블로그 이미지
과학이야기
최신 과학기술 동향

calendar

            1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29

Notice

Recent Comment

Archive

나노선은 수 십~수 백 ㎚(10억 분의 1m)의 굵기를 갖는 반도체 물질로 이루어진 머리카락 형태의 나노 구조체입니다.

나노선은 독특한 물리·화학적 특성을 갖고 있어 학문적으로 중요한 연구 대상이 되고 있습니다.

또한 각종 미래 첨단 전자소자 구현을 위한 핵심 재료로서 각광받고 있는 분야입니다.

주요 적용 분야로는 차세대 신재생 에너지로 주목받고 있는 고효율 태양전지, 폐열을 전기에너지로 변환하는 열전소자, 질병 유무를 판별하는 폭발물, 마약 탐지 등이 가능한 분자센서 등이 있습니다.

그러나 나노선들이 기판 면에 평행하게 누워있는 구조로 되어 있어, 단일 나노선의 경우 나노 암페어 정도의 매우 적은 양의 전류만을 발생시킬 수 있었습니다.

나노선 소자의 성능은 단위면적당 집적될 수 있는 나노선 개수와 표면적에 비례하기 때문에 수평배열을 갖는 나노선 소자는 구조적인 특성으로는 얻어낼 수 있는 성능에 한계가 있습니다.

이러한 문제는 나노선을 기판 위에 고밀도로 수직정렬 시키면 해결할 수 있지만, 수직 정렬된 각각의 나노선 끝과 안정적으로 전기적 접촉을 성공시키기 위해서는 기술적 문제가 남아 있어 그동안 나노선 기반 첨단 소자의 상용화에 걸림돌로 작용되었습니다.

KRISS(한국표준과학연구원) 나노소재평가센터 이우 박사 연구팀이 대면적의 기판 위에 극미세 가닥 나노선을 수직으로 정렬해 만들고 안정적으로 전기적 접촉이 이루어지도록 하는 기술을 개발했습니다. 
 

(좌) 수직 정렬된 나노선 상부에 구름다리 형태로 걸쳐진 2차원 고분자 박막을 형성시킨 후, 나노선 끝단이 선택적으로 노출될 수 있도록 고분자 박막층을 부분적으로 식각한다. 그 위에 금속을 증착시켜 선택적으로 개별 나노선들 간에 안정적인 전기적 접촉이 이루어지도록 했다.
(우상) 수직 정렬된 나노선 
(우하)상부에 금속-나노선 접촉을 갖는 수직 정렬된 나노선을 주사전자현미경으로 관찰한 모습


연구팀은 수직 정렬된 나노선 상단에 구름다리 형태로 걸쳐진 2차원적 고분자 박막을 입히고, 그 위에 금속을 덧씌워 선택적으로 개별 나노선 사이에 안정적인 전기적 접촉이 이루어지도록 했습니다.

이를 통해 기존의 나노선을 수평으로 배열한 소자에 비해 단위면적당 나노선 집적도가 월등한 소자를 구현할 수 있고, 전류의 양 또한 100만 배 이상을 얻을 수 있었습니다. 

안정적으로 나노선 사이의 전기적인 접합을 구현한 이번 연구결과는 지금까지 수직 정렬된 나노선이 실질적으로 다양한 분야에 응용되기 위한 핵심기술로 평가받고 있습니다.

또한 물질의 종류에 상관없이 다양한 분야에 접목이 가능해 상용화를 위한 핵심기술로 평가받고 있습니다. 

연구팀은 열을 가하면 부드럽게 되어 다른 모양으로 바꿀 수 있는 열가소성을 가진 고분자 막이 특정 온도에서 액체형태로 완전히 녹지 않고 어느 정도의 유동성 만을 갖는다는 점에 주목했습니다.

또 개별 나노선 표면이 갖는 본래의 물리·화학적 특성은 변화시키지 않는다는 특징도 이용했습니다.

그 결과 수평정렬 나노선 소자에 비해 탁월한 성능을 갖는 수직정렬 나노선을 기반으로 한 기체분자 센서를 성공적으로 제작했고, 이 기술이 실질적으로 응용될 수 있음을 확인했습니다.

