반응형

CCS(Carbon Capture & Storage)는 고농도 대량 배출원에서 발생되는 이산화탄소를 포집하고, 포집된 이산화탄소를 압축해 액체 상태로 만들어 지중 및 해양 퇴적 암반층에 안전하게 저장하고 장기 모니터링 하는 기술입니다.

저장소로 운반된 이산화탄소는 해양저장과 광물탄산화, 지중저장의 3가지 방식으로 처분됩니다.

이 중 이산화탄소를 땅 속에 넣어 영구적으로 처분하는 핵심 기자재와 지상 시스템이 국내 최초로 개발됐습니다. 

한국기계연구원 열공정극한기술연구실 이공훈 박사팀은 한국지질자원연구원과 공동으로 액체 상태의 이산화탄소를 90 기압 이상의 초임계 상태로 변환해 땅 속으로 넣는 시스템과 핵심 기자재인 원심형 부스터펌프, 재생형 4단 가압펌프, 열적 혼합을 향상시킬 수 있는 라인히터 등을 개발했습니다.

초임계 상태는 액체도 아니고 기체도 아닌 중간 상태로, 액체와 기체의 두 상태를 서로 분간할 수 없는 상태를 말합니다.

이산화탄소는 임계점(31.1°C, 72.9기압) 이상에서 초임계 상태로 존재하며, 지중 저장에 적합한 지하 1000m 이상의    깊이에서는 자연적으로 초임계 상태가 됩니다.

그동안 국내에서는 이산화탄소 포집기술과 지중저장 후보지를 확보하기 위한 연구가 주로 진행된 반면 지상시스템의 기계설비에 대한 관심은 상대적으로 부족했습니다.

이번 기술 개발로 이산화탄소 포집 이후 단계인 지중저장 지상시스템 기계설비가 국산화됨에 따라 국내 순수 기술로 이산화탄소의 포집과 저장(CCS) 사업을 전주기적으로 추진할 수 있게 됐습니다.

연구팀은 향후 액화 이산화탄소 뿐만 아니라 대용량의 기체 이산화탄소를 처리할 수 있는 시스템도 개발할 계획입니다.

한편 국제에너지기구에 따르면 전 세계 CCS 플랜트 수요는 2015년 18기, 2020년 100기, 2030년 850기, 2050년에는 3400기까지 늘어날 것으로 예측되고 있습니다.

이 가운데 20%를 우리나라가 점유한다고 가정할 때, 2030년까지 약 100조 원의 누적 매출과 연간 3200만t의 이산화탄소 감축효과를 기대할 수 있습니다(출처=국가 CCS 종합추진계획, 2010).

 

효율적 가압을 위한 CO2용 재생형 펌프 구성품 (1단 펌프 시제품)

CO2용 4단 가압펌프용 임펠러

CO2 용 4단 가압펌프용 축 및 Casing

CO2 용 4단 가압펌프 임펠러와 Casing의 조립 후

CO2용 라인히터 개략도

CO2 용 라인히터 구성품 (선회유동 발생기)

CO2용 4단 가압펌프 시제품

CO2용 라인히터 (조립 후)


<관련글 : 이산화탄소 잡아서 수소 만드는 기술
http://daedeokvalley.tistory.com/151>

<이산화탄소 지중저장을 위한 지상시스템>

□ 이산화탄소 포집·수송·저장 기술(CCS, Carbon Capture & Storage)은 이산화탄소 를 직접적으로 감축할 수 있는 기술로서, 기존의 고농도 이산화탄소 대량 배출원에서 발생되는 이산화탄소 를 포집하고, 포집된 이산화탄소 를 압축·수송하여 지중 및 해양 퇴적 암반층에 안전하게 저장하고 장기 모니터링 하는 기술을 의미함

' height=336>

□ 주요국 이산화탄소  배출량 감축계획 (KISTEP 동향브리프 2010-1호, 2010)

