반응형

세포공장은 세포의 유전자를 조작하여 원하는 화합물을 대량으로 생산하도록 만드는 미생물 기반의 생산 시스템입니다.

화석연료 고갈과 석유화학제품 사용으로 인한 환경오염 등 인류가 직면한 문제를 해결하기 위해 친환경적이고 지속가능한 바이오산업이 주목받고 있습니다.

특히 바이오에너지, 의약품, 친환경 소재 등을 생산할 수 있는 세포공장 개발이 그 핵심을 이루고 있습니다.

우수한 세포공장을 개발하기 위해서는 원하는 화합물을 생산하는 유전자 선별과 높은 생산 효율의 미생물을 찾는 과정이 병행되어야 합니다.

그러나 기존의 연구방식은 미생물의 유전자를 하나씩 조작하여 복잡하고 많은 시간이 소요되는 문제를 안고 있습니다.

■ KAIST 이상엽 특훈교수팀은 합성 조절 RNA 기술을 활용하여 세포공장(Biofactory)을 효율적이고 대규모로 구현하게 하는 새로운 기술을 개발했습니다.

이번 연구는 기존 방법과 달리 합성 조절 RNA를 이용해 균주 특이성이 없어 과거 수개월이 소요되던 실험을 수일로 단축시킬 수 있는 것이 특징입니다.

이상엽 교수팀은 합성 조절 RNA 기술을 활용한 이번 연구결과를 의약 화합물의 전구체로 사용되는 타이로신(tyrosine)과 다양한 석유화학 제품에 활용되는 카다베린(cadaverine) 생산에 도입하여 세계 최고의 수율로 생산할 수 있는 세포공장을 실현시켰습니다.

타이로신은 스트레스를 다스리고 집중력 향상 효과가 있는 아미노산이며, 카다베린은 폴리우레탄 등 다양한 석유화학 제품에 활용되는 기반물질입니다.

이번에 이상엽 교수팀이 개발한 방법을 적용한 타이로신 생산 수율은 21.9g/L, 카다베린 생산 수율은 12.6g/L 입니다.

이상엽 교수는 합성 조절 RNA기술로 다양한 물질을 생산하는 세포공장 개발이 활발해지고, 석유에너지로 대표되는 화학 산업이 바이오 산업으로 변해 가는데 촉매제 역할을 할 것으로 기대하고 있습니다.

조절 RNA 작용기작

최적 생산 균주 및 유전자 선별을 위한 조절 RNA 활용


이번 연구에는 KAIST 나도균 박사와 유승민 박사가 참여했습니다.

이번 연구결과는 네이처 바이오테크놀로지 온라인 판(1월 20일)에 게재되었습니다.

미생물의 대사회로내 유전자에 영향을 미치는 합성 조절 RNA (루프모양) 의 작용기작

<연  구  개  요>

1. 서론

최근 전 세계적인 환경 문제 및 한정된 자원고갈에 대한 우려가 급증하고 있는 가운데, 이의 대안으로 친환경적이고 재생산 가능한 미생물 기반의 생산 시스템, 즉 미생물 세포 공장 구축에 관심이 집중되고 있다.
미생물 세포 공장 구축에 있어 어떤 미생물을 공장으로 사용할 것인가, 어떤 유전자를 조작할 것인지를 선별하는 것이 매우 중요하지만, 기존의 유전공학기술은 복잡하고 긴 시간이 필요한 실험과정을 거쳐야 하므로 보다 간단하고 쉽고 빠른 기술개발이 절실히 요구되고 있다.
유전자 조작을 DNA에서 해야 한다는 기술적 어려움과 한계로 인해 여러 생명공학 분야의 발전에 어려움을 겪고 있다.
본 연구에서는 기존의 유전자 조작은 DNA에서라는 틀을 벗어나 유전자 조작을 RNA에서 가능하도록 하는 새로운 기술을 개발하였다. 특히 차세대 합성생물학 기술로서 새로운 RNA 기반의 대사회로 재설계 기술을 제안하고 이를 이용하여 다양한 맞춤형 세포공장 건설의 가능성을 확인하는데 목적이 있다.    


2. 본론 

RNA는 DNA처럼 간단한 구조를 가지지만, 단백질처럼 매우 복잡하고 다양한 기능을 수행할 수 있어 이를 이용하고자 하는 시도가 활발히 이루어지고 있다.
하지만, 기존의 RNA 기반기술은 다양한 균주 및 수많은 유전자에 동시에 적용하기가 어렵다. 이를 극복하기 위해 본 연구진은 조절 RNA를 새롭게 디자인하는 설계원리를 개발하였다.
새롭게 합성된 맞춤형 조절 RNA 는 특정 유전자에 영향을 주고 이 유전자가 속해 있는 세포 내 네트워크 흐름을 복잡하게 변화시킴으로써 우리가 원하는 방향으로 세포내 네트워크를 재설계할 수 있다.
이러한 조절 RNA는 유전자 운반체에 삽입된 후 다양한 미생물 균주에 동시에 적용되었고, 그 결과 가장 생산능력이 뛰어난 균주 선별을 용이하게 하였다.
또한, 미생물내의 대사회로에 존재하는 100 여개의 다양한 유전자에 영향을 미치는 조절 RNA 라이브러리를 만들고 이를 미생물에 적용함으로써 가장 높은 생산성 향상에 관여하는 유전자를 선별하였다.

