반응형

사물인터넷은 옷이나 책 등 모든 사물이 인터넷을 기반으로 서로 연결돼 사람과 사물 또는 사물과 사물 간의 정보를 주고 받을 수 있는 능력을 갖게 되는 것인데요.

이를 위해서는 무엇보다도 전자기기나 기판이 사물에 자연스럽게 장착될 수 있도록 웨어러블, 플렉서블 기술, 특히 가볍고 전력 소모가 적으면서도 유연성을 가진 소자 제작 기술이 필요합니다.

개시제를 이용한 화학 기상 증착법(iCVD) 개발

KAIST 생명공학과 임성갑 교수, 전기 및 전자공학과 유승협, 조병진 교수 공동 연구팀은 최근 10㎚(나노미터) 이하의 얇고 유연하게 휘어지면서도 균일한 두께를 유지하는 고분자 절연막을 개발해 사물인터넷 실현을 한 걸음 앞당겼습니다.

연구팀은 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, iCVD)’을 이용한 고분자 절연막을 개발했는데요.

이 기술은 단량체(monomer)와 개시제(initiator)를 기화시켜 저진공의 반응기 안에 주입하고 열에너지로 활성화시켜 고분자를 필름 형태로 합성하는 방법으로, 기존 고분자 합성 방식과 달리, 용매나 첨가제가 필요 없어 고 순도 고분자를 쉽게 합성할 수 있고요. 또 낮은 공정 온도 특성으로 종이처럼 화학적, 물리적 자극에 약한 물질 위에도 도포할 수 있습니다. 

iCVD 공정의 모식도. (i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성iCVD 공정의 모식도. (i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성

연구팀이 iCVD로 구현된 박막은 절연 특성이 기존 고분자 박막으로는 구현할 수 없는 매우 높은 수준을 보이면서 플렉서블 전자 소자 등 차세대 전자 기술에 핵심적인 역할을 할 수 있을 것이로 기대됩니다.

기존 무기물 소재 절연막이나 전자소자 재료는 유연성이 부족하고, 고온에서만 공정이 가능해 열에 약한 다른 재료들과의 조합이 어려웠고요.

또 용액을 이용해 만든 기존 고분자 소재 절연막은 표면장력에 의한 뭉침 현상으로 균일도에 한계가 따르고, 잔류 불순물로 인해 절연 특성도 좋지 못한 경우가 많았습니다.

연구팀은기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법인 iCVD를 사용, 이 같은 문제를 극복했는데요.

연구 결과 액체 대신 기체 상태의 반응물을 이용해 균일도를 높이고 불순물을 최소화해, 10 이하의 얇은 두께에서도 무기물 기반 소재에 필적하는 절연성을 갖는 것으로 확인됐습니다.

연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자 (좌측)와 떼었다 붙였다 할 수 있는 전자소자 (우측) 이미지.연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자 (좌측)와 떼었다 붙였다 할 수 있는 전자소자 (우측) 이미지.

이에 따라 연구팀은 개발한 절연막을 유기반도체, 그래핀, 산화물반도체 등 차세대 반도체 기반 트랜지스터에도 적용, 우수한 이동도를 갖는 저전압 트랜지스터를 개발하는데 성공했습니다.

이를 바탕으로 연구팀은 우수한 유연성을 바탕으로 스티커 필름 형태의 전자 소자를 시연하는 데 성공했고, 또 동국대 노용영 교수팀과 협력해 iCVD 고분자 절연막이 대면적 유연 전자소자 기술에 적용할 수 있음도 확인했습니다.

이번 기술은 향후 다양한 미래형 전자기기 제작에 핵심 요소소재로 활용돼 기술경쟁력 우위 확보에도 큰 역할을 할 것으로 기대됩니다.

한편, 이번 연구 결과는 재료분야 국제 학술지인 ‘네이처 머티리얼스(Nature Materials)’ 3월 10일자 온라인 속보판에 게재됐습니다.

 

 용 어 설 명

개시제를 이용한 화학 기상 증착(Initiated chemical vapour deposition, iCVD)
단량체 (monomer)와 개시제 (initiator)를 기화하여 저진공의 반응기 안에 주입하고, 주입된 개시제를 열에너지로 활성화시켜 고분자를 필름 형태로 합성하는 방법. 기존의 고분자 합성 방식과는 달리, 용매 (solvent)나 첨가제 (additive)를 필요로 하지 않기 때문에 높은 순도를 가지는 고분자를 쉽게 합성할 수 있다는 장점을 갖고 있다. 또 낮은 공정 온도로 인하여 종이와 같은 화학적, 물리적 자극에 약한 물질 위에도 고분자를 도포할 수 있다.

