반응형

무반사구조(antireflective structures)는 빛의 효율을 향상시키기 위한 대표적인 방법입니다.

그러나 이 구조는 평판에만 국한되기 때문에 LED 렌즈와 같은 곡면에 적용하기에는 많은 어려움이 있었습니다.

KAIST 바이오및뇌공학과 정기훈 교수팀은  3차원 미세몰딩 공정으로 이를 극복하고 스스로 빛을 내는 반딧불이를 모방한 생체모사(자연모사) 공학을 이용해 고효율 LED 원천기술을 개발했습니다.

일반 렌즈(좌)와 고효율 LED 렌즈(우) 사진. 연구팀은 3차원 미세몰딩 기술을 이용해 고효율 LED 렌즈를 제작.

(A) 고효율 LED 렌즈의 제작 과정. (step Ⅰ) 나노입자와 식각공정을 이용하여 나노구조 형성. (step Ⅱ) PDMS 막에 나노구조 전사. (step Ⅲ) PDMS 막에 음압을 가하여 곡률 형성. (step Ⅳ) 자외선 경화 고분자를 부은 후 경화. (step Ⅴ) 완성된 고효율 LED 렌즈. (B) 고효율 LED 렌즈의 전자현미경 사진. (C) 곡면 위에 잘 정렬되어 형성되어 있는 나노구조.

이는 반딧불이 발광기관 외피에 있는 생물 발광기관 나노구조를 세계 최초로 모사한 기술이라는 점에서 의의가 큽니다.

연구팀은 기존에 렌즈의 반사를 방지하기 위해 값비싼 반사방지 코팅을 추가로 처리하던 기술과 달리, 렌즈 제작 시 생체모사 나노구조를 주형에서 한 번에 만들어 보다 저렴하게 LED를 제작할 수 있게 했습니다.

또 무반사효과(antireflection)를 위해 모방한 나노구조를 최적화해서 발광효율을 기존 반사방지 코팅에 상응한 수준으로 만들었습니다

이는 앞으로 스마트폰, TV, 자동차, 의료기기, 실내외 조명 등에 널리 적용될 전망입니다.

(A) 반딧불이 사진. (B) 반디불이의 전자현미경 사진 (N)은 비발광기관, (L)은 발광기관. (C) 비발광기관의 미세패턴, 무작위한 패턴을 형성. (D) 발광기관의 나노구조, 잘 정렬된 나노구조를 형성. (E, F) 반딧불이의 발광기관과 고효율 LED 패키징이 대응되는 구조를 형성하고 있음. 본 연구팀은 반딧불이 발광기관 외피층에 형성된 나노구조층을 LED 렌즈 위에 형성시켜 발광효율을 증가시킴. (E) 반딧불이 발광기관의 모식도. 나노구조의 크기는 약 주기가 250 nm, 너비가 150 nm, 높이가 110 nm 정도임. (F) 고효율 LED 패키징의 모식도.

연구팀은 실리콘 산화막 위에 나노입자를 단일 층으로 형성하고 식각공정을 통해 나노구조를 형성했습니다.

이어 나노구조를 PDMS(polydimethylsiloxane) 막에 전사시키고, 이 막에 음압을 가해 곡률을 형성한 다음, 자외선경화 고분자를 부어 굳혀 반딧불이와 유사한 구조의 렌즈를 만들어 내는 데 성공했습니다.

이번 기술은 세계 최초로 무반사구조가 형성된 반구형 고효율 LED 렌즈를 개발한 것으로, 이 렌즈는 기존에 사용되는 무반사코팅(antireflection coating)과 같은 효과를 보이고 있습니다.

앞으로 생체모사 기술을 활용한 고효율 LED 렌즈 기술을 통해 기존의 값비싼 무반사코팅을 대신해 저렴하면서도 효율을 극대화할 수 있을 전망입니다.

이번 연구는 정기훈 교수와 제1저자인 김재준 박사과정생이 주도했고, 연구 결과는 미국 국립과학원회보지(PNAS) 10월 29일자 온라인 판에 게재됐습니다.

 

정기훈 교수

김재준 박사과정생


반응형
반응형

소분자 생화합물은 분자량이 작은 생체내 분자들로, 다양한 세포의 세포막을 드나들며 세포간의 신호전달 등에 큰 역할을 담당합니다.

최근에는 제약업계에서  소분자 생화합물을 이용한 신약 개발 관련 연구 개발에 큰 관심을 기울이고 있습니다.