3. 결론

그 결과 본 연구진은 맞춤형으로 합성된 조절 RNA를 이용하여 지난 수 십 년간 기존의 방식으로 만들어진 어떠한 미생물 공장보다 더 높은 생산성을 갖는 새로운 미생물 세포 공장 (타이로신 세포공장, 카다베린 세포공장)을 단 1~2주 내에 건설하는데 성공하였다.
본 연구진에 의해 새롭게 개발된 RNA 기반의 대사회로 재설계 기술은 맞춤형 미생물 세포공장 건설을 위한 플랫폼이므로, 석유에너지를 대체할 바이오에너지에서부터 고가의 의약품, 친환경 소재등 기존의 세포공장에서 생산할 수 있는 모든 물질들을 보다 쉽고 빠르게 생산하는 것이 가능하므로 그 활용도는 산업적으로 의학적으로 무궁무진할 것이다.

 
 용   설  명

세포 공장(Biofactory)
세포의 유전자를 조작하여 원하는 화합물을 대량으로 생산하도록 만든 것.
세포 공장은 화합물 생산을 조절하는 효소 및 다양한 유전자의 발현을 억제, 활성화 시키고 이로써 생산 수율을 향상시킴으로써 제작된다.
세포 공장이 향후 현재의 화학공장과 같은 수준으로 생산 수율이 향상될 경우 기존 화학산업을 바이오산업으로 변화시킬 수 있을 것으로 기대되는 기술이다.

합성생물학(Synthetic Biology)
기존 생명공학 기술은 자연계에 존재하는 생명체의 유전자를 변형하여 원하는 기능을 가지는 새로운 생명체를 개발하는 것인데, 이는 이미 존재하는 생명체의 특징을 한정된 범위 내에서만 변형이 가능하기에 개발의 한계가 존재한다.
이를 극복하기 위해 DNA, RNA, 유전자, 단백질 등 세포의 기본 구성 물질부터 세포내 대사회로, 유전자 회로까지 새롭게 설계하여 기존의 한계를 극복하는 새로운 생명체를 만들고자 하는 분야가 대두되었는데, 이것이 합성생물학이다.


합성 조절 RNA(Synthetic small regulatory RNA)

세포내 유전자 발현은 DNA에 기록된 정보가 mRNA로 전달되고, 이를 ribosome이 해독하여 단백질로 만드는 과정이다.
합성 조절 RNA는 mRNA에 상보적으로 결합함으로써 mRNA의 기능을 억제하는 동시에 단시간 내에 제거함으로써 유전자 발현을 중간에 차단하는 것이다.
기존 Antisense RNA와 달리 합성 조절 RNA는 길이가 100nt 정도로 짧으며, 세포내 RNA interference 기작을 이용함으로써 매우 높은 효율로 (>90%) 세포 발현을 억제 가능하며, 상보적 결합 강도를 디자인하여 발현 억제 정도를 조절 가능한 장점이 있다.

라이브러리(Library)
대용량 실험을 위해 실험할 유전자 혹은 화합물 등의 총체적 집합을 의미한다.
이 중에서 세포의 형질을 원하는 형태로 바꿔주는 유전자를 찾거나, 약물로써 효과가 있는 화합물 등을 탐색하게 된다.
여기서는 다양한 합성 조절 RNA를 제작하여 이를 라이브러리로 사용하였다.

<이상엽 교수>

1. 인적사항
○ 소 속 : 카이스트 생명화학공학과 

2. 학력
  1986: 서울대학교 (학사: 화학공학 전공)   
  1987: Northwestern University (석사: 화학공학 전공)  
  1991: Northwestern University (박사: 화학공학 전공)  
 
3. 경력사항
  1994 - 1996: 카이스트 화학공학과 조교수  
  1997 - 2002: 카이스트 생명화학공학과 부교수 
  2002 - 현재: 카이스트 생명화학공학과 교수 
  2004 - 2010: LG 화학 석좌교수
  2007 - 현재: 카이스트 특훈교수    
  2008 - 현재: 학장, 생명과학기술대학
  2003 - 현재: 소장, 생물정보연구센터
  2000 - 현재: 소장, 생물공정연구센터
  2006 - 현재: 공동소장, 바이오융합연구소

