블로그 이미지
과학이야기
최신 과학기술 동향

calendar

            1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29

Notice

Recent Comment

Archive

토마토 유전체의 전체 염기서열이 모두 해독되었습니다.

이번 연구에는 한국생명공학연구원 허철구 박사팀과 서울대 최도일 교수팀 등 국내 연구진을 포함해 14개국 300여 명의 국제 공동연구로 진행되었습니다.

토마토 유전체 염기서열 분석은 국제 컨소시엄을 구성해 12개의 염색체를 참여 국가에 하나씩 나누는 방법으로 진행되었으며, 한국은 2번 염색체를 할당 받아 분석을 진행했습니다.

토마토는 가지, 고추, 감자 등과 같은 가지과 식물의 연구모델식물로서 연간 세계 교역량이 10조 원에 달하는 중요한 채소작물입니다.

가지과 식물은 진화적으로 가장 종 분화가 다양하게 일어난 식물 분류군 중 하나로, 지구상에 3000개 이상의 종이 알려져 있습니다.

염기서열분석 방법은 인간유전체 분석에 활용된 1세대 염기서열 분석 방법으로 시작해 최종적인 마무리는 차세대 염기서열 분석장비(NGS)를 이용하는 방법으로 진행되었습니다.

국제컨소시엄을 통한 토마토 전체 유전체 서열분석


9억 염기쌍의 DNA로 구성된 토마토 유전체의 염기서열 정보는  3만 5000여 개의 토마토 유전자 기능정보 뿐만 아니라 유전자의 배열 및 구성, 그리고 유전체 구조 등 광범위한 내용을 담고 있습니다.

이러한 토마토 유전체 정보는 육종 기술개발을 가속화하여 생산성 높은 고품질의 토마토를 키워낼 수 있을 것으로 전망됩니다.

유전체 정보를 이용하면 초기 단계에서 종의 품질을 확인할 수 있어 육종연한 및 비용을 절반이상 감축할 수 있으며, 비타민 A와 C, 캡사이신 등 가지과 식물의 유용한 2차  대사산물의 생합성과정과 종분화 연구에 핵심적인 역할을 할 것으로 기대되고 있습니다.

또 이 정보를 같은 가지과 식물인 고추, 감자 등에 활용하면 다양한 고품질의 신품종 농산물을 신속하게 식탁에 오르게 할 수도 있습니다.

이번 연구결과는 네이처지에 5월31일 자에 게재되었으며,
염기서열 관련 정보는 홈페이지(http://solgenomics.net/tomato)를 통해 확인할 수 있습니다.

토마토 유전체와 다른 가지과 식물 유전체의 유사성


<연 구 개 요>

세계최고의 채소작물이며 열매발달의 모델식물인 토마토의 유전체서열분석이 완료되었다.
가지과식물은 전 세계의 다양한 기후에 서식하는 일년생 및 다년생을 포함하는 가장 큰 속씨식물군의 하나이다.
이 논문에서 우리는 하나의 야생종을 포함하여 재배되는 토마토의 질 높은 유전체서열을 감자유전체와 비교하여 보고하였다.
재배되는 토마토는 야생토마토와 서열상에 0.6%, 감자와는 8% 변이가 일어났으며 유전체상의 염색체 재배열을 관찰 할 수 있었다. 애기장대와 달리 그러나 콩과는 유사하게 토마토의 small RNA 유전자는 유전자가 많은 염색체 부위에 존재 하였으며 토마토 염색체는 진화과정상 세 번의 배수화가 진행 되었다.
이러한 염색체 진화과정을 통해 토마토 열매의 특성, 색깔 및 과육의 특성이 진화된 것으로 판단된다.


 용  어  설  명

가지과식물 :
고추, 토마토, 감자, 가지, 담배 등을 포함하는 식물군으로 식량, 채소, 기호식품, 화훼 및 약용식물로 전세계적으로 재배되고 있으며 지구상에 약 3000종이 서식하고 있음.

1세대 염기서열분석 :
1977년 Sanger교수가 개발해 노벨상을 수상한 염기서열 분석 방법으로 인간 유전체 및 애기장대 유전체 분석에 쓰임.

NGS(차세대염기서열분석 방법) :
2000년대 이후 유전체 분석 수요가 늘면서 개발된 염기서열 분석방법으로 Illumina사가 개발한 Genome Analyzer, Roche사가 개발한 454 GS FLX등의 기종이 있으며 최신기종의 경우 인간 유전체의 100배 분량의 서열을 10일 내에 생산해 낼 수 있음.

라이코펜(lycopene) :
비타민 A의 전구물질로 토마토에 다량 함유되어 있으며 토마토를 세계10대 건강식품으로 만든 주성분임.

