여 석유기반제품을 대체할 수 있는 바이오 기반의 화학제품, 바이오연료 등의 물질을 생산하는 기술

시스템생물학(systems biology) 및 합성생물학(synthetic biology)
세포, 조직, 신호전달체계 등 생물학적 시스템들 간의 관계 및 상호 작용을 연구하고 이러한 정보의 통합을 통하여 생물학적 시스템의 작용을 이해하고자 하는 학문 분야를 일컬어 시스템생물학이라고 하며, 기존에 자연 상태에서 존재하는 생물학적 시스템을 새로운 생물학적 시스템을 통하여 설계?제작하거나 인공생명체를 만드는 특정 목적으로 재설계하기 위하여 사용되는 과학기술을 합성생물학이라고 함

mRNA(messenger RNA)
DNA의 유전정보를 리보솜에 전달하는 RNA

 

<논문 원문 보기> 



<김지현 교수> 

1. 인적사항
 ○ 성 명 : 김지현 (45세) 
 ○ 소 속 : 연세대학교 생명시스템대학 시스템생물학과

2. 학력
 ○ 1985~1989  서울대학교 농생물학과 식물병리학전공 학사
 ○ 1989~1991  서울대학교 농생물학과 식물병리학전공 석사
 ○ 1993~1997  Mol. Plant Pathol. Program, Cornell Univ. 박사

3. 주요경력
 ○ 1992~1997  농촌진흥청 경제작물과 농업연구사
 ○ 1993~1996  교육부 국비유학 장학생 (1991 선발)
 ○ 1997~2000  Postdoc. Assoc., Dept. Plant Pathol., Cornell Univ.
 ○ 2000~2012  한국생명공학연구원(KRIBB) 선임연구원, 책임연구원, 센터장
 ○ 2004~2012  과학기술연합대학원대학교(UST) 부교수(겸임), 교수(겸임)
 ○ 2012~현재  연세대학교 생명시스템대학 시스템생물학과 부교수

4. 수상경력 및 주요업적
 ○ UST 2011 우수연구지도상, 2009 우수강의상; 2009 한국생물정보시스템생물학회 온빛상
 ○ 2011 교과부장관상; 2010 KRIBB상 대상; 2009 기초기술연구회 다빈치상 등
 ○ Nature 아티클 논문, Faculty of 1000에서 FFa 19(최상위인 Exceptional)로 평가; 포항공대 생물학연구정보센터 "한국을 빛내는 사람들" 상위피인용논문 선정
 ○ 연구 및 리뷰 논문 70여 편; 국내외 특허 및 프로그램 등록 30여 건 등

<윤성호 박사>

1. 인적사항

 ○ 성 명 : 윤성호 (40세) 
 ○ 소 속 : 한국생명공학연구원  바이오합성연구센터

2. 학력
 ○ 1996  KAIST 화학공학과 학사
 ○ 1998  KAIST 화학공학과 석사
 ○ 2002  KAIST 생명화학공학과 박사

3. 주요경력
 ○ 2003~현재  한국생명공학연구원(KRIBB) 선임연구원
 ○ 2006~2010  과학기술연합대학원대학교(UST) 강사
 ○ 2009~2011  Institute for Systems Biology 박사후연구원 (동기간 KRIBB 무급휴직)

4. 주요업적
Yoon SH, Han MJ, Jeong H, Lee CH, Xia XX, Lee DH, Shim JH, Lee SY, Oh TK, Kim JF. 2012. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol. 13:R37.
Yoon SH, Reiss DJ, Bare JC, Tenenbaum D, Pan M, Slagel J, Moritz RL, Lim S, Hackett M, Menon AL, Adams MW, Barnebey A, Yannone SM, Leigh JA, Baliga NS. 2011. Parallel evolution of transcriptome architecture during genome reorganization. Genome Res. 21:1892-1904.
Hong JW, Kim JF, Oh TK, Yoon SH. 2011. Microfluidic system for biological, chemical, and biochemical assessments. United States Patent 7,906,074.
Barrick JE, Yu D-S, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF. 2009. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243-1247.
Nam D, Yoon SH, Kim JF. 2007. Ensemble learning of genetic networks from time-series expression data. Bioinformatics 23:3225-3231.
Yoon SH, Park YK, Lee S, Choi D, Oh TK, Hur C-G, Kim JF. 2007. Towards pathogenomics: a web-based resource for pathogenicity islands. Nucleic Acids Res. 35:D395-D400.
Yoon SH, Hur C-G, Kang HY, Kim YH, Oh TK, Kim JF. 2005. A computational approach for identifying pathogenicity islands in prokaryotic genomes. BMC Bioinformatics 6:184.

 



 


반응형
반응형

무한청정한 태양광 에너지를 이용하여 고부가가치 정밀화학제품을 마음대로 주문 생산할 수 있다면?

태양광 이용 화합물 제조용 광-바이오 공장 개념도

광-바이오 인공광합성시스템은 태양광을 이용하여 시스템 내에 원료 물질과 그에 합당한 효소만 넣어주면 화석연료 등 추가 에너지 투입없이 고부가 정밀화학제품을 선택적으로 생산할 수 있는 개념입니다.

즉 원료 물질과 효소를 교체하면 원하는 물질을 선택적으로 얻을 수 있습니다.

이 시스템은 크게 광촉매를 활용해 태양광에너지를 전환시켜주는 '광에너지 전환부(I)'와 전자전달시스템(II), 그리고 산화 환원 효소의 도움을 받아 정밀화학제품을 생성하는 '바이오촉매 반응부(III)'가 일체형으로 구성됩니다.

2008년 이후 지금까지의 광-바이오 인공광합성시스템에 대한 연구는 다양한 광촉매가 본 시스템에 작동하는지 테스트하는 기초적인 개념정립에 불과했습니다.

