반응형

지하철이 선로 위를 지나갈 때 누르는 힘이 전기를 만들어내고, 리모콘을 누를 때마다 전기가 생기고, 옷을 입고 움직일 때도 전기가 만들어집니다.

이 같은 기술이 먼 미래에나 가능할 것 같지만, 현재 사용되고 있습니다.

부산 지하철 서면역의 선로에는 압전소자가 설치되어 있어 전동차 운행으로 발생하는 진동을 전기에너지로 변환시킵니다.

이는 우리나라 최초로 압전에너지를 상용화한 제품입니다.

또 이스라엘에서는 고속도로에 압전발전기를 깔아 자동차가 지나갈 때 발생되는 전기로 가로등을 밝히고 있습니다.

필립스에서 생산하는 리모콘은 버튼을 누르는 힘만으로 전기를 만들어 작동하기 때문에 건전지 없이도 작동됩니다.

이런 추세라면 앞으로는 나노발전기를 겹쳐 옷감 형태로 만들어 입으면, 옷을 입고 걷거나 움직이는 일상생활만으로 휴대폰이나 MP3 같은 휴대용 전자기기를 충전할 수도 있을 것입니다.

나아가 아주 작은 전원만으로 몸속에서 독자적인 임무를 수행하는 나노센서 개발도 가능해집니다.

여기에 사용되는 것이 바로 나노발전기입니다.

■ 나노발전기는 나노 크기(10억 분의 1m)의 물질을 사용해 전기를 생산하는 발전기로, 압전 물질에 압력이나 구부러짐 등과 같은 물리적 힘이 가해질 때 전기가 발생하는 특성인 '압전 효과'를 이용합니다.

압전 효과를 이용하는 발전기술은 2009년 MIT가 선정한 10대 유망기술에 선정됐고, 2010년 미국 과학월간지 파퓰러사이언스(Popular Science)가 선정한 세계를 뒤흔들 45가지 혁신기술에 포함되는 등 주목을 받았습니다.

압전 물질은 2005년 미국 조지아공대 왕중린 교수팀이 세계 처음으로 나노발전기 개념을 제시하면서 알려졌습니다. 

그런데 여기에 사용되는 물질은 '산화아연'이 유일했는데, 이는 제작공정이 복잡하고 고가의 비용문제와 소자크기의 한계가 있어 널리 활용되는데 한계가 있었습니다.

■ KAIST 신소재공학과 이건재 교수팀이 나노복합체를 이용해 적은 비용으로도 대면적 생산이 가능한 신개념 나노발전기 원천기술을 개발했습니다.

 

압전 나노입자를 포함하는 복합물질에서 구부림에 의해 전기가 생성되는 것을 보여주는 그림


이번 기술은 간단한 코팅 공정을 통해 만들어지기 때문에 비용을 획기적으로 줄일 수 있을 뿐만 아니라 넓은 면적도 쉽게 제작할 수 있어 공정이 복잡했던 기존의 한계를 극복했습니다.

앞서 이 교수팀은 지난 2010년 산화아연보다 15~20배 높은 압전 특성을 갖는 세라믹 박막물질인 '티탄산화바륨'을 이용해 나노발전기 효율을 한층 업그레이드 시킨바 있습니다.

이어 이번에는 나노복합체를 이용해 간단한 공정으로 제작하는 데 성공함으로써 적은 비용으로도 넓은 면적의 나노발전기를 구현했습니다.

이 교수팀은 수백 나노미터 크기의 고효율 압전 나노입자인 '티탄산화바륨'과 비표면적이 크고 전기 전도성이 높은 '탄소나노튜브'나 산화 그래핀(RGO)을 폴리머(PDMS)와 섞은 다음 간단한 코팅공정을 통해 넓은 면적의 나노발전기 제작에 성공했습니다.

압전효과를 바탕으로 한 '나노 자가발전 기술'은 적은 기계적 힘만으로도 전기를 생산할 수 있어 차세대 에너지 기술로 각광을 받을 전망입니다.

특히 이번에 개발된 기술에 패키징이나 충·방전 기술을 융합하면 반영구적으로 자가발전 및 저장이 가능한 새로운 형태의 에너지 시스템 개발에도 응용될 수 있습니다.