캡사이신(Capsaicin) :
고추의 매운맛을 결정하는 성분으로 대사를 촉진시켜 살을 빼주는 등 여러 가지 생리활성이 확인된 물질.


posted by 글쓴이 과학이야기

댓글을 달아 주세요

한국생명공학연구원 유전체자원센터 박홍석 박사팀은 유전체 해독을 통해 진돗개가 순수 계통을 가진 고유 품종이란 사실이 밝혀냈습니다.

개는 전 세계적으로 400여 종류의 품종이 있는데, 유전체가 해독된 것은 2005년 복서(Boxer)라는 품종 이후 세계에서 두 번째입니다.

전세계 79개의 개 품종 계통도. 진돗개의 미토콘드리아 DNA (빨강화살표)를 79 품종과 계통도를 분석한 결과, 진돗개는 고유한 품종임을 입증하고 있음.

복서(Boxer)는 독일이 원산지인 품종으로 군견, 호신견, 애완견 등 다양한 용도로 사육되며, 2005년 미국 MIT와 영국 생거 센터(Sanger Center)에 의해 유전체가 해독되었습니다.

연구팀은 진돗개 유전체를 해독한 후 복서 유전체와 비교 분석해 진돗개만의 유전학적 특징을 밝혀내었습니다.

연구결과 진돗개와 복서의 유전체 염기서열 변이는 약 0.2%로, 사람의 인종 간 변이가 0.1%점을 감안할 때 두 품종 간에 큰 유전적 차이가 있는 것으로 분석됐습니다.

이는 개의 경우 품종마다 오랜 시간동안 인위적인 선발과 교배에 의해 유전적 격리가 있었기 때문으로 해석됩니다.

또한 진돗개와 복서의 유전자 구조를 비교한 결과, 전체 유전자 구조 차이가 0.84%인 반면 후각 기능과 관련한 유전자 변이는 무려 20%로 약 24배의 차이가 발생했습니다.

이는 개의 후각 유전자 부분에 활발한 변이가 일어나고 있다는 점을 시사합니다.

최근 개의 품종 간 안면골격 형태가 다양한 것이 후각 유전자 변화에서 비롯된 것으로 추정하는 연구결과들이 보고되고 있는데, 이번 연구 결과는 이에 대한 분자생물학적 근거를 제시한 셈입니다.

연구팀은 또 진돗개의 미토콘드리아 염기서열을 해독한 후 계통 분류학적 비교를 통해 진돗개가 순수 계통을 가진 고유 품종이라는 것을 입증했습니다.

연구팀이 전 세계 79개 품종을 대상으로 미토콘드리아 DNA 구조 분석과 계통분류학적 분석을 수행한 결과 진돗개는 전 세계 다른 품종과 확연하게 다른 순수 계통을 가진 품종이라는 것이 입증되었습니다.

진돗개 미토콘드리아 DNA 구조. 진돗개 미토콘드리아 구조를 전 세계 79 품종과 비교한 결과 9개의 영역에서 진돗개만의 특이적인 변이가 발견됨(화살표).


이번 연구를 통해 규명된 진돗개 유전체 해독 결과는 향후 진돗개의 순수혈통 보존은 물론 진돗개 고유 유전체 자원을 활용한 우수 품종 개발 등에 중요한 유전 정보를 제공할 전망입니다.

또 개는 암, 백내장, 면역 질환, 심장 질환 등 인간과 360가지 이상의 공통된 유전병을 가지고 있는 모델생물로서, 향후 이와 관련된 유전자 연구에도 유용한 정보를 제공할 전망입니다.

이번 연구결과는 유전체 분야의 권위 있는 전문 학술지 'DNA 연구(DNA Research)'지 4월 4일자 온라인 속보판에 게재되었습니다.
(논문명 : Genome Analysis of the Domestic Dog (Korean Jindo) by Massively Parallel Sequencing)

이번 연구에 사용한 진돗개 :
이름 - 금강 / 생년월일 2008.1.10 / 성별 - 수컷 / 등록번호  JD-08-0138863-ROK(한국애견연맹)


<박홍석 박사>

1. 인적사항
 ○ 성 명 : 박 홍 석 (50세, 교신저자)
 ○ 소 속 : 한국생명공학연구원 유전체자원센터장
      (겸) 과학기술연합대학원대학 교수

2. 학력
  1981 - 1985  전남대학교 자연과학대학 생물학과(학사)   
  1985 - 1987  성균관대학교 이과대학 유전학과(석사) 
  1992 - 1995  일본 Kyoto Institute of Technology 분자세포유전학(박사)   

3. 경력사항
  2000 - 현 재  한국생명공학연구원, 선임연구원, 책임연구원
  2004 - 현 재  한국생명공학연구원 유전체연구단장/센터장
  2004 - 현 재  (겸) 과학기술연합대학원대학 교수
    2007 - 현 재     교과부?유전체정보생산연구사업, 연구책임자
  2001 - 2004   침팬지게놈국제공동연구 한국대표
  1998 - 2000   일본 이화학연구소 선임연구원 (인간게놈프로젝트 팀리더)
  1997 - 1998   일본 국립유전학연구소 연구원
   
