블로그 이미지
과학이야기
최신 과학기술 동향

calendar

      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30    

Notice

Recent Comment

Archive

한국생명공학연구원 유전체자원센터 박홍석 박사팀은 유전체 해독을 통해 진돗개가 순수 계통을 가진 고유 품종이란 사실이 밝혀냈습니다.

개는 전 세계적으로 400여 종류의 품종이 있는데, 유전체가 해독된 것은 2005년 복서(Boxer)라는 품종 이후 세계에서 두 번째입니다.

전세계 79개의 개 품종 계통도. 진돗개의 미토콘드리아 DNA (빨강화살표)를 79 품종과 계통도를 분석한 결과, 진돗개는 고유한 품종임을 입증하고 있음.

복서(Boxer)는 독일이 원산지인 품종으로 군견, 호신견, 애완견 등 다양한 용도로 사육되며, 2005년 미국 MIT와 영국 생거 센터(Sanger Center)에 의해 유전체가 해독되었습니다.

연구팀은 진돗개 유전체를 해독한 후 복서 유전체와 비교 분석해 진돗개만의 유전학적 특징을 밝혀내었습니다.

연구결과 진돗개와 복서의 유전체 염기서열 변이는 약 0.2%로, 사람의 인종 간 변이가 0.1%점을 감안할 때 두 품종 간에 큰 유전적 차이가 있는 것으로 분석됐습니다.

이는 개의 경우 품종마다 오랜 시간동안 인위적인 선발과 교배에 의해 유전적 격리가 있었기 때문으로 해석됩니다.

또한 진돗개와 복서의 유전자 구조를 비교한 결과, 전체 유전자 구조 차이가 0.84%인 반면 후각 기능과 관련한 유전자 변이는 무려 20%로 약 24배의 차이가 발생했습니다.

이는 개의 후각 유전자 부분에 활발한 변이가 일어나고 있다는 점을 시사합니다.

최근 개의 품종 간 안면골격 형태가 다양한 것이 후각 유전자 변화에서 비롯된 것으로 추정하는 연구결과들이 보고되고 있는데, 이번 연구 결과는 이에 대한 분자생물학적 근거를 제시한 셈입니다.

연구팀은 또 진돗개의 미토콘드리아 염기서열을 해독한 후 계통 분류학적 비교를 통해 진돗개가 순수 계통을 가진 고유 품종이라는 것을 입증했습니다.

연구팀이 전 세계 79개 품종을 대상으로 미토콘드리아 DNA 구조 분석과 계통분류학적 분석을 수행한 결과 진돗개는 전 세계 다른 품종과 확연하게 다른 순수 계통을 가진 품종이라는 것이 입증되었습니다.

진돗개 미토콘드리아 DNA 구조. 진돗개 미토콘드리아 구조를 전 세계 79 품종과 비교한 결과 9개의 영역에서 진돗개만의 특이적인 변이가 발견됨(화살표).


이번 연구를 통해 규명된 진돗개 유전체 해독 결과는 향후 진돗개의 순수혈통 보존은 물론 진돗개 고유 유전체 자원을 활용한 우수 품종 개발 등에 중요한 유전 정보를 제공할 전망입니다.

또 개는 암, 백내장, 면역 질환, 심장 질환 등 인간과 360가지 이상의 공통된 유전병을 가지고 있는 모델생물로서, 향후 이와 관련된 유전자 연구에도 유용한 정보를 제공할 전망입니다.

이번 연구결과는 유전체 분야의 권위 있는 전문 학술지 'DNA 연구(DNA Research)'지 4월 4일자 온라인 속보판에 게재되었습니다.
(논문명 : Genome Analysis of the Domestic Dog (Korean Jindo) by Massively Parallel Sequencing)

이번 연구에 사용한 진돗개 :
이름 - 금강 / 생년월일 2008.1.10 / 성별 - 수컷 / 등록번호  JD-08-0138863-ROK(한국애견연맹)


<박홍석 박사>

1. 인적사항
 ○ 성 명 : 박 홍 석 (50세, 교신저자)
 ○ 소 속 : 한국생명공학연구원 유전체자원센터장
      (겸) 과학기술연합대학원대학 교수

2. 학력
  1981 - 1985  전남대학교 자연과학대학 생물학과(학사)   
  1985 - 1987  성균관대학교 이과대학 유전학과(석사) 
  1992 - 1995  일본 Kyoto Institute of Technology 분자세포유전학(박사)   