그러나 이러한 소분자 생화합물은 대부분 특정 항원-항체 화학 결합반응을 유도하기 힘들어 기존에 많이 사용되는 형광이나 전기화학적인 방법으로 극소량을 분석하는데 어려움이 많았습니다.

정기훈 교수

KAIST 바이오및뇌공학과 정기훈 교수 연구팀이 소분자 생화합물(small molecules) 검출을 위한 획기적인 고감도 나노광학측정기술을 개발했습니다.

연구팀은 사람의 머리카락 단면적의 70만 배 보다 작은 나노유체관 내 유동특성을 이용해 나노몰(nM) 수준의 농도를 갖는 극미량의 소분자 생화합물의 농도를 국소적으로 증가시켰습니다.
 
이후 나노플라즈모닉 광학기술과 접목해 측정하는 빛의 세기를 1만 배 이상 향상시켜 별도의 생화학처리를 사용하지 않은 도파민(Dopamine)과 가바(GABA)와 같은 신경전달물질을 1초 이내에 구별하는 데 성공했습니다.

오영재 박사과정

이 결과는 현존 세계 최고수준의 검출 한계를 수백 배 이상 향상시킨 기술로 평가받고 있습니다.

이번 연구결과는 앞으로 소분자 생화합물을 이용한 다양한 글로벌 신약개발은 물론, 알츠하이머병과 같은 퇴행성 신경질환의 조기진단 및 뇌기능 진단기술에 크게 기여할 수 있을 것으로 기대받고 있습니다.

이번 연구는 오영재 박사과정 학생 주도로 진행됐고, 독일에서 발간되는 나노분야 국제저명학술지인 '스몰(Small)'지의 표지논문으로 게재됐습니다.

<나노플라즈모닉-나노유체채널 플랫폼의 개념도>

나노플라즈모닉 거울구조를 나노플루이딕 채널로 결합하여 국소적으로 빛의 세기를 증가하는 'hot spot'과 유체역학적 'stagnation point' 이 공간적으로 동일한 곳에 존재하도록 설계하여 소분자 생화합물의 국소농도 증가로 인한 라만분광 신호 증가를 유도함.

<나노플라즈모닉 기판의 광학적 설계>

a) 실리카(Silica) 나노입자 단일 층 형성 및 금속증착 각도 조절을 통한 나노플라즈모닉 구조 설계. b) 형성된 나노입자 어레이의 광학적 성질 및 이에 따른 SERS 신호의 변화. 입사광(488nm)에 가장 근접한 공진조건을 가지는 기판(75도 증착)에서 가장 강한 라만분광신호가 측정됨. 

                <PDMS를 이용한 나노채널의 형성 및 전자현미경 사진 단면도>


a,b) PDMS를 이용한 나노채널의 형성 및 전자현미경 사진 단면도. 흰색 화살표가 유체가 지나는 나노채널을 의미. c,d) 형광신호 측정을 통해 확인한 나노채널에서의 소분자 국소농도 증가. 강한 형광신호는 나노채널로 인해 더 많은 분자들이 금속나노패턴 근처에 있음을 의미함.

















                               <플라즈모닉 나노채널에서의 라만분광신호증가>


  대표적인 신경전달물질인 dopamine과 GABA의 SERS 신호 증가를 보임.












 용  어  설  명


소분자 생화합물 (Small molecules)
: 분자량이 작은 생체분자들. 일반적으로 분자량이 800Daltons 이하 유기화합물
  
신경전달물질 (Neurotransmitter)
: 신경세포에서 방출, 흡수해 서로 정보를 전달하는 역할을 하는 일련의 소분자 생화합물

라만 분광 (Raman Spectroscopy)
: 빛(광자)이 입자에 의해 산란될 때 발생하는 비탄성 산란 현상. 이 과정에서 빛의 에너지가 변화하며 생체분자(biomolecules) 또한 산란과정에서 고유의 라만산란(에너지 변화)을 나타내므로 이를 분광학적으로 분석하여 분자 검출 및 분석에 응용이 가능

나노플라즈모닉스
: 금속나노패턴은 빛이 입사될때 표면의 자유전자가 광자(photons)에 반응해 진동하고, 입사되는 빛 중 특정파장의 세기를 크게 향상 시킬 수 있다. 이러한 물리적 현상은 다루는 나노광학분야를 나노플라즈모닉스라고 불리우며, 나노바이오분야는 물론 다양한 응용분야가 최근 활발히 개발 중이다.

나노유체
: 나노수준(일반적으로 1~100nm )의 직경을 가지는 유체채널에서의 유체의 성질 및 구동 등에 관한 연구를 나노유체라고 한다. 

 

반응형

+ Recent posts