4. 학회활동
  2008 - 현재   Genomics & Informatics 편집위원
  2003 - 현재   HUGO (Human Genome Organization) 정회원

5. 전문 분야 정보
  - 인간을 포함한 동/식/미생물 유전체 연구

6. 인간과 침팬지 관련 주요발표논문 :
  - 인간 21번 염색체 해독 (Nature, 2000)
  - 인간 게놈 해독 (Nature, 2002)
  - 인간과 침팬지 게놈 비교 물리지도 완성 (Science, 2002)
  - 침팬지 21번 염색체 해독 (Nature, 2004)
  - 침팬지 Y 염색체 해독 (Nature Genetics, 2005)
  - 인간 11번 염색체 해독 (Nature, 2006)
  - 한국인 유전자 영역 선택적 게놈 해독 (Genome, 2010)
  - 인간과 침팬지 유전자 변화 (Functional & Integrative Genomics, 2011)
  - 이웃간 융합유전자 형성 메커니즘 규명 (Functional & Integrative Genomics, 2012)
   ※ 기타, 한우, 돼지, 식물, 미생물등 유전체 연구 논문 80편

 

posted by 글쓴이 과학이야기

댓글을 달아 주세요

  1. ㅎㅎ 갑자기 성균관대가 급 좋아지네요

사람들의 유전체 염기서열을 서로 비교해 보면 어떤 사람은 다른 사람에 비해 특정 유전자의 일부가 뒤집어져 있기도 하고 삭제되어 있기도 하며, 중복되어 있기도 합니다.

이러한 변이를 '구조변이'라고 하는데, 이 구조변이는 여러 질병의 원인이 되기도 합니다.

암, 지중해빈혈증, 혈우병 등 다양한 질환이 특정 유전자의 일부가 뒤집어져 발생합니다.

특히 중증 혈우병 환자의 대다수는 8번 혈액응고인자 유전자의 일부가 뒤집어져 단백질이 제대로 만들어지지 않아 발생합니다.

□ 서울대 김진수 교수팀이 뒤집어진 혈우병 유전자를 다시 뒤집어 원상 복구하는 신기술을 개발했습니다.

김진수 교수팀은 인간 염색체의 일부가 뒤집어지기도 하고 중복되기도 하는 과정을 실험실에서 인위적으로 재현하는데 처음으로 성공했습니다.

김 교수팀은 유전자 염기서열을 맞춤 인식하여 절단하는 유전자가위 기술을 이용하여 인간배양세포에서 염색체 두 군데를 절단한 결과, 가운데 부분이 삭제되기도 하고 중복되기도 하며 때로는 뒤집어지기도 한다는 사실을 확인했습니다.

혈우병 유전자 교정. 혈액응고인자 유전자를 편의상 F8, 유, 전, 자, 네 부분으로 구성되었다고 가정하자. 중증 혈우병 환자 상당수는 이 유전자의 일부가 뒤집어져 있어 정상적인 혈액응고인자 단백질을 만들지 못해 혈우병이 발생한다. 유전자가위를 이용하면 뒤집어진 부위를 잘라내어 원상 복구 시킬 수 있다.


유전자가위 기술을 이용해 염색체의 일부를 뒤집을 수도 있고 뒤집어진 부분을 원상 복구할 수도 있다는 사실은 이번 연구를 통해 처음으로 밝혀진 것입니다.

김진수 교수팀은 올해 유전자가위 기술을 개발해 'Nature Methods'지에 논문을 2편 발표한 후, 그 후속 연구로 이번에는 이를 이용해 인간배양세포에서 유전체의 일부를 연구자가 원하는 대로 뒤집거나 삭제하거나 중복을 일으킬 수 있음을 증명했습니다.

유전자가위는 인간 세포를 포함해 모든 동물, 식물세포에서 특정 유전자를 절단해 돌연변이를 일으키는데 사용되는 생명공학의 새로운 도구입니다.

이번 연구에는 우리나라에서 독자적으로 제작된 유전자가위를 사용했습니다.

김진수 교수팀은 중증 혈우병 환자 다수에서 발견되는, 뒤집어진 유전자에 작용하는 유전자가위를 만들어 이를 인간배양세포에 도입한 결과 실제로 14만 개 염기쌍에 달하는 염기서열을 뒤집을 수 있음을 확인했습니다.

이 기술을 세포치료제로 개발하기 위해서는 환자 맞춤형 분화만능줄기세포를 만들고, 이에 유전자가위를 도입해 염색체를 복구시키는 후속 연구가 필요합니다.