이번 연구결과는 재료분야 세계적 학술지 '어드밴스드 머터리얼스(Advanced Materials)' 6월호 표지논문으로 게재됐습니다.

구부러질 때마다 전기를 만드는 나노복합체 기반의 자가발전기(논문표지)


 

 

 용  어  설  명

압전효과 :
가스레인지의 점화스위치 작동원리와 같이, 압력이나 구부러짐의 힘이 가해질 때 전기가 발생되는 효과

탄소나노튜브 :
육각의 벌집구조로 결합한 탄소가 수  크기의 직경을 갖는 튜브를 형성한 탄소 소재. 1 ㎚ 는 머리카락 굵기의 1/100,000 정도의 크기

그래핀 :
육각의 벌집구조로 결합한 탄소가 연속적으로 연결되어 탄소 원자 한 층의 두께를 가진 2차원의 평판 모양을 이룬 탄소 소재

나노복합체 :
기초소재물질 속에 나노물질를 첨가함으로써 기존 물질이 가지고 있던 기계적, 화학적, 물리적 특성을 크게 향상시킨 재료를 말하는 것으로, 탄소나노튜브를 중심으로 한 나노복합체 연구가 주류를 이루고 있다.

 

<이건재 교수>

1. 인적사항

○소  속 : KAIST 공과대학 신소재공학과

2. 학    력
○ 1994 : 대원외국어고등학교 졸업
○ 2001 : 연세대학교 학사
○ 2006 : University of Illinois at Urbana Champaign (UIUC) 박사

3. 경력사항
○ 2009.1 ~ 현재    : Assistant Professor, KAIST
○ 2005.6 ~2008.12 : Research Staff Member, Unisantis Electronics Japan
○ 2001.9 ~ 2005.6   : Research Assistant, UIUC

4. 주요연구실적
○ 2012 Prof. Lee will give 'Plenary Talk' at International SPIE conference
○ 2012 Prof. Lee's flexible technology is selected as KAIST BRAND Project & National Research Laboratory
○ 2011 Prof. Lee won '2011 KAIST Technology Innovation Award'
○ 2009 George Smith Award for the best paper published in IEEE Elect. Dev. Lett.
○ 2007 Cover feature article for the May issue of Applied Physics Letters
○ 2006 Three dimensional chips are published in Science journal
○ 2006 Printed semiconductor technology won "2006 Innovation Award" of Wall Street Journal
○ 2006 Printed semiconductor technology is licensed to Semprius Inc.
○ 2006 Cover feature article for the Jan issue of Nature Materials
○ 2005 Cover feature article for the April issue of Advanced Functional Materials
○ 2004 Cover feature article for the June issue of Applied Physics Letters

5. 출판
Over 100 patents and patent application in the field of flexible and nanoelectronics. More than 40 of these are licensed.
SCI papers including Science, Nature Materials, Nano Letters, Advanced Materials, Advanced Functional Materials, Small, Applied Physics Letters etc.

 

반응형
반응형

<탄소나노튜브 실이란?> 

탄소나노튜브 실은 순수하게 탄소나노튜브로만 이루어져 있고, 반데르발스 힘(Van der Waals Force)에 의하여 탄소나노튜브가 연속적으로 결합해 여러 가닥의 다발로 형성된다.

실리콘 기판 위 탄소나노튜브 성장 시에 탄소나노튜브 밀도를 조절하는 방법으로 기판위에 수직 배양된 탄소나노튜브로부터 직접 탄소나노튜브 다발을 잡아당기면, 탄소나노튜브들 사이에 반데르발스 힘에 의해 실처럼 계속적으로 뽑혀 나온다.

탄소나노튜브 실은 높은 탄성과 철의 100배에 달하는 강도를 가지고 있어서 방탄복에 유용하고 뛰어난 전기 전도도와 열전도 물성 때문에 기능성 복합직물로도 활용이 가능합니다.

탄소나노튜브는 지난 2002년에 첫 등장했지만, 아직 세계적으로 상용화가 안 된 소재입니다.