국가

연도 및 감축량

EU

2020년까지 1990년 대비 20% 감축
- 범 세계 동참시 30% 감축

미국

2020년까지 2005년 대비 17% (1990년 대비 4%) 감축
- 2009년 6월 하원통과 ‘Waxmam-Markey 법안’에 명시

일본

2020년까지 2005년 대비 30% (1990년 대비 25%) 감축
- 2009. 9. 22. 하토야먀 총리 발표, UN정상회의

한국

2020년까지 2005년 대비 30% 감축
- 2009. 11. 17. 이명박 대통령 발표, 국무회의

 - 한국의 이산화탄소  배출량은 '05년 약 6억t으로, 감축계획에 따라 '20년까지 이산화탄소 배출량을 약 4억 2000만 t 수준으로 낮출 예정
  - 감축 계획량 1.8억 t  중 약 1억 t(55%)을 CCS기술로 감축할 계획  (우리나라의 에너지 다소비 산업구조, 중ㆍ화학공업 중심의  경제구조에서 이산화탄소 강제 감축은 치명적일 수 있음)

□ 국제에너지기구 (International Energy Agency(IEA)) CCS 로드맵 (2010)
   - CCS 기술을 사용하지 않으면, 2050년까지 온실가스 배출량을 50% 감축하는데 약 70%까지 비용 상승
   - 로드맵에 따르면 전 세계적으로 2020년 100개의 프로젝트에서 2050년에 3000개 이상의 프로젝트로 증가
   - 이를 위하여 2010년에서 2050년까지 2.5~3조 달러의 추가 투자가 필요하지만 이는 2050년까지 온실가스 배출을 50% 감축하는데 필요한 전체 투자 비용의 약 6%임

국제에너지기구의 CCS 로드맵, 2010


□ 유럽위원회 공동연구센터(European Commission's Joint Research Centre)와 네덜란드 환경영향평가청(PBL Netherlands Environmental Assessment Agency)이 공동으로 발간한 보고서 '지구 이산화탄소 배출의 장기 경향 (Long Term Trend in Global CO2 Emissions, 2011 report)'
   - 2010년 한국의 이산화탄소 배출량은 5.9억t으로 EU를 하나의 그룹으로 하면 배출량 세계 8위에 해당함

반응형
반응형

한국기계연구원이 순산소 연소 기술을 이용한 발전시스템 및 핵심 기술인 순산소 연소기 개발에 성공했습니다.

이번 기술은 공장 등의 폐열 또는 폐스팀을 이용하여 이산화탄소 포집에 따른 효율저하를 최소화한 순산소 연소 발전시스템입니다.

한국기계연구원은 핵심 구성품인 순산소 연소기 개발을 완료하고, 원내에 50kW급 파일럿 플랜트를 설치해 운전하여 기술검증에도 성공했습니다.

이번 파일럿플랜트 운전을 통해 순산소 연소기 등의 핵심기술뿐만 아니라 시스템 설계, 통합, 운용기술 등도 국내 독자로 개발 완료되어 향후 대형 플랜트의 실증운전과 상용화의 기반을 구축했습니다.

이 기술은 산소만을 이용해 연료가스를 연소시키므로, 발생된 이산화탄소를 별도의 전처리나 후처리 공정없이 고농도 이산화탄소를 포집할 수 있는 대표적 CCS기술로서, 다른 포집기술에 비해 처리비용이 낮고 용이하게 이산화탄소를 포집할 수 있는 유망한 기술로 평가받고 있습니다.

연구팀은 현재 사용하지 못하고 버려지고 있는 폐열자원(산업단지, 자원회수시설, 연료전지 등)을 발굴하여 개발기술의 적용을 검토하고 있으며, 올 연말에는 국내 시범적용사업을 시작할 수 있을 것으로 전망하고 있습니다.
 
 또한 파일럿 플랜트 장기운전을 통해 시스템 안정성을 평가하고 최적의 가동 조건을 검증하여, 국내 적용과 함께 기술 수출을 추진할 계획입니다.

 이번 연구에는 성일에스아이엠, 현대엔지니어링, 한국남부발전 연구진들이 공동 참여했습니다.