이 기술은 기존 반도체 소자 제작 공정에 비해 비용 및 시간 측면에서 매우 경제적이며, 다양한 나노선 물질에 적용될 수 있습니다.

이 수직 정렬 나노선으로 고효율 태양전지, 열전소자, 압전소자, LED 소자, 분자센서 등 다양한 첨단소자를 구현할 수 있을 전망입니다.

연구팀은 이번 연구결과를 바탕으로 나노선 기반 고효율 에너지수확 장치 개발 및 상용화를 추진 중입니다.

연구팀은  이번 연구개발에 앞서 실리콘 나노선의 결정학적 배향, 크기, 형상을 자유자재로 제어할 수 있는 원천기술을 개발해 세계적 권위의 나노기술 학술지인 나노레터스(Nano Letters), 에이씨에스 나노(ACS Nano) 등에 발표한 바 있습니다.

이번 연구는 세계적 권위의 재료 학술지인 '어드밴스드 머티리얼(Advanced Materials)' 05월 2일자에 게재되었습니다.

수직정렬 나노선 소자의 전기적 특성을 평가하고 있는 모습

한희 박사(왼쪽), 이우 박사(오른쪽)

 

 용  어  설  명

나노 암페어(nA) :
암페어는 전류의 단위로, 1 나노 암페어는 10억분의 1 암페어

 

posted by 글쓴이 과학이야기

댓글을 달아 주세요

일반적으로 반도체 소자는 누설전류로 인해 물에 취약하기 때문에 소자를 방수처리하기 위한 다양한 연구들이 진행되고 있습니다.

나노선 구조를 이용해 물속에서도 젖지 않는 차세대 메모리 소자의 원천기술이 개발됐습니다.

이는 방수 컴퓨터나 스마트폰 개발을 가능하게 하는 기술입니다.

■ 포스텍 용기중 교수팀은 생체모방기술 중 연잎효과를 이용해 물속에서도 젖지 않으면서 전원 없이도 저장된 정보를 유지할 수 있는 차세대 비휘발성 저항메모리 소자(RRAM)를 개발했습니다.

연구팀은 물방울이 연잎 표면을 적시지 않으면서 먼지 등을 씻어내는 자가세정, 방수효과, 결빙방지 등의 특성을 갖는 연잎효과(Lotus Effect)를 이용해 텅스텐 산화물 반도체 나노선을 합성한 후, 표면을 단분자막으로 화학코팅하여 물속에서도 젖지 않으면서 자가세정 효과가 있는 초발수(超撥水) 저항메모리 소자를 만들었습니다.

(위) 텅스텐산화물 나노선을 이용한 저항메모리 소자의 모식도, (아래 왼쪽) 소자 저항 변화 특성, (아래 오른쪽) 물에 젖지 않는 초발수 특성 사진.

특히 이번 연구는 기존의 저항메모리 소자 개발에 추가적인 공정 없이도 초발수 특성을 유지하여, 물에 젖지 않으면서도 안정적으로 소자가 작동되는 것이 특징입니다.

이번 연구는 나노소자와 생체모방기술을 접목하여 반도체 소자의 방수특성을 더욱 향상시켰다는데 의미가 있는 것으로, 향후 방수되는 컴퓨터와 스마트폰 개발에 활용될 전망입니다.

이번 연구결과는 신소재분야의 권위 있는 학술지인 'Advanced Materials'지에 온라인 속보(4월 10일자)로 게재되었습니다.
(논문명: Resistive switching WOx-Au core-shell nanowires with unexpected nonwetting stability even when submerged under water)

(a,b) 물에 넣었을 때 초발수 특성으로 인해서 나노선 표면에 형성된 공기층으로 인해서 전반사가 일어나 거울상의 특성을 보여주는 사진. (c) 초발수 특성을 선택적으로 일부분만 처리하여 물에 넣었을 때 처리한 부분은 표면이 젖지 않고 처리안한 부분은 젖은 사진. 물에서 꺼내어 바로 측정해도 소자의 작동이 정상적으로 이루어지는 결과.