남승훈 박사

처럼 고성능 방탄복과 항공우주 분야 등 첨단산업 소재로 사용되는 탄소나노튜브 실을 만드는 기술이 KRISS(한국표준과학연구원) 재료측정표준센터 남승훈 박사 연구팀에 의해 개발됐습니다.


연구팀은 실리콘 기판 위에 길이가 300㎛(마이크로미터)와 12㎚(나노미터) 굵기의 탄소나노튜브를 수직으로 배양시킨 후, 이로부터 여러 가닥의 탄소나노튜브를 다발로 형성시켜 실 모양으로 뽑아내는 방법으로 기존의 제조기법을 크게 개선시켰습니다.

탄소나노튜브 실의 굵기는 1마이크로미터 이하로, 연구팀은 1ⅹ1 ㎠  실리콘 기판 위에 수직 배양된 탄소나노튜브로부터 수십 m 이상 길이의 실을 만들 수 있도록 했습니다.

이번 개발된 기술로 가느다란 탄소나노튜브 실 여러 가닥을 한꺼번에 뽑아낼 수 있으며, 탄소나노튜브 실에 폴리머와 같은 물질을 쉽게 코팅할 수도 있습니다.

이 기술을 이용하면 향후 탄소섬유 방직산업에도 폭넓게 활용될 전망입니다.

금속 표면에 고전압을 가했을 때 전자가 튀어나오는 전계방출현상이 탄소나노튜브 실에서는 보다 낮은 전압에서도 나타나 산업적 활용도 기대됩니다.

이는 휴대용 X-ray 튜브나 전자총 등에 활용 할 수 있으며, 휴대용 초소형 비파괴검사 시스템에도 사용될 수 있습니다.

또 연구팀은 이번 연구를 통해 전자현미경을 이용해 전계방출 시 탄소나노튜브들 사이의 상호 반발에 의한 실 끝부분의 형태 변화를 실시간으로 촬영하는데도 성공했습니다.

이번 기술 개발로 탄소나노튜브를 실 형태 뿐만 아니라 시트 모양으로 균일하게 뽑아낼 수 있게 됨에 따라, 대면적 탄소나노튜브 필름의 대량제조도 예상되고 있습니다.

탄소나노튜브 시트는 유연성이 좋고, 투과율과 전기 전도도가 높아 앞으로 터치스크린 소재인 ITO((Indium Tin Oxide)필름을 대체할 수 있을 전망입니다.

또한 탄소나노튜브 시트 필름 양단에 직류 12V를 가하면 시트 필름 표면의 온도가 상승, 이를 이용한 자동차 유리 김서림 방지용 히터 등에eh 활용 가능합니다.

이번 연구는 국제학술지인 '카본(Carbon)'에 게재됐습니다.

탄소나노튜브 실


진공 속에서 전계방출 시 변화하는 탄소나노튜브 실 끝의 모양 변화


<연구개요> 

Ⅰ. 과제개요

 ○ 사업명 : 나노메카트로닉스기술개발사업(교육과학기술부 21세기 프론티어연구개발사업)

 ○ 과제명 : 나노 패턴손상 및 복합물성 측정기술 개발

 ○ 연구책임자 : 남승훈 박사(한국표준과학연구원)

 ○ 참여자 :  유권상 박사, 이윤희 박사, 백운봉 박사, 김용일 박사, 장훈식 박사, 조용재 박사, 제갈원 박사, 조현모 박사, 정인현 책임연구원, 박종서 선임기술원, 전상구 연구원, 박수영 연구원, 이정표 연구원(이상 한국표준과학연구원)

 ○ 연구기간(3단계) : 2008. 4~2012. 3

 ○ 주요 연구성과 : 국내외 논문 발표 및 게재(121건), 국내외 특허출원 및 등록(33건), 나노구조체 복합물성 측정기술 및 센서 개발 해외특허 출원(PCT/KR2011/000145), 탄소나노튜브 실 제조기술 연구성과 "Carbon Vol. 49" 표지 등재(2011. 1)


 용  어  설  명

 카본(Carbon)지(http://ees.elsevier.com/carbon/)
 : 네덜란드 Elsevier 출판사에서 출간되며, 탄소관련 소재기술의 전반적인 분야를 다루는 전문 학술저널. 2009년  Impact Factor 4.506인 저널로 소재분야의 가장 권위있는 학술 저널중 하나로 인정받고 있다

전계방출(Field emission)
: 금속의 표면에 강전계를 가했을 때 상온에서 생기는 전자 방출 현상.