3. 경력사항
  2000 - 현 재  한국생명공학연구원, 선임연구원, 책임연구원
  2004 - 현 재  한국생명공학연구원 유전체연구단장/센터장
  2004 - 현 재  (겸) 과학기술연합대학원대학 교수
    2007 - 현 재     교과부?유전체정보생산연구사업, 연구책임자
  2001 - 2004   침팬지게놈국제공동연구 한국대표
  1998 - 2000   일본 이화학연구소 선임연구원 (인간게놈프로젝트 팀리더)
  1997 - 1998   일본 국립유전학연구소 연구원
   
4. 학회활동
  2008 - 현재   Genomics & Informatics 편집위원
  2003 - 현재   HUGO (Human Genome Organization) 정회원

5. 전문 분야 정보
  - 인간을 포함한 동/식/미생물 유전체 연구

6. 인간과 침팬지 관련 주요발표논문 :
  - 인간 21번 염색체 해독 (Nature, 2000)
  - 인간 게놈 해독 (Nature, 2002)
  - 인간과 침팬지 게놈 비교 물리지도 완성 (Science, 2002)
  - 침팬지 21번 염색체 해독 (Nature, 2004)
  - 침팬지 Y 염색체 해독 (Nature Genetics, 2005)
  - 인간 11번 염색체 해독 (Nature, 2006)
  - 한국인 유전자 영역 선택적 게놈 해독 (Genome, 2010)
  - 인간과 침팬지 유전자 변화 (Functional & Integrative Genomics, 2011)
  - 이웃간 융합유전자 형성 메커니즘 규명 (Functional & Integrative Genomics, 2012)
   ※ 기타, 한우, 돼지, 식물, 미생물등 유전체 연구 논문 80편

 

posted by 글쓴이 과학이야기

댓글을 달아 주세요

  1. ㅎㅎ 갑자기 성균관대가 급 좋아지네요

전 세계적으로 매년 600만 ㏊(헥타아르), 즉 우리나라 전체 면적의 2.7배에 해당하는 지역이 사막으로 변하고 있다.

또 현재 세계 인구의 절반인 30억 명이 식량 부족을 경험하고 있으며, 이 중 10억 명은 ‘절대기아자’다.

사막화와 식량부족은 불가분의 관계다.

우리나라에 사막화 방지를 통해 인류의 식량문제를 해결하려는 과학자가 있다.

그 주인공은 일명 ‘고구마 박사’로 잘 알려진 한국생명공학연구원 책임연구원인 곽상수 박사다.

◆식량문제 극복 위해 시작한 고구마 개량 연구

우리나라 살림살이가 넉넉치 않았던 1960년대, 곽 박사는 어린 시절 주변 사람들이 혹독한 보릿고개를 겪는 모습을 보면서 식량문제에 관심을 갖게 됐다.

대학 입학 당시 주저 없이 농학과를 선택한 그는 1988년 일본 동경대 유학시절 이화학연구소(RIKEN)에서 식물의 키를 크게 하는 호르몬을 연구하며 식량 증산에 대한 지식을 축적했다.

1990년 생명연에 첫 발을 디딘 곽 박사는 처음 4년 동안은 식물에서 발현되는 고부가가치 항암제나 친환경 배양세포 생산에 관한 연구를 수행했다.

그러나 곽 박사는 이 같은 연구는 제약회사나 대학 연구실에서 진행돼야 하고, 정부출연연구기관은 보다 큰 가치의 일을 해야 한다고 생각했다.

어려서부터 식량 문제에 대한 관심이 남달랐던 곽 박사는 1995년부터 본격적인 고구마의 항산화 연구를 시작했다.

고구마는 척박한 환경에서도 최소한의 수확이 보장되는 작물이다.

당시 고구마는 단순히 구황작물로만 여겨져 주목받지 못했지만, 미래 식량 해결에 굉장히 기여할 것이라고 그는 확신했다.

이 같은 그의 확신은 지난 2007년 미국의 공익과학단체가 발표한 최고의 건강식품 10개 가운데 첫 번째로 등장하면서 입증됐다.

곽 박사는 이미 2001년에 세계 최초로 고구마가 스트레스를 받을 때 발현되는 스트레스 유도성 항산화 유전자 프로모토 발견하면서 관련 연구를 선도하고 있었다.

고구마는 다른 작물에 비해 형질전환이 어렵고, 때문에 그동안 적지 않은 다른 연구자들이 연구를 포기했었다.

곽 박사의 연구 성과는 감자와 포플러 등 다른 식물의 환경 스트레스 극복 연구에 활용되고 있다.

◆인류를 위협하는 사막화와 식량문제를 동시에 해결

2000년 초 곽 박사는 중국과의 협력연구를 수행하던 중 중국에서 진행 중인 사막화를 목격했다.

이는 비단 중국만의 문제가 아닌 인류 전체가 직면한 문제였다.