 

제1저자인 이승협 박사 (현재 박사학위 후 삼성종기원 근무)

<연 구 개 요>

초발수 표면은 물의 접촉각이 150도 이상을 갖는 상태를 의미하며 흔히 연잎표면에서 자연적으로 관찰되어 연잎효과(Lotus effect)로 잘 알려져 있다.
이와 같은 초발수 표면은 물방울이 표면을 적시지 않고 먼지 등을 씻어내어 자가세정, 방수효과, 얼음방지 등의 특성을 가지고 있으며 다양한 분야의 활용 가능성으로 인해서 현재 많은 관심 속에 연구가 진행되고 있다.
 
이와 같은 초발수 표면 제작은 기본적으로 연잎의 구조를 모방하는 생체모방기술이라 볼 수 있으며, 접근법에 따라서 top-down 방식과 bottom-up 방식이 있다.
Top-down 방식은 크기를 줄여나가서 연잎의 마이크로 돌기 형태의 구조를 제작하는 방식이며, bottom-up 방식은 분자들의 자기정렬을 통해서 나노 혹은 마이크로 형태의 구조를 제작하는 방식이다.
일반적으로 top-down 방식에 비해서 bottom-up 방식이 상대적으로 공정이 간단하고 제조 단가를 낮출 수 있다는 장점을 가진다.
 
본 연구팀은 다양한 나노선을 합성하고 나노선의 표면을 단분자막으로 화학코팅하여 bottom-up 방식의 초발수 표면을 구현하였다.
특별히 텅스텐 산화물 반도체 나노선을 기판위에 증착하여 이를 이용하여 차세대 메모리 소자인 저항메모리소자를 구현하였으며, 동시에 나노선의 표면처리를 통해서 초발수 특성을 갖게 하는 다기능성의 소재를 개발하였다는 점에서 기존의 다른 연구들과 차별화 될 수 있다.
 
저항메모리 소자는 차세대 메모리 소자로서 인가된 전압에 따라서 저항상태가 고저항/저저항 상태로 스위칭되는 특성을 가지고 있는 비휘발성의 차세대 메모리 소자로 많은 관심을 받고 있다.
특별히 나노선을 이용하는 경우 소자의 집적도를 향상시킬 수 있다는 장점을 가진다.
 
대부분의 전자소자가 누설전류로 인해서 물에 취약한 특성을 보이기 때문에 현재 소자의 방수처리를 위한 다양한 연구들이 진행되고 있다.
본 연구를 통해서 개발된 나노소자는 추가적인 패키징 없이 물속에서도 초발수 특성을 유지하여 물에 젖지 않음으로써 안정된 소자의 작동을 나타낸다는 특성을 나타내고 있다.
 

이와 같은 초발수 특성은 전자소자의 방수특성을 더욱 향상 시킬 수 있으며 또한 다양한 환경에서도 작동될 수 있는 소자 개발을 위한 원천기술을 개발했다는 데 중요한 의의가 있다.


 용  어  설  명

나노선  :
수 십~수 백 나노미터(10억분의 1미터)의 굵기를 갖는 반도체 물질로 이루어진 머리카락 형태의 나노 구조체

누설전류(漏泄電流) :
절연체(열이나 전기의 이동을 방해하는 물질)에 전압을 가했을 때 흐르는 약한 전류

저항 메모리(Resistive RAM: RRAM또는 ReRAM) :
차세대 비휘발성 메모리의 한 종류.
RRAM은 부도체 물질에 충분히 높은 전압을 가하면 전류가 흐르는 통로가 생성되어 저항이 낮아지는 현상을 이용한 것이다.
일단 통로가 생성되면 적당한 전압을 가하여 쉽게 없애거나 다시 생성할 수 있다.
페로브스카이트(perovskite)나 전이금속산화물, 칼코게나이트 등의 다양한 물질을 이용한 RRAM이 개발되고 있다.

연잎효과(Lotus effect) :
연잎 위에 먼지가 떨어져 있을지라도 연잎은 그걸 받아들이지 않고 물과 함께 버린다.
잎이 물방울에 젖지 않는 현상을 일컬어 연잎효과라고 한다.
이러한 원리의 가장 핵심적인 요소는 바로 연잎에 무수히 나있는 나노돌기이다.
나노돌기는 떨어진 물방울을 퍼뜨리는 것이 아니라 맺히게 함으로써 연잎에 떨어진 물 역시 표면에 적셔지지 못하고 서로 합쳐진 것들조차 떨어지게 된다.