환자 맞춤형 줄기세포 그 자체는 돌연변이를 그대로 가지고 있기 때문에 치료제로 바로 사용할 수 없습니다.

따라서 유전자가위를 이용한 유전체 교정이 반드시 수반되어야 합니다.

이번 연구결과는 생명과학 분야의 권위 있는 학술지 지놈 리서치(Genome Research)에 12월 19일자로 게재되었습니다. 
(논문명: Targeted Chromosomal Duplications and Inversions in the Human Genome Using Zinc Finger Nucleases)

 용  어  설  명

혈우병 :
혈우병은 X 염색체에 존재하는 혈액응고인자 8번 또는 9번 유전자에 돌연변이가 있을 때 발생하는 질병으로 혈우병 환자들은 내상이나 외상을 입었을 때 혈액이 응고되지 않아 치명적이다.
8번 인자에 변이가 있는 경우를 A형, 9번 인자에 변이가 있는 경우를 B형으로 구분하는데 A형은 대략 1만 명 당 한 명의 비율로 발생하고 B형은 4만 명 당 한 명의 비율로 발생한다.
여성은 X 염색체를 두 개 가지고 있고 남성은 한 개 가지고 있기 때문에 혈우병은 거의 항상 남성들에게만 발병한다.
현재 혈우병을 완치할 수 있는 방법은 없으며 환자는 혈액응고인자 단백질을 평생 투여 받아야 한다.
국내 혈우병 환자 숫자는 약 4000 명 정도로 추정되는데 이들 환자에 대한 진료비로 연간 수백억 원이 건강보험에서 지출된다.  
혈우병은 왕족 질병(royal disease)이라고도 한다. 그 이유는 유럽의 왕가에서 혈우병이 다수 발생했기 때문이다.
혈우병 유전자를 가지고 있는 역사상 최초 인물은 영국의 빅토리아 여왕으로 알려져 있는데 빅토리아 여왕의 아들, 손자들 다수가 혈우병으로 사망하였다.

유전자가위 :
유전자가위는 학술용어는 아니고 zinc finger nuclease(ZFN)를 의미한다.
ZFN은 특정 염기서열을 인식하여 절단을 일으키도록 고안된 인공 제한효소로서 인간세포를 포함한 모든 동물, 식물세포에서 연구자가 원하는 유전자에 맞춤형 돌연변이를 도입하는데 사용되는 생명공학 신기술이다. 김진수 교수팀이 이 기술 개발과 보급에 선도적인 역할을 하고 있다.




<연 구 개 요>

Targeted Chromosomal Duplications and Inversions in the Human Genome Using Zinc Finger Nucleases, Genome Research, in press.

  사람들 사이의 유전적 차이는 크게 단일염기다형성과 구조변이 두 종류로 구분할 수 있다.
단일염기다형성은 개인별로 한 개의 염기쌍이 다른 것을 말하고 구조변이는 최소 수백 개에서 수백만 개에 달하는 염기쌍이 서로 다른 경우를 말한다.
구조변이에는 결실, 중복, 역위, 전좌 등이 있다. 예를 들어 어떤 사람의 염색체가 ABCD 서열로 구성되어 있다면 다른 사람들의 염색체는 AD(BC의 결실), ACBD(BC가 뒤집어진 역위), ABCBCD(BC의 중복) 등의 구조변이가 있을 수 있다. 여기서 A, B, C, D 각각은 단일 염기쌍이 아니고 수백 개에서 수백만 개에 달하는 염기서열이다. 
  구조변이는 유전병은 물론이고 정신질환, 비만, 암 등 다양한 질병과 밀접한 관련이 있는 것으로 알려지고 있다.
그러나 이번 논문 발표 이전에 특정 구조변이를 인위적으로 만들거나 이미 형성된 구조변이를 원상복구 시키는 방법은 전혀 없었다.
김진수 교수팀은 처음으로 유전자가위 기술을 이용해 이러한 구조변이를 일부러 만들 수도 있고 교정할 수 있음을 증명하였다.
즉 유전자가위 두 개를 만들어 염색체 두 곳을 절단하면 가운데 부분에 결실이 일어나기도 하고 중복, 역위가 일어나기도 한다.
김 교수팀은 이 방법을 이용해 혈우병 환자에서 흔히 발견되는 역위를 인위적으로 유도할 수도 있고 교정할 수도 있음을 증명하였다.

줄기세포와 유전자치료. 환자의 피부세포를 채취하여 역분화시키면 환자 유래 유도만능줄기세포(induced pluripotent stem cell, iPS cell)이 만들어진다. 그러나 이 세포는 환자의 돌연변이를 그대로 가지고 있어 치료제로 활용하기 위해서는 유전자가위 기술을 이용한 유전자 교정이 반드시 필요하다.


  

posted by 글쓴이 과학이야기

댓글을 달아 주세요

prev 1 next