 용  어  설  명

CCS :
Carbon Capture & Sequestration, 이산화탄소포집및처리기술 

순산소 연소(Oxyfuel Combustion) :
연소를 위한 산화제(oxidizer)로 순수산소(pure oxygen)를 이용하는 연소방식.
연소배가스에 CO2와 H2O만 존재하므로 H2O를 응축시키므로써 손쉽게 고농도의 CO2를 얻을 수 있음. 과거에는 제철소, 유리용해로 등에서 생산성 증대를 위해 이용되던 기술이나 최근 CO2 회수형 발전플랜트에 적용하는 연구가 활발하게 진행되고 있음. 

일반적인 연소방식에서는 연료를 산화시키기 위한 산화제로 공기(공기중의 산소)를 이용함.

공기연소 방식(좌) / 순산소 연소 방식(우)

가스터빈 (Gas Turbine) :
압축기에서 압축된 고압의 공기와 연료의 연소열을 이용하여 고온/고압의 가스를 생성시킨 뒤, 이를 이용하여 터빈과 발전기를 구동시켜 전력을 생산하는 발전방식.
연료의 화학에너지를 터빈의 운동에너지의 형태로 변환시키고, 운동에너지를 발전기에서 전기에너지로 변환시키는 장치

공기분리장치 (ASU, Air Separation Unit) :
공기중의 산소와 질소를 분리하여 순수산소와 순수질소를 생산하는 장치.
대용량 설비로는 산소와 질소의 끓는점 차이를 이용하는 심랭법(Cryogenic Method)이 적용되고 있으나, 산소만을 선택적으로 투과시키는 막이나 흡수제를 이용하는 신기술도 개발되고 있음.

폐열(Waste Heat) :
일반적으로 200℃ 이하의 온도를 가지는 열원으로 회수가 어렵거나, 회수하여도 경제성면에서 불리하기 때문에 회수하지 않는 열원을 가리킨다. 공장, 발전소, 제철소 등의 산업설비에 많이 존재함.

연소기 작동압력 5bar, 터빈입구온도 350-500℃, 터빈발전량 50-100 kW급


<연 구 개 요>

폐열으로부터 제조된 스팀을 고압 순산소 연소를 통해 고온으로 재열한 뒤 터빈을 이용하여 전력을 생산하는 기술

  ○ 순산소 연소 기술은 전처리나 후처리 공정 없이 연소만으로 고농도의 이산화탄소를 포집할 수 있는 기술로서, 산소제조에 전력이 소비되어 효율이 감소하는 단점이 있으나, 다른 기술에 비교하여 포집단가가 낮고 용이하게 이산화탄소를 포집할 수 있는 유망한 기술임

  ○ 현재 사용하지 못하고 버려지고 있는 폐열자원(산업단지, 자원회수시설, 연료전지 등)으로 스팀을 생산하여 순산소 연소기술과 연계함으로써 효율저하를 최소화한 시스템으로 적용처에 따라 효율 저하가 없거나 또는 수 %이하의 효율저하를 기대

     ※ 연구기간 : 2003. 4 ~ 현재
     ※ 사업비 : 총 61억원(정부 36억, 민간 25억)
     ※ 연구기관 : 한국기계연구원(주관, 안국영)
     ※ 참여기업 : 현대엔지니어링, 성일에스아이엠, 한국남부발전

○ 순산소 연소에 대한 기초연구와 가열로에 적용가능한 상압형 순산소 연소기 연구(한국기계연구원)를 3년간 수행한 후, 발전용 가스터빈에 적용하기 위한 고압형 순산소 연소기 개발을 통해 순산소 연소기 설계기술을 고도화 함. 이후 발전플랜트 실증을 위해 엔니어링업체(현대엔지니어링), 플랜트 부품 전문업체(성일에스아이엠), 발전자회사(한국남부발전), 학계(경상대, 부산대, 한양대, 인하대)와 함께 컨소시엄을 구성하여 발전플랜트 실증을 추진함.