UNEP(유엔환경계획)에 따르면 세계의 토지면적인 149억 ㏊ 가운데 이미 1/3에 해당하는 51억 ㏊가 사막으로 변했다.

이 가운데 아시아가 32.3%, 아프리카 24.9%, 아메리카 24.2%, 호주 12.8% 등으로, 인구밀도를 고려할 때 특히 아시아 지역의 사막화가 심각했다.

곽 박사는 “사막화는 곧 인근 지역민들의 가난으로 직결되며, 가난으로 인한 환경 훼손은 다시 사막화를 불러오는 악순환을 가져 온다”고 말했다.

때문에 사막화 방지를 위해서는 기본적으로 극한 환경에 견딜 수 있는 나무를 심어야 하는데, 이를 소득 작물로 대체할 경우 사막화 방지와 식량문제 해결이라는 두 가지 당면과제를 동시에 해결할 수 있다고 곽 박사는 생각했다.

이렇게 해서 한국과 중국의 작은 공동연구가 시작됐다.

중국의 현지 품종을 개량해 사막에서도 자랄 수 있는 작물을 개발하기 시작했고, 서서히 긍정적인 결과가 나오기 시작했다.

그러나 이 같은 문제는 국가 차원에서 추진돼야 하는 문제였다.

곽 박사를 비롯한 뜻 있는 연구원들의 작은 연구는 결국 2008년 큰 결실을 이뤘다.

이 해 8월 후진타오 중국 국가주석이 우리나라를 방문한 자리에서 양 국은 사막화 방지 공동협력을 위한 양해각서를 체결했다.

이를 통해 ‘한중 사막화 방지 생명공학 공동연구센터’가 설치됐고, 생명연은 책임 기관이 됐다.

센터장이 된 곽 박사는 중국 연구소를 설득해 지금까지 고구마를 심어본 적이 없는 내몽골 자치국 사막에 자신의 연구를 접목시킨 고구마를 심었고, 지난해 1차 재배에 성공했다.

현재는 식재 품종을 확대하는 연구를 진행 중이다.

그는 미래에 대한 확신이 있다.

“방향성은 이미 제시돼 있고, 꿈을 실현하는 것도 우리의 몫”이라고 그는 생각한다.

곽 박사는 “우리는 BT(바이오테크놀로지)를 사막에 접목하는 새로운 영역을 만들고 있다”며 “사막화 방지와 식량문제 해결에 많은 사람이 동참할 수 있게 글로벌 녹색성장 관점에서 보다 많은 관심을 가져주면 결과도 비례할 것”이라고 확신했다.

<이재형 기자>

<곽상수 박사 1문 1답>

-세계 식량문제 해결에 관심이 많은데, 계기가 있다면?
"내가 어릴 때인 1960년 대는 먹는게 힘든 시절이었다. 난 비록 공무원의 아들이었지만 주위 친구들이나 다른 사람들 혹독한 보리고개를 볼 수 있었다. 이 때부터 농촌 식량 문제에 관심을 갖게 됐다."

-특히 고구마를 연구하게 된 배경은?
"고구마는 척박한 환경에서 최소한의 수확이 보장되는 식물로, 대표적인 구황작물이다. 그러면서도 좋은 영양분도 많이 함유하고 있다. 특히 고구마는 환경스트레스에 강한데, 대표적으로 고구마에는 자색 안토시안 성분과 노란색 베타카로틴이 동시에 많이 포함돼 있다. 한 품종에서 이 두 성분을 많이 생산하는 것은 고구마 밖에 없다. 이 것들은 나쁜 환경에서 잘 견디면서도 부가가치를 높일 수 있는 성분이다."

-고구마 연구에 대해 좀 더 설명한다며?
"고구마는 다른 작물에 비해 형질전환이 어렵다. 그동안 적지 않은 연구자들이 이를 연구하다가 대부분 포기했었고, 나 역시 5년이나 걸렸다. 그러나 이 연구를 안하면 다른 것을 할 수 없기에 결국 완성을 했고, 이를 시스템화 했다."

-사막화 방지와 고구마는 밀접한 관계가 있다는데?
"사막화 방지를 위해서는 나무를 심어야 하지만, 소득이 나오는 작물이 더 좋다고 생각한다. 사막화는 지역민의 가난으로 직결되고, 또 가난이 사막화를 불러오기도 한다. 때문에 사막에는 소득 작물을 심어야 하는데, 고구마는 여기에 좋은 조건을 갖고 있는 작물이다."