즉 태양광을 이용하여 L-글루타민을 생성하는데 국한됐다고 볼 수 있습니다.

한국화학연구원 백진욱 박사팀이 태양광을 이용하여 이산화탄소로부터 포름산(HCOOH)을 선택적으로 제조하는 인공광합성 원천 기술을 개발했습니다.

백진욱 박사팀은 2008년에도 신개념 화합물 제조용 인공광합성 원천기술인 '광-바이오(Photo-bio) 인공광합성 시스템'을 최초로 개발한 바 있습니다.

이는 에너지를 이용하여 화합물, 즉 α-케토글루타르산에서 아미노산의 일종인 L-글루타민을 제조할 수 있음을 입증한 것으로, 연구결과는 원천특허 등록과 함께 Chemical Communication 誌에 게재되기도 했습니다.

광-바이오 인공광합성시스템은 지구온난화 및 자원 고갈 문제를 동시에 해결할 수 있는 미래형 녹색 원천 기술로, 향후 입고 먹고 자는 문제를 모두 해결할 수 있는 태양광 공장 시스템을 만드는 데 이용됩니다.

특히 이번 연구 성과는 새로운 그래핀계 광촉매를 개발하여 태양광 에너지로부터 이산화탄소를 직접적으로 전환하여 고부가 화합물을 제조할 수 있는 획기적 인공광합성의 새로운 길을 제시한 것으로 평가받고 있습니다.

태양광을 이용하여 이산화탄소로부터 포름산을 선택적으로 제조

이 시스템을 이용하여 이산화탄소로부터 포름산이나 메탄올 뿐만 아니라 의약품 등 고부가 정밀화학제품을 선택적으로 제조할 수 있는 방법도 이미 개발하여 원천특허가 출원된 상태입니다.

이번 연구결과는 화학분야 세계최고 권위의 학술지 Journal of the American Chemical Society 온라인판(7월 6일)에 게재되었습니다.
(논문명 : A Photocatalyst-Enzyme Coupled Artificial Photosynthesis System for Solar Energy in Production of Formic Acid from CO2)

광-바이오 인공광합성 시스템 미래 목표 개념도

 

<자연광합성원리를 이용한 광-바이오 인공광합성시스템>

인공광합성(Artificial Photosynthesis)이란 자연의 광합성과 비슷하게 햇빛을 이용해 물, 이산화탄소로부터 유기화합물을 만드는 과정이다.

광-바이오(Photo-bio) 인공광합성시스템은 식물이 에너지를 얻는 자연의 광합성 작용에 착안한 것으로, 둘의 가장 큰 차이점은 식물은 포도당을 만드는 반면, 인공광합성 시스템은 무한 청정한 태양광 에너지를 이용하여, 다양한 고부가가치의 화합물을 선택적으로 생산할 수 있다.

시스템은 크게 광촉매를 활용해 태양광에너지를 전환시켜주는 '광에너지 전환부(I)'와 전자전달시스템(II), 그리고 산화 환원 효소의 도움을 받아 정밀화학제품을 생성하는 '바이오촉매(효소) 반응부(III)'가 일체형으로 구성돼 있음. 따라서 "시스템 내에 원료물질과 그에 합당한 효소만 넣어주면 태양광 이외의 아무런 추가에너지 투입 없이 고부가 정밀화학제품을 선택적으로 생산할 수 있으며, 원료물질과 효소를 교체하면 촉매반응을 거쳐 다른 물질도 선택적으로 얻을 수 있다.

 

<백진욱 박사>
 
 
○ 학 력

  1983 - 1987 경북대학교 공업화학과 학사    
  1989 - 1995 University of Ottawa (Canada)
                  무기화학 박사    
  1995 - 1997 Harvard University,
                  화학과 박사후 연구원 (PostDoc)      
 ○ 경력사항
  1997-2006    한국화학연구원 선임연구원
  2006-현재    한국화학연구원 책임연구원

 ○ 전문 분야 정보
  인공광합성 기술 개발, 광촉매를 이용한 태양광 수소제조기술 개발

반응형
반응형

대전 유성구 신성동 금강산식당 입니다.

건물 정면에 이렇게 '게장'이라고 큼직하게 붙어있습니다.

몇 년 전 간장게장이란 음식을 이 곳에서 처음 먹어보게 됐습니다.
아주 괜찮더라고요.
그래서 간장게장 맛이 다 그런 것인 줄 알았는데...
나중에 다른 식당에 가서 간장게장을 주문했다가 먹을 만한 살은 없고 뭔 냄세가 그리 많은지.
그제서야 금강산식당이 간장게장을 잘한다는 것 뒤늦게 알게 됐네요.

이 곳은 대덕특구에 오래 계신 분들에게는 꽤나 유명한 집입니다.
기본 상차림은 이렇습니다.
가격에 비해 밑반찬이 많다고나 특별나다거나 그런 느낌은 안듭니다.

그러나 간장게장은 확실합니다.


다리살입니다.
쪽~쪽~ 빨아먹게 되는데, 짜지도 않으면서 먹을게 푸짐합니다.

다리를 먹다보면 간혹 눈치를 보며 쟁탈전을 벌이게 되는 등껍질입니다.

이렇게 밥을 넣어 비벼먹는 것이라고 하는데, 반대로 속을 숟가락으로 긁어 밥에 넣어 비벼먹기도 합니다.

그리고 금강산식당 또 하나의 주력 메뉴, 갈치조림 입니다.

메뉴는 이렇습니다. 가격이 어떤가요?

제 맛집 사진은 대부분 아이폰3g 입니다. 그래서 사진이 션찮습니다. ㅎㅎ;

반응형

+ Recent posts