절연막(insulator)
도체, 반도체와 달리 전자 또는 정공의 흐름을 막아 주는 역할을 하는 물질. 절연막은 소자 내부에서 가장 넓은 면적을 차지하면서도, 두께에 따라 그 절연 성능이 민감하게 변하는 특징이 있기 때문에 전자소자용 재료 중에서도 핵심 요소이다.

트랜지스터(Transistor) & 전계효과트랜지스터(Field effect transistor, FET)
트랜지스터는 전류의 증폭 작용과 스위칭 역할을 하는 반도체 소자로, IC 칩, 디스플레이와 같은 전자 기기의 핵심 구성 요소가 되는 중요한 소자이다. 트랜지스터는 구동 원리에 따라 다양한 종류로 나뉘는데, 이 중 전계효과트랜지스터 (FET)는 통상적으로 게이트, 소스, 드레인 전극과 반도체 (semiconductor), 절연막 (insulator)로 구성되며, 게이트 (gate) 전극에 전압을 걸어 반도체층 사이에 전자 (electron) 또는 정공 (hole)이 흐를 수 있도록 하는 원리로 전류를 제어하는 트랜지스터이다. FET의 저전력화를 위해서는 절연특성이 유지되는 한 절연막의 두께를 최대한 낮추는 것이 유리하다. 
 

임성갑 교수 

1. 인적사항
 ○ 소 속 : KAIST 생명화학공학과
 ○ e-mail : sgim@kaist.ac.kr

2. 학력
  1997: 서울대학교 (학사: 화학공학과)   
  1999: 서울대학교 (석사: 화학과학과)  
  2009: MIT (박사: 화학공학과)  
 
3. 경력사항
  1999 - 2002: LG화학 기술연구원 
  2002 - 2004: LG Display 연구소
  2009 - 2010: Harvard Medical school, postdoctoral fellow
  2010 - 현재: KAIST, 부교수

유승협 교수 

1. 인적사항
 ○ 소 속 : KAIST 전기 및 전자공학과
 ○ syoo_ee@kaist.ac.kr, http://ioel.kaist.ac.kr

2. 학    력
 ○ 서울대학교 물리학과, 학사, 1996 
 ○ 서울대학교, 물리학과, 석사, 1998
 ○ University of Arizona, 광과학부, 박사, 2005
 
3. 경력사항
○ 2006 ~ 현재 KAIST 전기 및 전자공학과 부교수
○ 2011 ~ 현재 삼성디스플레이-KAIST 디스플레이 연구센터장
○ 2011 ~ 2012 독일 University of Technology Dresden, 방문교수
○ 2005 ~ 2006 미국 Georgia Institute of Technology, 박사후 연구원

조병진 교수 

1. 인적사항
 ○ 소 속 : KAIST 전기 및 전자공학과
 ○ e-mail : elebjcho81@kaist.ac.kr

2. 학력
  1985: 고려대학교 (학사: 전기전자공학과)   
  1987: KAIST (석사: 전기 및 전자공학과)  
  1991: KAIST (박사: 전기 및 전자공학과)  
 
3. 경력사항
  1991 - 1993: IMEC, Research Fellow  
  1993 - 1997: Hyundai Electronics Ind. Co., Section Manager
  1997 - 2007: National University of Singapore, 교수
  2007 - 현재: KAIST, 교수

반응형
반응형

촉매금속 위에서 합성된 대면적 그래핀은 디스플레이, 태양전지 등에 다각적으로 활용될 수 있어, 이에 대한 연구가 전 세계적으로 활발히 진행되고 있습니다.

그러나 이 대면적 그래핀을 실제 전자기기에 응용하기 위해서는 단원자 층인 그래핀을 촉매금속으로부터 손상 없이 떼 내는 것이 무엇보다도 중요합니다.

지금까지는 화학약품을 이용해 금속을 녹여 제거함으로써 그래핀을 촉매금속으로부터 분리했습니다.

그러나 이 방법은 금속을 재활용할 수 없을 뿐만 아니라 생산단가도 높아 경쟁력이 없고, 특히 금속을 녹이는 과정에서 많은 양의 폐기물이 발생하여 환경문제를 일으킬 수 있습니다.

또 공정 단계도 매우 복잡해 그래핀의 양산화에 큰 장벽으로 작용했습니다.

□ KAIST 김택수, 조병진 교수팀은 금속위에서 합성된 그래핀의 접합에너지를 정밀측정한 후 이를 이용하면 그래핀을 금속으로부터 쉽게 분리할 수 있다는 사실을 밝혀냈습니다.