-사막화의 심각성을 설명한다면?
"현재 70억 인구 중 10억 명이 먹는 것으로 고통받고 있다. 2050년에는 세계 인구 90억 명 이상이 되고, 식량은 지금의 두 배가 필요할 것이다. 이는 아무리 과학기술 발전해도 감당하기 힘든 수준이다. 즉 앞으로 더 참혹한 보리고개가 올 수도 있는 것이다. 사막과 같은 생산성이 낮은 땅을 생명과학기술을 이용해 더 잘자라고 부가가치를 향상시키는게 앞으로 인류가 죽느냐 사느냐와 직결된 식량문제 해결의 실마리가 될 것이라고 생각한다."

-특히 중국의 사막화 방지에 깊은 관여를 하고 있는데?
"중국은 역사적으로나 앞으로나 우리나라에게 가장 중요한 나라이다. 40여 차례 중국을 방문하면서 중국에 대해 권역과 분야를 다투지 않고 사막화를 방지한다면, 식량과 바이오, 에너지 등 고부가가치 창출하면서 황사도 저감시킬 수 있다고 생각한다. 또 여기서 나온 노하우가 중앙아시아나 아프리카 등 세계 전역에 퍼질 수 있을 것이다. 특히 중국은 전세계 고구마 생산량의 80%를 차지하고 있다."

-사막화 방지를 위한 사회적인 해결책을 제시한다면?
"기업이 나서야 한다. 돈이 되면 기업들도 관심을 가질 것이다. 좋은 땅은 임대하기 힘들지만, 사막은 다르다.
사막과 농지의 중간지대 등을 장기 임대해서 투자하면 성공할 것이라고 기업을 설득해야 한다. 만약 기업이 내게 개발하고 싶은 땅과 용도를 정해주면, 나는 그곳에 맞는 고구마나 식물 등을 빠른 시간 내에 만들어주겠다.]

-자가용 안타기 등 환경운동에도 열심히라는데?
"대덕 연구단지는 대중교통 수단이 적어 자가용이 없으면 고립되는 곳이다. 예전에 차 없는 대학원생은 밥먹기도 힘들었다. 그래서 2006년에 생명연구원 자전거 동호회를 만들었다. 지금도 차가 없다. 차가 없으니까 너무 좋다. 휘발유 1리터가 이산화탄소 2.3킬로그램 생산한다. 이를 알고 있는 과학자가 솔선수범 안하면 누가 하겠나. 실천하는 차원에서 고집아닌 고집을 부렸다. 지금은 오히려 너무 편하다."

-정부의 연구 지원은 어떤가?
"항상 연구비에 대한 불안감이 있었다. 생명연에서도 농업은 소외 분야다. 또 사막이 없는 나라에서 왜? 사막화방지를 해야 하는가 등의 소리도 들렸다.  그러나 쉽지 않은 고구마와 사막화 연구를 10년 넘게 하면서 현 시대가 그 방향으로 가는 것을 보고 있다."

-앞으로의 계획은?
"지금 하는 일을 열심히 하겠다. 현재는 과거의 연속이고, 또 미래의 연속이다. 방향성은 이미 제시돼 있다. BT를 사막에 접목하는 것은 새로운 영역을 만드는 것이다. 우린 젊으니까 꿈을 실현하는 것도 우리의 몫이다. 많은 사람이 동참할 수 있도록 정부가 보다 관심을 가져주면 글로벌 녹색성장 관점에서, 또 식량을 확보한다는 차원에서, 결과도 비례할 것이다."


<관련><사막에서도 생존, 토양 정화 식물 포플러>

포플러는 바이오매스 생산량이 ha 당 17t에 이르는 속성수로, 환경재해 내성이 강해 폐광지 정화나 바이오에너지원으로 중요성이 부각되는 식물이다.

병충해에도 강하고 매년 식재하는 1년생 식물과는 달리 한번 식재로 10년 이상 유지가 가능할 뿐만 아니라 유지관리비도 거의 들지 않는다

이를 사막과 같은 조건이 불리한 지역에 심을 수 있다면 사막화를 방지할 수 있고 사막에서 생산성까지 유발할 수 있다. 한국생명공학연구원(이하 생명연) 곽상수 박사팀은 지난해 국립산림과학원 및 경상대 등과 공동으로 환경스트레스에 강한 친환경 형질전환 SN포플러를 개발했다.

연구결과 형질전환 SN포플러는 증식과정에서 산화스트레스에 내성을 나타냈을 뿐만 아니라 식물 생장호르몬인 옥신 합성유전자의 활성을 촉진해 생장 촉진효과를 나타냈다.

