본문 바로가기

투명전극

휘어지는 디스플레이의 재료는? 희금재료 대채할 은나노와이어 필름 투명전극(transparent electrode)은 빛 투과율이 높고 전기 전도성이 있는 박막으로, OLED, 평판 디스플레이, 태양전지의 필수 부품입니다. 투명전극 필름의 원료는 '제2의 희토류'로 불릴 정도로 희귀한 인듐이 사용됩니다. 인듐은 전기가 잘 통해 TV나 스마트폰에 쓰이는 투명전극 필름의 원재료로 현재 널리 사용 중입니다. 하지만 인듐은 광석 1톤당 0.05g밖에 존재하지 않고, 그마저 항상 주석이나 납과 함께 존재하기 때문에 생산이 쉽지 않습니다. 게다가 인듐으로 만든 투명전극 '인듐주석산화물(ITO)'은 구부릴 경우 부서지기 때문에 휘어지는 디스플레이에는 적용하기 힘든 단점이 있습니다. 그럼에도 전자기기의 소재가 되는 희귀광물은 국가 간 외교분쟁의 원인이 될 만큼 중요한 전략 자원으로 .. 더보기
차세대 메모리 대량생산하는 3차원 나노금형 제작기술 3차원 나노금형을 고가의 노광장비를 사용하지 않고 값 싸게 대량 생산할 수 있는 원천기술이 개발됐습니다. 3차원 나노금형 제작기술은 차세대 메모리, 나노센서 등을 값 싸게 제작할 수 있는 나노임프린트 공정의 핵심기술입니다. 한국기계연구원 정준호 박사팀은 KAIST 김상욱 교수팀과 공동으로 3차원 나노금형 제작기술 개발에 성공했습니다. 연구팀은 금속 산화물 소재의 3차원 집적 나노임프린트 공정과 블록 공중합체 자기 조립공정을 융합해 30㎚급 3차원 나노금형을 제작했습니다. 이번에 개발된 기술은 공정이 단순할 뿐만 아니라 대면적 3차원 곡면 상에 수십 나노미터 크기의 구조물을 제작할 수 있습니다. (A) 금속산화물 직접 나노임프린트와 블록공중합체 자기조립의 융합을 통한 나노금형 제작공정도 (B) 금속산화물 .. 더보기
상온 그래핀 직접 합성법 개발 2004년 자연광물인 흑연에서 떼어낸 ㎛(100만분의 1미터) 크기의 그래핀 조각이 매우 우수한 물리적 전기적 특성을 지닌다는 사실이 발견되어 실리콘을 대체할 차세대 나노물질로 떠올랐으나, 이 방법으로 얻은 그래핀 조각은 크기가 너무 작고 모양이 불규칙하여 실생활에 직접 응용할 수 없었습니다. 이런 가운데 2009년 화학기상증착법(CVD: Chemical Vapor Deposition)이라는 새로운 기법으로 금속기판 위에 ㎝ 크기의 그래핀을 합성할 수 있다는 사실이 실험적으로 증명되었고, 지난 2010년에는 넓은 면적(30인치)의 그래핀을 합성하여 투명전극으로 응용할 수 있음이 확인됐습니다. 그러나 CVD로 그래핀을 합성하려면, 먼저 1000℃에서 금속기판 위에 그래핀을 합성한 후 원하는 기판으로 전사하.. 더보기
신기한 나노, 표면적이 10만배 늘어난다고? 나노구조체의 크기는 머리카락 지름의 1000분의 1정인 1㎛(마이크로미터) 이하입니다. 때문에 동일한 부피에 나노구조체를 형성하면 표면적이 획기적으로 증가하는 현상이 나타납니다. 광전소자는 에너지를 전기에너지로 변환하는 소자로, 태양전지나 LED, 디스플레이, 조명기기 등의 제작에 근간이 되고 있습니다. 그러나 현재까지 개발된 광전소자는 크기가 작은 나노구조체에 일일이 전류를 통하게 해야 하는 등 미세하고 까다로운 공정이 필요해 상용화에 어려움이 있었습니다. 그런데 이 같은 돌기 형상의 나노구조체를 활용해 태양전지의 효율을 높일 수 있는 차세대 광전소자가 개발됐습니다. 한국기계연구원 나노역학연구실 김준동 박사팀은 돌기 형상의 대면적 나노구조체에 고성능 투명전극을 입혀 입사광 이용면적을 기존 평판 형태보다.. 더보기