이번 연구는 그동안 어떠한 연구팀도 정확히 측정할 수 없었던 그래핀과 촉매금속간의 접합에너지를 처음으로 정밀히 측정하는데 성공한 것입니다.

금속 재활용이 가능한 친환경, 저가 기반의 그래핀 양산 기술과 이를 이용하여 제작된 그래핀 전계 효과 트랜지스터


이를 이용해 촉매금속을 기존처럼 일회용으로 사용하는 것이 아니라, 무한대로 재활용할 수 있게 돼 친환경적이면서도 저렴한 고품질 대면적 그래핀 생산의 원천기술을 마련했습니다.
    
또한 이 방법을 사용해 기계적으로 분리된 그래핀을 다른 기판에 전사하지 않고 곧바로 그 위에 전자소자를 제작하는데 성공해 기존의 복잡한 그래핀 생산단계를 획기적으로 줄였습니다.

특히 그래핀을 떼어낸 후에도 그 금속기판을 수차례 재활용하여 그래핀을 반복적으로 합성해 처음과 같은 양질의 그래핀을 합성할 수 있어 친환경, 저비용 그래핀 양산기술에 새로운 길을 열었습니다.
 
이번 연구결과를 통해 매우 간단한 단일 공정만으로 그래핀을 금속으로부터 손쉽게 떼 내어 그래핀 응용소자를 제작할 수 있게 됐습니다.

연구결과는 나노과학 분야의 권위 있는 학술지인 'Nano Letters'지 온라인 속보(2월 29일자)로 게재되었다. 
(논문명 : Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process)  



(왼쪽부터) 신우철 박사과정생, 윤태식 석사과정생, 김택수 교수, 조병진 교수.

 용  어  설  명

그래핀 분리기술 :
금속위에서 성장된 대면적의 그래핀을 활용하기 위해 원하는 기판위에 그래핀을 전사시키는 기술.
기존에는 화학 약품을 이용한 식각 공정으로 금속을 제거하여 그래핀을 분리하였으나, 식각 공정 중에 그래핀의 손상과 환경오염, 높은 제작비용 등의 문제로 인해 그래핀 상용화에 큰 걸림돌이 되어왔다.

접합에너지 :
이종 고체간의 상호작용으로 인하여 서로 점착하려는 경향을 나타내는 값으로서 금속위에서 성장된 원자 한층 수준의 얇은 그래핀을 금속으로부터 분리해 내기 위해서는 접합에너지에 대한 규명이 필수다. 

 

<연 구 개 요>

그래핀은 우수한 전기적, 기계적 특성으로 인해 다양한 분야의 핵심 소재로서 각광 받고 있다. 현재까지 고품질의 대면적 그래핀은  촉매 금속위에서 Chemical Vapor Deposition (CVD) 방법을 통해 성장되어 왔다. 
금속위에서 성장된 그래핀을 전자 응용소자 제작에 이용하기 위해서는 금속으로부터 그래핀을 분리해내는 그래핀 분리 과정이 필수적인데, 현재까지는 화학적 식각 방법을 통해 금속을 제거하는 금속 식각 공정이 이용되었다.
그러나 이러한 과정은 그래핀에 손상을 줄 수 있고 대면적의 금속 식각으로 인한 상당한 양의 폐기 물량을 유발할 뿐만 아니라, 금속 기판을 일회성으로 밖에 이용할 수 없어 그래핀 상용화에 커다란 장벽으로 작용해왔다.

본 연구진은 세계 최초로 금속위에서 성장된 그래핀이 금속과 이루는 접합에너지를(0.75±0.07 J/m2) 실험적으로 정확하게 밝혀내었다. 그림 1. 은 Double Cantilever Beam (DCB) testing을 이용한 그래핀과 구리 사이의 접합에너지 측정을 보여준다.  이것은 그래핀을 금속으로부터 기계적으로 분리해내는데 가장 중요한 정보라고 할 수 있는 접합에너지의 구체적인 값을 규명하였다는 면에서 상당한 의미를 가진다고 할 수 있다.

그림 1. DCB fracture mechanics testing을 이용한 그래핀과 구리 금속 사이의 접합에너지 측정. Loading/crack-growth/unloading cycle을 반복해서 수행하면서 crack length (a) 및 접합에너지를 추출하였다.       


그림 2. (a) 촉매 금속 기판의 재활용이 가능한 친환경, 저가 비용의 그래핀 양산 기술의 모식도
        (b) 하나의 금속 기판에서 반복적으로 그래핀을 성장 및 분리시킨 후 측정한 라만 결과.
            고품질의 그래핀을 하나의 금속 기판위에서 반복적으로 성장시킬 수 있다.