○ 이 기술은 현재 파일럿 규모의 시스템 실증 단계에 있으며, 순산소 연소기 등의 구성품이 독자기술로 개발되었을 뿐 아니라 시스템 설계/통합/운용 등도 국내기술로 진행된 만큼 대형 플랜트의 실증운전과 상용화 플랜트 개발도 가능한 상태이며, 기술개발을 위해 출연연구소(한국기계연구원), 산업계(참여기업 3기관), 학계의 협력연구와 정부(사업단)의 체계적인 지원이 일궈낸 산·학·연·관 협력의 모범사례라 할 수 있음

□ 주 요 성 과

발전용 순산소 연소기 및 이를 이용한 발전시스템 개발
    - 특허출원?등록(국내 12건, 국외 3건)
    - 국내외 유명논문(SCI) 14편 등

반응형
반응형

화석연료의 사용은 필연적으로 이산화탄소의 증가를 가지고 오며, 이는 지구온난화 등 심각한 기후변화를 초래하게 되는 것으로 알려지고 있습니다.

그런데 IEA 보고서에 따르면 2050년까지도 화석연료의 비중이 70% 이상을  유지할 것으로 전망됩니다.

CCS(이산화탄소 포집 및 저장) 설비의 세계 시장 규모는 2025년에 약 26조원에 이를 것으로 예측되고 있으며, 시장 선점을 위한 주요 선진국들의 기술 경쟁이 치열해지고 있습니다.

이런 가운데 한국에너지기술연구원이 석탄에서 이산화탄소를 원천적으로 제거하는 동시에 미래 청정에너지인 수소를 대량 생산할 수 있는 '분리막을 이용한 이산화탄소 포집 통합 공정 기술'을 개발했습니다, 
 
이는 기존 분리막보다 투과 성능을 혁신적으로 개선한 것으로, 수소 분리와 동시에 이뤄지는 이산화탄소 포집률이 기존 공정보다 4%~25% 향상된 90%이상으로 세계 최고 수준입니다.

이 같은 이산화탄소 포집률은 2011년 미국 에너지부(DOE)의 목표를 초과 달성한 것이며, 수소 투과 성능도 현재 142㎖/min.㎠로 미국 DOE의 목표치인 110㎖/min.㎠를 앞섰습니다.

또 이를 통해 CO2 포집비용을 톤당 10달러까지 줄일 수 있는 기반을 마련했습니다.

2015년 탄소세와 이산화탄소 포집 비용 또한 거의 동일해져 시장이 확대될 것으로 예측되고 있으며, 현재 이산화탄소포집 비용은 톤 당 40~60달러에 이릅니다.

이번에 개발된 기술은 석탄, 폐기물, 바이오매스 등 품질이 낮은 탄화수소 연료를 이용할 수 있고, 값 싼 석탄을 오염물질 배출 없이 깨끗하게 이용할 수 있을 뿐만 아니라 대량의 수소생산까지 가능한 기술입니다.

석탄가스화복합발전(IGCC)에 적용되는 이 공정은 가스화기에서 배출된 수소와 일산화탄소로 이뤄진 합성가스를 이산화탄소와 수소로 전환하고 분리막을 통해 선택적으로 수소를 분리하는 동시에 이산화탄소를 포집합니다.

저장된 수소는 연료전지 발전이나 수송용으로 활용될 수 있게 됩니다.

연소 전 이산화탄소 포집 시스템 공정도

연구팀이 자체 개발한 '팔라듐계(Pd-Cu계) 분리막'은 공정의 효율성과 우수한 성능, 저가의 포집비용을 가능하게 한 핵심원천기술로, 기존 분리막보다 합성가스 처리량이 7배 이상 향상됐으며 초박막화 기술을 통해 고가 소재의 사용량을 획기적으로 줄였습니다.

분리막 모듈

기존 분리막은 30㎛ 두께의 팔라듐 박(箔, foil)을 코팅해 제조했으나, 자체 개발한 분리막에는 신기술을 적용, 팔라듐 박을 3㎛ 두께로 초박막화하여 소재 사용량을 1/10까지 줄였으며 기존 투과도의 한계를 극복했습니다.     