4. 전문 분야 정보
  이상엽 특훈교수는 가상세포 및 초고속분석기술을 이용하여 생명체를 연구하는 시스템 생물학과 재생가능한 바이오매스로부터 화학물질을 효율적으로 생산하는 분야인 대사공학의 세계적인 전문가다.
융합 연구를 통한 시스템 대사공학으로 ▲세계 최고 효율의 숙신산 생산 기술 개발 ▲필수 아미노산인 발린과 쓰레오닌의 고효율 맞춤형 균주 개발 ▲가상세포를 이용하여 강건성을 비롯한 생명체 연구 ▲최근에는 나일론의 원료가 되는 다이아민 생산 균주와 플라스틱 원료로서 기존의 석유를 대체할 수 있는 생분해성 고분자인 폴리유산 생산 균 개발, 강철보다 강한 거미줄 개발, ▲ 차세대 바이오 연료인 부탄올의 고효율 생산 균주 개발 등 바이오 리파이너리 및 바이오에너지 분야에서 세계적으로 주목 받는 연구 성과를 내고 있다.

  카이스트에서 약 18년 동안 대사공학과 시스템생명공학에 관한 연구를 집중적으로 수행하여 그간 국내외 학술지논문 424편, proceedings논문 156편, 국내외 학술대회에서 1454편의 논문을 발표하였고, 기조연설이나 초청 강연을 385회 한 바 있으며, Metabolic Engineering(Marcel Dekker 사 발간), Systems Biology and Biotechnology of E. coli (Springer사 발간), Systems Metabolic Engineering (Springer사 발간) 등 다수의 저서가 있다. 그간 553건의 특허를 국내외에 등록 혹은 출원하였는데, 미국 엘머 게이든상과 특허청의 세종대왕상을 받는 등 기술의 우수성이 입증된 바 있다.
생분해성고분자, 광학적으로 순수한 정밀화학물질, DNA chip, Protein chip 등의 기술 개발에서 탁월한 연구 업적을 쌓았고, 최근에는 소위 omics와 정량적 시스템 분석기술을 통합하여 생명체 및 세포를 연구하는 시스템생명공학분야를 창시하여 바이오리파이너리 포함 생물공정기술 개발과 시스템 수준에서의 신규 의약 타겟 발굴 등 연구에 매진하고 있다.

  이 교수는 그간 제 1회 젊은 과학자상(대통령, 1998), 미국화학회에서 엘머 게이든 (Elmer Gaden)상 (2000), 싸이테이션 클래식 어워드(미국 ISI, 2000), 대한민국 특허기술 대상(2001), 닮고 싶고 되고 싶은 과학기술인(2003), KAIST 연구대상(2004), 한국공학한림원 젊은 공학인상(2005) 등을 수상하였고, 2002년에는 세계경제포럼으로부터 아시아 차세대 리더로 선정되어 활동 중이며, 2006년에는 미국미생물학술원 (American Academy of Microbiology) 펠로우 (fellow), 그리고 우리나라에서는 처음으로 Science지를 발간하는 미국 AAAS (American Association for the Advancement of Science)의 펠로우로 임명되었으며(2007), KAIST 최고의 영예직인 특훈교수에도 임명되었다(2007).
지난 수년간 탁월한 성과를 인정받아 세계적인 화학, 제약회사인 머크(Merck)사가 제정한 '머크 대사공학상 (Merck Award for Metabolic Engineering' 상을 수상 받았으며(2008), 상위10대 특허등록 우수 연구자로 선정되었다(2009).
또한, 미국 산업미생물학회(Society for Industrial Microbiology)의 '2010년 펠로우(Fellow)'와 미국공학한림원(National Academy of Engineering, NAE)의 '외국회원(Foreign Associate')로 선정되었으며, 작년에는 암젠기조강연상을 수상하기도 하였다. 올해는 아시아인 최초로 미국화학회의 마빈존슨상을 수상하였고, 미국 텍사스 오스틴 주립대학교, 라이스대학교, 펜실바니아주립대학교 등에서 네임드렉쳐들을 하는 등 대사공학분야에서 세계를 선도하는 연구를 수행 중이다.
최고 미생물생명공학상인 찰스톰상을 수상하였으며 생명공학 우수연구 공로상인 농림수산식품부 장관상을 수상하기도 하였다. 최우수 응용미생물 연구자로 Environmental Microbiology Lectureship을 Royal Academy of Medicine(UK) 강의, 덴마크 Technical Univ of Denmark(DTU)에서 Orsted Lecture를 강연하였다.

  우리나라 최초로 유일하게 미국화학공학회 펠로우로 선임 되었으며, 현재 Biotechnology Journal의 편집장을 맡고 있으며, Biotechnology and Bioengineering, Applied Microbiology and Biotechnology, BMC Systems Biology, mBio, ACS Synthetic Biology 등 20여개 국제학술지의 편집인, 부편집인, 편집위원으로 활동 중이다.


 

반응형

+ Recent posts