 

<용기중 교수>

1. 인적사항

○ 소 속 : 포스텍 화학공학과 교수

2. 학력
○ 1990 : 연세대학교 화학공학과 학사
○ 1992 : 연세대학교 화학공학과 석사
○ 1997 : Carnegie Mellon University 박사

3. 경력사항
○ 1997년 ~ 2000년 : 텍사스대(Univ. Texas at Austin) Postdoctoral Fellow
○ 2000년 ~ 현재: 포스텍 화학공학과 교수

4. 주요연구업적
1. Seunghyup Lee, Wooseok Kim and Kijung Yong, "Overcoming the water vulnerability of electronic devices: a highly water-resistant ZnO nanodevice with multifunctionality", Advanced Materials, Vol. 23, Issue 38, 4398-4402 (2011)
2. Minsu Seol, Heejin Kim, Youngjo Tak and Kijung Yong, "Novel nanowire array based highly efficient quantum dot sensitized solar cell", Chemical communications, Issue 46, pp. 5521-5523 (2010)
3. Youngjo Tak, Sukjoon Hong, Jaesung Lee and Kijung Yong, "Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion", Journal of Materials Chemistry, Vol. 19, No.33, 5945-5951 (2009)
4. Yunho Baek, Yoonho Song, Kijung Yong, "A novel heteronanostructure system: hierarchical W nanothorn arrays on WO3 nanowhiskers", Advanced Materials, Vol. 18, No. 13, 3105-3110 (2006)
5. Youngjo Tak, Kijung Yong, "Controlled growth of well-aligned ZnO nanorod array using a novel solution method", Journal of Physical Chemistry B, Vol. 109, No. 41, 19263-19269 (2005)

 

posted by 글쓴이 과학이야기

댓글을 달아 주세요

지금까지 세계의 연구자들은 나노구조체의 기계적 물성을 평가할 수 있는 방법을 찾기 위해 다각도로 연구했지만, 물성 값 도출에 큰 오차를 보이면서 결과의 해석에 큰 이견을 나타냈습니다.

박원일 교수

장재일 교수


그런데 한양대 신소재공학부 장재일 교수와 박원일 교수가 공동 주도하고 한국과학기술연구원(KIST)의 최인석 박사가 참여한  연구에서 나노구조체의 기계적 물성을 정확히 분석하는 기술이 정립됐습니다.

이에 따라 현재보다 더욱 얇고 작으면서도 질적으로는 더 우수한 나노소자를 신뢰성 있게 설계, 생산, 구동할 수 있는 기반 기술이 확보됐습니다.

연구팀은 지금까지 보고된 연구 가운데 가장 다양한 크기 범위의 나노선에 대한 실험을 수행, 나노선의 기계적 물성을 가장 정확하게 측정할 수 있는 기술을 개발하고, 기계적 물성에 미치는 나노선의 크기 효과를 체계적으로 정립하는데 성공했습니다.

연구팀은 나노역학 시험법으로 주목받고 있는 원자힘현미경(AFM; Atomic Force Microscope) 굽힘 시험과 나노압입(Nanoindentation) 시험을 동시에 실시해 실리콘 나노선의 기계적 물성을 평가했고, 다양한 시험조건과 분석 방법을 통해 얻은 결과를 바탕으로 나노선의 기계적 물성을 가장 정확하게 측정할 수 있는 방법을 제시했습니다.

<실리콘(Si) 나노선(nanowire)의 기계적 물성 분석 절차>

(a) (왼쪽부터) 원자힘현미경 굽힘 시험을 위해 준비한 나노선 모습, 시험모식도 및 시험 후 원자힘현미경 이미지(b) (오른쪽부터)나노압입 시험을 위해 준비한 나노선 모습, 시험모식도 및 시험 후 원자힘현미경 이미지.




또 지금까지 수행된 연구 중에서 다양한 크기 범위의 나노선에 대해 실험을 수행해 최근 논란이 가열되고 있는 기계적 물성에 미치는 나노선의 크기 효과를 체계적으로 정립했습니다.