그래핀이 금속과 이루는 접합에너지는 그래핀 분리 기술의 핵심적인 정보를 지니고 있음에도 불구하고, 원자 한 층으로 이루어진 그래핀을 대면적의 금속으로부터 정확하게 박리해 내기가 매우 어려워 지금까지 어떠한 연구진에 의해서도 규명되지 못하고 있었다. 
또한 본 연구진은 규명한 접합에너지를 이용하여 하나의 금속 기판을 무한대로 재활용하여 그래핀을 양산할 수 있는 친환경, 저가 비용의 그래핀 분리 기술을 개발하였다.
그림 2. a 는 하나의 구리 기판에서의 그래핀의 성장과 분리가 반복적으로 가능하다는 것을 보여주며, 그림 2. b 는 반복 성장된 그래핀의 라만 결과로서 하나의 금속기판 위에서도 고품질의 그래핀을 계속해서 무한대로 양산할 수 있다는 것을 보여준다.
본 연구에서 개발한 그래핀 분리 기술을 이용할 경우 기존의 기술 대비 생산 비용을 상당히 낮출 수 있을 뿐만 아니라 간단한 기계적 박리 기술로 쉽게 그래핀을 얻어 낼 수 있으므로 현재의 복잡한 그래핀 양산 과정을 오직 하나의 단일 단계만으로 단축시킬 수 있을 것으로 기대된다.
실제로 본 연구진은 이러한 기계적 박리 기반의 그래핀 분리기술을 이용하여 양산시킨 그래핀을 소자의 채널물질로 이용하여 전계 효과 트랜지스터를 유연기판위에 제작하는데 성공하였다.
그림 3. (a) 은 본 연구에서의 개발된 그래핀 분리기술을 이용하여 제작된 그래핀 전계 효과 트랜지스터(Field Effect Transistor, FET) 의 사진 및 모식도를 보여준다.  그림 3. (b),  (c), (d) 는 제작된 그래핀 FET 소자의 전류-전압 특성과 Bending Stability를 나타낸다.  본 연구진은 기계적 박리를 통해 그래핀을 원하는 기판에 전사시켜 응용소자의 제작이 가능하다는 것을 밝혀내었으며 이것은 본 연구에서 개발한 그래핀 분리기술이 그래핀 응용 소자 제작에 바로 이용가능하다는 것을 보여주는 결과로서 그래핀 상용화 크게 앞당길 것으로 기대한다.

그림 3. (a) 기계적 박리를 통해 단일 공정만으로 분리된 그래핀을 이용한 전계효과 트랜지스터의 모식도 및 사진.
       (b) 제작된 그래핀 전계 효과 트랜지스터의 Output 특성. (c 유연성 기판에 전사되어 제작된 그래핀 전계 효과 트랜지스터의 Transfer 특성 및 Bending Stability.
       (d) 그래핀 전계 효과 트랜지스터의 bending 조건에 따른 이동도 변화. 이동도 특성 변화는 10 %로서 매우 안정된 소자의 구동이 가능함을 알 수 있다. 


<조병진 교수>

1. 인적사항        
 ○ 소 속 : 카이스트 전기 및 전자공학과   
 
2. 학력
  1981 - 1985    고려대학교 전기공학과 졸업
  1985 - 1987    카이스트 전기 및 전자공학과 석사 졸업
  1987 - 1991    카이스트 전기 및 전자공학과 박사 졸업
 
3. 경력사항
2007 - 현재   카이스트, 전기 및 전자공학과 교수
1997 - 2007    싱가포르 국립대학교, 전기 및 컴퓨터 공학과 교수
1993 - 1997   하이닉스 반도체, 메모리 연구소 책임연구원
1991 - 1993    벨기에 IMEC 연구원
<김택수 교수>

1. 인적사항    
 ○ 소 속 : 카이스트 기계공학과                
 
2. 학력
  2001    연세대학교 기계공학과 학사 졸업
  2006    스탠포드 대학교 기계공학과 석사 졸업
  2010    스탠포드 대학교 기계공학과 박사 졸업
 
3. 경력사항
2010.12 ~ 현재      카이스트, 기계공학과 조교수
2010.1 ~ 2011.11 스탠포드 대학교 재료공학과 박사 후 과정(Postdoctoral Scholar)
 

반응형
반응형

최근 그래핀의 우수한 전기적 특성을 활용하여 초고속 반도체, 신개념 로직 반도체 등을 구현하기 위해 전 세계적으로 활발한 연구가 전개되고 있지만, 10~20년 후에나 상용화될 수 있는 기초연구가 대부분입니다.