500MW 규모의 발전소에 적용할 경우 기존 분리막은 1200억 원의 비용이 들어가지만, 이번에 개발된 분리막은 60억 원으로, 기존 분리막의 5% 수준에 불과해 높은 수준의 기술 경제성을 확보했습니다. 

또한 각각의 분리막을 적층한 모듈은 30기압 이상 고압에서 견딜 수 있도록 설계·제작 됐으며, 이를 통해 고압 분리막 모듈화 기술도 달성했습니다.

이는 가스화기에서 발생한 압력을 그대로 사용, 투과성능 향상은 물론 압력차로 인해 에너지 손실이 발생하는 다른 포집기술에 비해 효율적이며 공정을 단순하게 합니다.

이렇게 개발된 통합공정은 분당 2리터의 가스처리 능력을 가진 실험실 규모의 공정과 시간당 1000리터의 탄화수소를 처리할 수 있는 파일럿 설비를 이용한 실증에 모두 성공했습니다.

연구책임자인 백일현 박사는 이 기술이 저비용 이산화탄소 포집 기술 개발을 위한 기폭제 역할을 할 것으로 내다보고 향후 석탄가스화 시스템과 연계한 2단계 사업을 통해 상용화를 앞당길 예정입니다.

 CCS 설비 시장이 활성화 되는 2025년 경 이를 상용화해  국내 발전소에 적용될 경우, 연간 220만 톤의 이산화탄소 저감효과와 7400억 원의 국내 시장, 2조 6000억 원의 수출시장을 선점하는 경제적 파급효과가 있을 전망입니다.

2l/min 분리막을 이용한 연소전 포집 통합 공정

1Nm3/h 분리막을 이용한 연소전 포집 통합 공정

 

 

반응형
반응형

화석연료의 사용은 필연적으로 이산화탄소의 증가를 가지고 오며 이는 지구온난화 등 심각한 기후변화를 초래하는 것으로 알려지고 있습니다.

그러나 IEA 보고서에 따르면 오는 2050년에도 화석연료의 비중은 70% 이상을 유지할 것으로 전망됩니다.

이런 가운데 CCS(이산화탄소 포집 및 저장) 설비의 세계 시장 규모는 2025년 약 26조 원에 이를 것으로 예측되고 있으며, 시장 선점을 위한 주요 선진국들의 기술 경쟁이 치열하게 전개되고 있습니다.


한국에너지기술연구원은 석탄에서 이산화탄소를 원천적으로 제거하는 동시에 미래 청정에너지인 수소를 대량 생산할 수 있는 '분리막을 이용한 이산화탄소 포집 통합 공정 기술'을 개발했습니다. 
 
이는 기존 분리막보다 투과 성능을 혁신적으로 개선시킨 것으로, 수소 분리와 동시에 이뤄지는 이산화탄소 포집률이 기존 공정보다 4%~25% 향상된 90%이상으로, 세계 최고 수준입니다.

이 같은 이산화탄소 포집률은 2011년 미국 에너지부(DOE)의 목표를 초과 달성한 것이며, 수소 투과 성능도 현재 142㎖/min.㎠로 미국 DOE의 목표치인 110㎖/min.㎠를 앞질렀습니다.

또 이를 통해 이산화탄소 포집비용을 톤 당 10달러까지 줄일 수 있는 기반을 마련했습니다.

2015년 탄소세와 이산화탄소 포집 비용 또한 거의 동일해져 시장이 확대될 것으로 예측되고 있으며 현재 이산화탄소 포집 비용은 톤 당 40~60달러에 이릅니다.

이번에 개발된 기술은 석탄, 폐기물, 바이오매스 등 품질이 낮은 탄화수소 연료를 이용할 수 있으며, 가격 변동 폭이 적고 전 세계에 고르게 분포되어 있는 석탄을 오염물질 배출 없이 깨끗하게 이용할 수 있을 뿐만 아니라 대량의 수소생산이 가능해 수소경제사회를 앞당길 수 있는 미래 에너지 생산 기술로 평가받고 있습니다.