공동 연구팀은 곽 박사팀이 개발한 산화스트레스 유도성 식물유전자(SWPA2) 프로모터와 경상대 윤대진 박사팀이 개발한 복합환경스트레스 내성 유전자(AtNDPK2)를 국립산림과학원이 육성한 불개화(不開化) 포플러에 접목시켜 연구성과를 달성했다.

곽 박사는 “형질전환 SN포플러를 사막과 오염지역 등 국내외 조건불리지역에 대량으로 식재하면 바이오매스 증대를 통한 탄소배출권 확보는 물론 오염지역 토양정화 등의 효과도 얻을 수 있을 것”이라고 밝혔다.

<이재형 기자>

 용  어  설  명

불개화(不開化) 포플러 :
산림청 국립산림과학원이 1996년 자연상태에서 20년 이상 수령의 포플러 가운데 꽃이 피지 않는 개체를 선발한 것으로 불개화 포플러를 이용하여 형질전환 포플러를 만들면 화분발생으로 인한 환경위해성을 최소화할 수 있는 장점이 있다.

NDPK2 유전자 :
경상대 윤대진교수가 애기장대 식물체에서 분리한 복합 환경스트레스에 내성을 갖는 유전자로 NDPK2 유전자를 형질전환식물에서 과량으로 발현시키면 각종 항산화유전자의 발현과 식물생장촉진 호르몬인 오옥신(auxin) 생합성 유전자의 발현을 활성화시켜 환경스트레스에 내성과 생장촉진효과를 기대할 수 있다. 
 
SWPA2 프로모터 :
생명연 곽상수박사팀이 고구마 배양세포에서 분리한 퍼옥시다제 유전자 (SWPA2)의 프로모터로서 각종 산화스트레스에 의해 강하게 발현이 유도되는 특징이 있어 환경스트레스 내성식물체 개발에 이용되고 있다. SWPA2 프로모터는 미국, 중국 등 6개국에 특허등록 되어 있다.

산화스트레스와 항산화물질 :
"산화스트레스"는 노화와 질병을 유발시키는 활성산소에 의해 세포가 받는 스트레스를 말하며 "항산화물질"은 활성산소를 제거하여 산화스트레스를 극복하는 물질로서 다양한 고분자 항산화효소와 저분자 항산화물질이 있다. 

한중사막화방지생명공학공동연구센터 :
2008년 8월 서울에서 개최된 한중정상회담에서 사막화방지 과학기술협력 양해각서에 근거하여  2009년 12월 한국 교육과학기술부와 중국 과학기술부 합의에 의해 설립된 것으로 한국은 한국생명공학연구원에, 중국은 중국과학원 물토양보존연구소 (Institute of Soil and Water Conservation)에 각 공동센터를 두고 협력연구를 수행하고 있다.   

posted by 글쓴이 과학이야기

댓글을 달아 주세요

  1. 2013.01.02 19:15  Addr Edit/Del Reply

    비밀댓글입니다

◆신약재창출을 통해 세상에 나온 비아그라

최근 다국적 제약회사들은 신약개발을 위한 초기 투자비용이 증가하고 신약에 대한 안전성 심사기준이 강화됨에 따라 개발 단계의 후기에 실패하는 비중이 크게 늘어나 생산성과 수익성 악화를 겪고 있습니다.

이러한 위기를 극복하기 위해서는 저비용으로 짧은 기간에 약물을 개발할 수 있는 방법이 절실히 요구되며, 이러한 신약재창출 전략은 약물개발에 소요되는 시간과 비용을 줄이고 개발 성공 확률을 높일 수 있어 앞으로 신약개발의 대안이 될 수 있을 것으로 기대되고 있습니다.

신약재창출은 임상에서 실패한 약물 또는 시판 중인 기존 의약품을 재평가하고, 새로운 약효를 발굴하여 다른 질병의 치료제로 쓰고자 하는 시도를 말합니다.

일반적인 신약개발의 경우 임상과정을 거쳐 신약 승인까지 약 10년 이상의 기간과 10억 달러 이상의 자금이 소요되는 데 반해, 신약재창출의 경우 이미 전임상 또는 임상 초기 단계를 거친 약물이 대상이므로 초기 합성과 최적화 단계를 생략할 수 있고 기존의 임상 독성 자료도 이용할 수 있는 장점이 있습니다.  


전통적인 신약개발 과정(a)과 달리 신약재창출(b)의 경우 이미 전임상 및 임상 초기 단계를 거친 약물 및 후보물질을 대상으로 하므로 질환 표적과 후보물질의 발굴 및 최적화 단계를 생략할 수 있다 [Ashburn & Thor 2004 Nat. Rev. Drug Discov. 3, 673-683]. 따라서 약물 개발에 소요되는 비용과 시간을 줄이고 개발 성공 가능성을 높일 수 있는 장점이 있다.