또한 지금까지 그래핀을 현재 세계 반도체 시장의 핵심 주류인 실리콘 기반 전자소자의 한 부분으로서 적용한 사례는 없었습니다.

현재 국내외 기업에서는 20나노미터 이하 급에서 사용될 것으로 예상되는 전하포획방식의 플래시 메모리 소자를 연구 개발 중입니다.

하지만 이 방식의 플래시 소자는 데이터 보존 특성이 시장의 요구조건(멀티비트 동작 시 섭씨 150도에서 10년 이상 데이터 보존 등)을 아직 충족시키지 못해 현재까지 대량으로 상용화되지 못하고 있습니다.

이런 가운데 KAIST에서 금속 전극을 그래핀으로 대체하면 기존의 플래시 메모리 소자의 성능과 신뢰도가 획기적으로 개선된다는 사실을 규명했습니다.

KAIST 조병진 교수팀은 기존 실리콘 기반의 반도체 소자(전계효과 트랜지스터)에서 금속 게이트 전극을 그래핀 전극으로 대체하면, 미래의 반도체 시장에서 요구하는 성능과 신뢰도를 확보할 수 있다는 사실을 밝혀냈습니다.

기존 실리콘 기반 전하포획방식 플래쉬 메모리 소자에 그래핀 전극이 도입된 모식도

이번 연구성과는 그래핀이 먼 미래의 반도체 소자가 아닌 현재 양산 중인 반도체 소자에도 바로 활용할 수 있는 소재인 점을 증명한 첫 사례입니다.

이 기술은 기존의 반도체 제조 공정에서 크게 바뀌는 부분이 없어서 머지않아 양산에 적용할 수 있습니다.

이번 성과는 현재 국내외 기업들이 집중적으로 연구개발하고 있는 전하포획방식의 플래시 메모리 소자에 그래핀 전극을 사용하면 데이터 보존 특성이 바로 시판할 수 있는 성능과 신뢰도로 크게 개선(데이터 10% 손실시간 기준으로 기존 소자에 비해 1만 배 개선)될 뿐만 아니라, 데이터 씀과 지움 간의 전압차이가 70%나 개선되는 등 20나노미터 이하의 플래시 메모리 소자의 상용화에 가장 큰 기술적 장벽을 극복할 수 있음을 실험으로 증명한 것입니다.

이것은 그래핀이 세상에서 존재할 수 있는 가장 얇은 단원자층 물질이고, 신축성과 유연성이 뛰어나, 기존의 금속 전극과는 달리 전극 아래에 위치한 게이트 유전막에 기계적 스트레스를 발생시키지 않기 때문인 것으로 확인됐습니다.

또한 이번 연구를 통해 그래핀이 갖는 큰 일함수도 데이터 보존 특성을 향상시킬 수 있는 또 다른 장점으로 파악됩니다.

이번 연구결과는 나노과학 분야의 권위 있는 학술지인 'Nano Letters'지에 온라인 속보(11월 22일)로 게재되었습니다. 
(논문명 : Graphene Gate Electrode for MOS Structure-based Electronic Devices)

조병진 교수와 함께 이번 연구에 함께 참여한 연구팀 (뒷줄 왼쪽부터) 신우철 학생, 박종경 학생, 송승민 학생

 용  어  설  명

그래핀(Graphene) :
흑연의 표면층을 한 겹만 떼어낸 탄소나노물질로, 높은 전도성과 전하 이동도를 갖고 있어 향후 응용 가능성이 높아 꿈의 신소재로 불린다.

로직(Logic) 반도체 :
기억 기능을 하는 메모리 반도체와 달리 데이터를 연산ㆍ처리하는 반도체다.

플래쉬 메모리(Flash Memory) :
전원이 공급되지 않아도 저장된 정보를 계속 유지하는 컴퓨터 기억 장치의 일종으로 스마트폰, 노트북, 디지털 카메라 등의 전자장치에 폭넓게 사용된다.

전계효과 트랜지스터(field effect transistor) : 
전압(게이트 전압)으로 전류(드레인 전류)를 제어하는 형식의 가장 일반적이고 광범위하게 쓰이고 있는 반도체 소자

일함수(Work function) :
물질 내에 있는 전자 하나를 밖으로 끌어내는데 필요한 최소의 일(에너지)

전하포획 플래시(Charge Trap Flash) 메모리 :
전하를 기존의 도체가 아닌 부도체 물질에   저장하는 방식으로, 새로운 반도체 나노공정을 이용해 개발한 비휘발성 메모리

나노미터(nano meter) :
10억분의 1미터로, 1나노미터는 대략 성인 머리카락 굵기의 10만분의 1

반응형

+ Recent posts