연소 전 이산화탄소 포집 시스템 공정도


석탄가스화복합발전(IGCC)에 적용되는 이 공정은 가스화기에서 배출된 수소와 일산화탄소로 이뤄진 합성가스를 이산화탄소와 수소로 전환하고 분리막을 통해 선택적으로 수소를 분리하는 동시에 이산화탄소를 포집합니다.

수소는 저장되어 연료전지 발전이나 수송용으로 활용될 수 있으며 이산화탄소는 다양한 기술을 통해 지하 등에 저장된다.  
 

분리막 모듈

여기에서 에너지연구원이 자체 개발한 '팔라듐계(Pd-Cu계) 분리막'은 공정의 효율성과 우수한 성능, 저가의 포집비용을 가능하게 한 핵심원천기술 등으로 기존 분리막보다 합성가스 처리량이 7배 이상 향상됐고, 초박막화 기술을 통해 고가 소재의 사용량을 획기적으로 줄였습니다.

기존 분리막은 30㎛ 두께의 팔라듐 박(箔, foil)을 코팅해 제조했지만, 자체 개발한 분리막에는 신기술을 적용해 팔라듐 박을 3㎛ 두께로 초박막화하여 소재 사용량을 1/10까지 줄였고, 또 기존 투과도의 한계도 극복했습니다.     

분리막을 500MW 규모의 발전소에 적용할 경우 기존 분리막은 1200억 원의 비용이 들어가지만 개발된 분리막은 60억원으로, 기존 분리막의 5% 수준에 불과해 높은 수준의 기술 경제성을 확보했습니다. 

또한 각각의 분리막을 적층한 모듈은 30기압 이상 고압에서 견딜 수 있도록 설계·제작 됐으며, 이를 통해 고압 분리막 모듈화 기술을 확보했습니다.
 
이는 가스화기에서 발생한 압력을 그대로 사용, 투과성능 향상은 물론 압력차로 인해 에너지 손실이 발생하는 다른 포집기술에 비해 효율적이며 공정을 단순하게 합니다.

개발된 통합공정은 분당 2리터의 가스처리 능력을 가진 실험실 규모의 공정과 시간당 1000리터의 탄화수소를 처리할 수 있는 자체 제작한 파일럿 설비를 이용해 실증에 모두 성공한 것입니다.

에너지연구원은 분리막 소재와 모듈화 및 공정 원천 핵심기술 특허 25개를 출원, 등록했습니다.

연구책임자인 백일현 박사는 이 공정이 저비용 이산화탄소 포집 기술 개발을 위한 기폭제 역할을 할 것으로 기대되고 있으며, 향후 석탄가스화 시스템과 연계한 2단계 사업을 통해 상용화를 앞당길 예정입니다.

오는 2025년 CCS 설비 시장이 국내 발전소에 적용될 경우, 연간 220만 톤의 이산화탄소 저감효과와 7400억 원의 국내 시장, 2조 6000억 원의 수출시장을 선점하는 경제적 파급효과도 기대하고 있습니다.

2l/min 분리막을 이용한 연소전 포집 통합 공정

1Nm3/h 분리막을 이용한 연소전 포집 통합 공정

반응형
반응형

인공광합성 구현의 핵심기술은 물로 태양에너지의 대부분을 차지하고 있는 가시광 영역에서 효율적으로 양성자를 발생시키는 기술을 확보하는 것입니다.

이 양성자는 지구 온난화의 주범인 이산화탄소와 반응해 메탄, 메탄올 등 친환경 석유연료로 만들 수 있습니다.

또 이 양성자 자체를 결합해 꿈의 자원인 수소도 효율적으로 생산할 수 있습니다.

그러나 기존의 광촉매 소재들은 태양에너지의 일부 영역인 자외선 영역과 고가의 백금 조촉매를 사용할 경우에만 물로부터 양성자를 생성시키는 것이 가능했습니다.

즉 태양광 중 가장 풍부한 가시광 영역에서는 양성자를 거의 생성할 수 없다는 한계를 갖고 있었습니다.