신약재창출의 대표적 성공사례인 비아그라의 경우 원래 화이자(Pfizer)사에서 고혈압 및 협심증 치료제로 개발 중이었으나 임상에서 약효가 부족한 것으로 판명됐고, 이후 약물 투여량을 증가시키기 위해 임상을 다시 하는 과정에서 새로운 약효를 발견해 발기부전증 치료제로 시장에 출시, 현재 연간 16억 달러 이상의 매출을 기록하고 있습니다.  

구조 기반 신약재창출이란 질환 표적 단백질 간 구조적 유사성에 기초하여 기존 약물과 표적 단백질 간 새로운 교차결합(off-target binding)을 발굴하고 이로부터 기존 약물의 새로운 질환에 대한 치료 효능을 찾아내어 신약으로 개발하는 전략을 말한다.



◆생명공학연구원, 항암 약물 신약재창출 기반 마련

기존에 개발된 항암 약물의 새로운 분자 표적을 발굴을 통해 이미 개발된 약물을 이용, 신약을 재창출할 수 있는 구조 기반 전략이 제시됐습니다.

이번 연구는 한국생명공학연구원 단백체의학연구센터 지승욱 박사팀과 싱가포르 난양공대 윤호섭 박사와의 국제협력을 통해 진행됐습니다.

연구팀은 이번 연구를 통해질환 표적 단백질간의 구조적 유사성에 근거해 기존에 개발된 항암 약물이 원래 표적이 아닌 다른 질환 표적 단백질에도 결합하여 작용한다는 사실을 처음 발견했습니다.

이로부터 기존 약물을 다른 질환의 치료제로 개발하고자 하는 구조 기반 신약재창출(drug repositioning) 전략을 제시했습니다.

이번 연구에서 제시된 '구조 기반 신약재창출 전략'이란, 질환 표적 단백질 사이의 구조적 유사성에 기초하여 기존 약물과 표적 단백질 간 새로운 교차결합(off-target binding)을 발굴하고 이로부터 기존 약물을 신약으로 재창출하는 방법입니다.
 


본 연구에서는 단백질 복합체의 3차 구조 규명을 통해 MDM2 와 Bcl-2계 단백질이 p53 단백질을 결합하는 인식 기전이 매우 유사함을 발견하였다(A). 이를 근거로 하여 p53과 마찬가지로 p53 과 유사한 분자 구조를 가진 항암 약물 Nutlin-3가 여러 질환의 중요한 분자 표적으로 알려진 Bcl-2계 단백질에 교차결합한다는 사실을 규명하였다(B,C).


이를 통해 질환 표적 단백질 사이의 3차 구조적 유사성에 근거해 이미 임상에서 개발 중인 항암 약물 Nutlin-3가 원래 분자 표적인 MDM2 단백질 뿐 아니라 다른 질환의 중요한 분자 표적으로 알려진 Bcl-2계 단백질에도 결합하여 작용함을 새로이 밝혔습니다.

Nutlin-3는 MDM2에 결합해 MDM2와 p53 단백질 간 결합을 저해하는 소형분자 화합물로서 고형암 등의 치료를 위해 현재 임상에서 개발 중인 항암 약물입니다.

연구팀은 핵자기공명분광법에 의한 단백질 복합체의 3차 구조 규명을 통해 질환 표적인 MDM2와 Bcl-2계 단백질이 p53 단백질을 결합하는 인식 기전이 매우 유사함을 발견했습니다.

이러한 질환 표적 단백질 간 구조적 유사성에 근거해 p53 단백질의 구조를 모사하는 항암 약물인 Nutlin-3가 원래 표적인 MDM2 뿐만 아니라 Bcl-2계 단백질에도 결합하여 저해할 수 있음을 규명했습니다.

 

본 연구결과는 Nutlin-3라는 하나의 항암 약물이 MDM2 및 Bcl-2계 단백질과 결합하여 각각 핵에서의 p53 경로 및 미토콘드리아에서의 세포사멸 경로를 동시에 활성화시키는 분자 기전의 모델을 제시하였다. 이로부터 서로 상이한 항암 표적이 매개하는 두 개 이상의 암세포 생존 경로를 동시에 차단함으로써 항암 치료의 상승적 효과를 얻을 수 있다.

Bcl-2계 단백질은 미토콘드리아 세포사멸의 중추적 조절자로서 백혈병, 당뇨, 정신분열증 등의 발병에 관여하는 것으로 알려져 있습니다.

따라서 이번 연구결과는 Nutlin-3와 같은 기존에 개발된 MDM2 저해용 약물들을 이들 질환 치료에 활용할 수 있다는 새로운 신약재창출 전략을 제시했습니다.