<원자힘현미경(AFM, Atomic Force Microscope) 굽힘 시험 결과>

(a) 원자힘현미경 굽힘 시험으로부터 얻은 힘(force) - 변위(displacement) 곡선이며, 삽입된 이미지는 실험 전(위)과 후(아래)의 실리콘 나노선의 모습을 나타냄.(b) 굽힘 시험에서 사용되는 세 가지 모델을 (a)의 결과에 적용하여 얻은 탄성계수(elastic modulus)와 항복강도(yield strength)를 나노선 크기에 따라 체계적으로 비교함.


<나노압입(Nanoindentation) 시험 결과> 

(a) 나노압입 시험으로부터 얻은 하중(load)-변위(displacement) 곡선이며, 삽입된 이미지는 실험 전(위)과 후(아래)의 실리콘 나노선의 모습을 나타냄.(b) 사용된 압입자의 각도의 변화에 따라 나노선 크기에 따른 탄성계수(elastic modulus)와 항복강도(yield strength)를 비교함.


이번 연구결과는 재료공학분야에서 권위 있는 학술지인 '어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)' 1월호에 게재됐습니다.
(논문명 : Exploring Nanomechanical Behavior of Silicon Nanowires: AFM Bending Versus Nanoindentation)

<나노 구조체의 기계적 물성에 미치는 크기 효과 분석>
 

원자힘현미경 굽힘 시험을 이용하여 얻은 결과들을 기존 연구들과 비교하고 나노선의 크기 변화에 따른 탄성계수(왼쪽)와 항복강도(오른쪽)의 변화를 체계적으로 분석함.



 용   어   설   명

나노구조체
: 나노미터(10억분의 1m) 크기를 가지는 구조체를 가리키며, 대표적으로 0차원 나노구조체인 양자점(quantum dot), 1차원 나노구조체인 나노선(nanowire), 2차원 나노구조체인 그래핀(graphene)  등이 여기에 포함됨. 

나노구조체의 기계적 물성
: 나노구조체가 외부로부터 힘을 받았을 때 나타나는 거동 및 성질을 의미하며, 강도와 탄성 등이 이에 해당됨.

나노소자
: 나노 크기를 가지는 소재 및 구조체를 이용하고 나노기술을 통해 만든 미세  기능성 장치를 말함. 

나노선
: 일차원 나노구조체로서 단면의 지름이 수 나노미터~수십 나노미터 정도의 크기를 가지는 극미세선으로 이것을 만드는 기술은 세계를 변화시킬 신기술 가운데 하나로 꼽히며, 트랜지스터, 논리회로, 메모리, 화학감지용 센서(감지기), 레이저, 에너지 재생/저장 등 다양한 분야에 쓰임.

나노선의 크기효과
: 모든 재료는 나노크기로 작아질 때 물리적, 화학적 성질이 변하게 되는데, 기계적 물성(강도, 탄성 등) 또한 일반적인 크기의 경우와 완전히 다른 성질을 나타내게 됨.

원자힘현미경(AFM, Atomic Force Microscope) 굽힘 시험
: 원자간 힘을 이용하여 극미소 소재의 표면 정보를 구체적으로 분석할 수 있는 장비인 원자힘현미경(AFM)에 장착된 캔틸레버(cantilever)를 측면으로 이동시켜 나노선에 힘을 가하고 그때 얻어지는 굽힘의 정도로부터 나노선의 강도를 평가하는 방법임

나노선에 대한 AFM 굽힘 시험 모식도

나노압입(Nanoindentation) 시험
: 압입(indentation)시험을 이용한 소재의 강도(strength)측정 방법 중 하나로 작게는 수 나노미터(nm) 깊이까지 하중을 가하고, 이때 얻어지는 하중-변위 곡선을 해석함으로써 미소영역에 대한 기계적 물성을 쉽고 비파괴적인 방법으로 측정할 수 있음.

나노선에 대한 나노압입시험 모식도



중견연구자지원사업 내 핵심연구
: 교육과학기술부 이공분야 기초연구지원사업의 하나로서 과학기술 전 분야의 창의성 높은 개인연구 또는 공동연구를 지원하여  기초연구능력을 배양하고 우수 연구인력을 양성하는 것을 목적으로 함.

  

posted by 글쓴이 과학이야기

댓글을 달아 주세요

prev 1 next