 

탄소나노튜브 실의 전계방출 실험 장면

반응형
반응형

반도체 양자점을 형광체로 이용해 고품질 LED를 만드는 원천기술을 국내 연구진이 세계 최초로 개발했습니다.

반도체 양자점(Quantum Dot)은 지름이 2~10 ㎚ 크기인 반도체 결정으로, 화학적 합성 공정을 통해 만들어지는 것으로 같은 성분임에도 크기가 바뀌면 색깔이 바뀌는 특징이 있습니다.

LED와 OLED, 태양전지, 바이오 표시자, 바이오센서, 위조방지 인쇄 등의 성능을 획기적으로 향상시킬 수 있습니다.

한창수 박사

한국기계연구원 나노역학연구실 한창수 박사팀은 다중껍질 양자점이 포함된 복합체에 UV를 쬐어 양자점의 발광효율을 2배로 높이는 데 성공, 적은 양의 양자점만으로 고품질의 LED를 구현했습니다.

이번 기술 개발로 자연색의 70% 수준인 기존 LED의 색 선명도가 91%까지 높아졌습니다.

또 기존에는 미세한 색 표현이 어려워 제작 과정에서 불량 LED가 많이 생산됐으나 양자점을 이용하면 미세 색조절이 가능해 불량률도 낮출 수 있게 됐습니다.
  
반도체 양자점에 대한 국내외의 연구는 아직 초기단계에 있으며, 양자점 복합체를 자외선 처리를 통해 고효율의 형광 복합체로 제조한 것은 이번이 처음입니다.

현재까지 개발된 양자점 활용 LED 제작 기술은 많은 양의 양자점이나 광안정성이 떨어지는 단일껍질 양자점을 주로 활용했습니다.

낮은 광안정성은 실용화에도 어려움을 줬습니다.

그런데 이번 기술 개발로 양자점을 기존의 절반만 사용해도 목표 성능을 얻을 수 있게 됐습니다.
 

(a) 양자점 형광체를 이용한 고품질 LED 개략도 (b) 제조된 LED 사진 (c) 구동된 LED의 White Color 발광 결과 (CRI: 91, Color Temp: 4805 K)


이에 따라 LED를 포함해 향후 양자점이 포함된 모든 복합소재 이용 제품군의 성능을 극대화하고, 상용화를 앞당기는데 크게 기여할 것으로 보입니다.

UV를 조사하기 전과 후의 폴리머 안에서의 양자점 분포 (투과전자현미경 사진)모서리 그림은 양자점 복합체의 UV 조사 전후의 발광 사진


이 기술은 현재 국내 특허를 출원했고, 국제특허 출원도 앞두고 있습니다.

또 이번 연구결과는 재료 분야의 권위 있는 저널인 '어드밴스드 머티리얼스(Advanced Materials)' 온라인판에 게재됐습니다.

이번 연구는 지식경제부 산업원천 연구개발사업인 '나노양자점 형광체 기반 차세대 LED 모듈 개발사업'을 통해 이뤄졌고, 기업으로는 탑엔지니어링이 참여했습니다.

 양자점 복합체의 UV 조사를 통한 발광효율 향상

반도체 양자점(NQD; Semiconducting Quantum Dot)
: 원자가 10,000~1000,000 정도로 이루어진 Dot형태의 물질 (2~10nm)로 마치 원자 하나의 물리적 특성과 유사한 성질을 가지고 있으며, 광의 흡수 및 발광효율이 매우 높아 광학 분야에서 최근 가장 각광받고 있는 나노 크기의 신소재이다. 같은 성분임에도 크기만 바꾸면 아래와 같이 발광하는 파장이 달라져 다른 색의 빛을 발광하는 특징이 있다.

반응형

+ Recent posts