이처럼 이번 연구는 1개의 약물이 어떻게 2개의 상이한 질환 표적 단백질에 결합하여 작용할 수 있는지에 관한 분자 수준의 메커니즘을 새로이 규명했습니다.

암과 같은 질환은 복잡하고 다양한 병인에 기인하고 암세포가 서로 상이하므로, 단일 표적의 암 치료제는 치료 효과의 한계를 가질 수밖에 없습니다.

따라서 이번 연구결과와 같이 하나의 약물이 서로 상이한 2개 이상의 표적을 동시에 공격할 수 있다면, 치료 효과의 시너지를 창출할 수 있을 것이고, 더 나아가 이중 표적 기반 질환 제어라는 원천기술 개발에 기여할 수 있을 것으로 기대되고 있습니다.

이번 연구결과는 화학분야에서 세계 최고의 권위를 자랑하는 '미국 화학회지(Journal of the American Chemical Society)' 1월 7일자 온라인 판에 발표됐습니다.
(논문명 : Molecular Mimicry-Based Repositioning of Nutlin-3 to Anti-Apoptotic Bcl-2 Family Proteins)

       

posted by 글쓴이 과학이야기

댓글을 달아 주세요

  1. 잘보고 갑니다
    남성제품 필요하시면
    여기 방문해주세요.

    http://w77.kr

<전문>

친애하는 직원 여러분. 안녕하십니까.
올 한해에도 여러분 모두의 가정에 건강과 행운이 함께하시길 기원합니다. 그리고, 지난 한 해 우리 연구원의 발전을 위해 많은 노력을 기울여주신 직원 여러분의 노고에 깊은 감사를 드립니다.

작년 한해를 돌이켜보면 우리 연구원에 많은 성과들이 있었습니다.
우선, 연구성과 면에서 Nature Biotechnology지나 J. of Clinical Oncology지 등 I.F. 10 이상 저널에 우리 연구자 논문 5편이 실리는 성과가 있었고, 교과부에서 선정 발표한 "2010년 국가연구개발 우수성과 100선"에서 출연(연)에서는 가장 많은 4건이 선정되었습니다. 그리고 사업화 면에서도 노문철 박사의 100억원 대형기술이전 계약, 김영국박사의 20억원 대형 기술료 수입, 그리고 우리 연구소 기업인 (주)미코바이오메드 사를 통해 정봉현 박사의 바이오센서/칩 제품 출시 등 풍성한 성과가 있었습니다.
또한, 교과부 생명연구자원 책임기관 선정, 줄기세포 선도연구팀 선정, 국가생명연구자원정보센터 개소, 유전자변형마우스(GEM) 사업 착수, WCI 개소, 한-헝가리 공동연구실 설치를 비롯하여, 친환경바이오소재 R&D허브센터, 바이오의약상용화연구센터, 미래형동물자원센터 등 대규모 시설사업비가 확보되었고, 연구동 리노베이션도 순조롭게 진행되고 있습니다. 그리고 "강한 특허 만들기"(IP Inno-process) 운동도 2009년에 이어 작년 2010년에도 성공적으로 안착하고 있다고 알고 있습니다.
이러한 우리들의 노력을 모두 모아 금년도 우리 KRIBB의 총 운영예산은 1,500억원 달성이 가능하리라 생각되고 있습니다.

이러한 성과를 종합해보면 우리 연구원이 제가 원장으로 취임하면서 이루고자 했던 '우리나라 대표급 출연연'으로서의 위상과 역할에 성큼 다가서고 있다고 생각합니다. 이 모든 것이 여러분들이 각자 맡은 위치에서 소임을 다해준 결과라 생각합니다.

존경하고 또 사랑하는 직원 여러분 !
어느덧 제 임기의 마지막 해를 맞고 있습니다. 올 한해는 취임시 수립하였던 3개년 경영목표의 과실들을 종합하여 슬기롭게 마무리하는 것이 필요한 때라고 생각하고 있습니다. 
또한, 올해는 우리 연구원을 둘러싼 급격한 환경변화에 대응해야 하는 중요한 시기가 될 것입니다. 기관 차원에서 국과위 상설화 등 커다란 환경변화에 대응하여 연구소의 지속 발전을 위한 전략을 재점검하고 필요하다면 새로운 아이디어로 보완 충전시키는 노력도 병행해야 할 것입니다.
이러한 시점에서, 저는 올 한 해 직원 여러분과 함께 중지를 모아 우선적으로 추진하고자 하는 과제로, 핵심역량 결집을 통한 성장동력 강화와 소통 문화의 확산을 제안 드리고자 합니다.  