이엽 연구원(박사과정)

강정구 교수

그런데 KAIST 강정구 교수 연구팀이 이중금속으로 구성된 다전자 광촉매 물질을 합성해 인공광합성 기술을 구현하는 데 성공했습니다.

이중금속 물산화 광촉매 물질은 태양광의 대부분을 차지하는 가시광 영역에서 효율적으로 물을 산화해 산소를 발생시킵니다.

이를 통해 물로부터 산소 발생 후 물에는 양성자가 생성되는 것입니다.

강 교수팀은 타이테니늄 원자를 저가 산화물인 니켈 옥사이드 층상 구조에 니켈을 일부 치환시켜, 이중금속으로 구성된 다전자 광촉매 물질을 합성했습니다.

또 이중금속 다전자 층상 구조는 가시광 영역의 빛을 흡수할 수 있는 이종 금속의 한쪽 금속 전자가 기저상태에서 인접한 산소와 결합하고 있는 다른 쪽의 금속에 터널링을 통해 전자 이동이 비가역적으로 이뤄져 가시광 태양빛을 효율적으로 흡수할 수 있다는 것을 확인했습니다.

이중금속 층상구조 광촉매구조의 모식도. 양이온으로 구성된 금속 산화물 층을 음이온이 전하 균형을 맞춰주며 층간 구조를 형성하고 있는 물질이다.

이중금속 층상구조 물산화 촉매 특성 (자외선에 널리 사용되고 있는 타이테이니윰 옥사이트 (TiO2) 광촉매는 거의 물산화 광촉매 특성이 가시광에서 거의 없는 반면 새롭게 개발된 층상구조 이중금속 다전자 광촉매는 활성이 좋은 것을 확인함).


이번 연구결과는 광반응에서 생성된 양성자와 지구온난화 등의 문제가 되는 이산화탄소와추가적인 광반응을 통해 메탄, 메탄올 등의 청정연료로 변환하는 기술로도 응용이 가능합니다.

이는 궁극적으로는 지구온난화의 주범인 이산화탄소를 저감 시킬 뿐만 아니라 이를 자원화 해서 석유 자원을 대체할 수 있는 길을 열어 놓았다는 데 의의가 있습니다.

이번 연구결과는 에너지 환경분야의 저명한 학술지인 '에너지 앤 인바이런먼털 사이언스(Energy and Environmental Science)'지 1월 8일자 온라인 판(Advance Article)에 게재됐습니다.




  용   어   설   명

물산화 광촉매
: 물산화 광촉매는 태양광을 이용하여 전자와 정공(홀)을 생성한다. 이러한 광 여기된 전자와 정공을 이용하여 낮은 에너지로 물을 산소와 수소로 분해하는 것이 가능하다.
실용화를 위해서는 태양광의 대부분을 차지하는 가시광 영역의 빛을 이용할 수 있는 광촉매의 개발이 필요하다. 현재 대부분의 광촉매는 태양광의 매우 작은 부분을 차지하는 UV영역의 빛을 이용하기 때문에 효율이 현저하게 낮다는 문제점을 안고 있다.

이중금속 층상 구조
: 이중금속 층상구조(Layered Double Hydroxide)구조는 양이온으로 구성된 금속 산화물 층을 음이온이 전하 균형을 맞춰주며 층간 구조를 형성하고 있는 물질이다.
이중금속 층상구조 광촉매의 경우, 산화수가 서로 다른 두 종류의 금속이온이 금속 산화물 층을 형성하고 있다. 따라서 가시광 하에서 여기된 전자 및 홀이 이중금속간에 전이되어 효율적인 물산화를 통하여 산소를 발생하는 것이 가능하다.
양자역학 계산을 통하여 이러한 이중금속 층상 구조 광촉매의 전자구조를 예측하는 것이 가능하며, 이와 같은 디자인을 통하여 물을 분해하여 수소 및 산소를 발생하는 광촉매, 혹은 이산화탄소를 환원하여 메탄 및 메탄올 등의 청정연료를 생산하는 광촉매로도 활용이 기대된다.

반응형

+ Recent posts