구체적으로 연구 인프라 사업 부문에서는,
첫째, 생명연구자원 분야 책임기관으로서의 위상을 제고하기 위해 관련 조직을 정비하고 예타사업을 통해 신규 사업비를 확보하도록 노력하겠습니다.
둘째, 국가유전체연구센터 설치를 위하여 정부를 설득하고, 하반기 교과부 예타사업으로 추진할 수 있도록 노력하겠습니다. 
셋째, 줄기세포 분야에서도 국가 거점으로의 도약을 위한 대안을 개발하여 정부에 강력히 제안하고자 합니다.
넷째, 바이러스 전문연구소의 설립 또한 적극 검토함으로써 관련분야의 국내 역량 제고 및 확보에 기여하는 길을 찾아보고자 합니다.

아시다시피 이 중에서도 앞의 세 가지 현안은 국과위가 시급히 정비를 추진하고자 하는 "바이오 관련 5대 미래 전략기술분야"에 포함되어 있습니다. 우리 연구소가 이러한 정부의 정책조정 과정에서도 본연의 Think Tank 역할을 충실히 해내야 할 것입니다.

연구개발 경영에 있어서는 다음 5가지 사항을 우선적으로 추진하겠습니다.
첫째, 대형 R&D 체제로의 개편을 위한 대안을 개발하겠습니다.
국제진단이나 과학자문위원회에서 지적된 바와 같이 우리 연구소는 대형 인프라를 보유하고 있고, 바이오 연구개발 전반에도 우수한 전문역량을 보유하고 있음에도 기업 및 대학과 차별화된 효율적인 대형연구개발 체제를 가지고 있지 못합니다.
이러한 점에서, 여러 연구?인프라 부서들이 서로 협력하여 대형 성과를 창출할 수 있는 바람직한  대안을 개발하고, 차기 경영목표에 반영될 수 있도록 징검다리 역할을 하겠습니다.
둘째, 안정적 신규 연구재원을 확보하여 대형 연구사업 추진이 가능할 수 있도록 적극 노력하겠습니다. 그간의 연구사업 수요조사 결과를  종합하여 일반사업으로 신규 R&D 예산을 확보하도록 노력 하겠습니다.
셋째, 사업화 부문의 역량을 강화하여 200억원의 기술이전을 달성하도록 노력하겠습니다. 이를 위해 IP 마케팅 프로토콜 확립하여 유망지식의 사업화를 촉진하는 글로벌 수준의 성과확산 체계를 구축하도록 하겠습니다.
넷째, 우리 KRIBB의 글로벌화를 보다 더 강력하게 추진하기 위해 국제협력 연구체제를 재점검하고 활성화 할 수 있는 방안을 모색하고자 합니다.  연구분야별 과학자문위원회를 보다 활성화시켜 분야별로 글로벌 수준의 협력연구가 이루어질 수 있도록 제도를 강화하도록 하겠습니다.
다섯째, 연구원의 소통문화 강화를 위한 노력을 지속적으로 추진하겠습니다. 이를 위해 신입직원은 물론 외국인 연구자들의 안정적 정착과 교류 활성화 지원, 소통을 위한 공간 확보 등 기관운영 전분야에 걸쳐 소통문화 확산을 위한 지원방안을 강화하도록 하겠습니다. 

사랑하는 직원 여러분 !
저는 지속가능한 연구원이 되기 위한 최고의 정책은 최고의 인재를 구하는 것이라고 믿고 있습니다. 작년과 재작년 2년에 걸쳐 우리 KRIBB은 70여명의 새로운 가족들을 맞아 들였습니다. 창의성과 열정이 넘치는 역량 있는 연구자가 모인 생명(연)은 그 어떤 정책보다 강한 영향력을 갖게 될 것입니다. 이제는 작은 바람에 휘둘리지 않는 대한민국 대표 출연연구기관으로서 생명(연)의 굳건한 위상을 보다 확고히 해 나가야할 때입니다.

저는 우리 연구자 개인의 발전이 곧 기관의 발전이요, 국가의 경쟁력이라는 신념을 가지고 일 해왔습니다. 
새해를 맞이하여 생명공학의 국가 경쟁력 강화를 위해서라도 여러분 개개인의 학문적 전문성과 수월성 제고를 위해 각고의 노력해 주실 것을 다시 한 번 당부드리면서, 새해 모두 건강하시고 직원 여러분의 가정에 만복이 가득하시기를 충심으로 기원합니다.
감사합니다.

2011년 1월 3일

원장 박영훈

posted by 글쓴이 과학이야기

댓글을 달아 주세요

prev 1 next