반응형

금속유기골격구조체는 분자단위에서 같은 물질들이 일정한 규칙과 간격을 가지고 배열돼 생성되는 것이기 때문에, 1g 당 축구장과 같은 크기의 표면적을 가지고 있으며, 고용량의 물질 저장 능력과 빠른 물질 이동특성을 갖고 있습니다.

이는 많은 양의 물질을 내부에 저장할 수 있기 때문에  최근 다양한 종류의 차세대 저장체 연구에 필수 장비로 사용되고 있습니다.

그러나 현재까지 금속유기골격구조체는 7.0Å(100억 분의 1m) 크기의 아주 작은 단분자만을 사용했기 때문에 커다란 크기의 고분자 및 단백질의 저장에는 활용될 수 없었고, 단지 고용량 가스 저장체로서의 가능성만 입증된 상태였습니다.

또한 구조가 내부에서 서로 엇갈려 있어 큰 크기의 단백질을 저장하는 것은 사실상 불가능했습니다.

KAIST EEWS대학원 오마르 야기(Omar M. Yaghi)교수팀은 커다란 크기의 기공을 갖는 금속유기골격구조체를 개발해 여러 종류의 단백질을 고용량으로 저장할 수 있는 원천기술을 확보했습니다.

이번에 개발된 기술은 다양한 종류와 크기의 단백질을 저장 할 수 있어 ▲고용량 고집적의 신약 개발 ▲특정 바이러스 분리 물질 개발 ▲인체 내에서 악성 반응을 일으키는 특정 단백질의 선택적 제거 ▲특정 부위에서 작용하는 신약 수용체 개발 ▲희귀 고분자 단백질 영구 보존 등 다양한 분야에 폭넓게 활용될 수 있습니다.

이와 함께 줄기세포를 포한한 모든 인체의 세포까지 선택적으로 분리하고 영구히 저장할 수 있어 난치병 치료나 생명연장을 위한 의학기반 기술 발전에도 큰 도움이 될 전망입니다.

야기(Yaghi) 교수팀은 커다란 크기의 분자들을 이용해 금속유기골격구조체를 만들고, 단백질처럼 아주 큰 물질을 구조체 내부에 일정하게 배열시켜 효율적으로 저장하는 방법을 고안해 세계 최초로 규칙적 분자구조체 내부에 비타민과 미오그로빈(Myoglobin) 같은 단백질을 고용량으로 저장하는데 성공했습니다.

또 5nm 이상의 크기를 가지는 분자체를 이용한 금속유기골격구조체를 개발하고, 금속유기골격구조체의 주기적인 기공을 처음으로 투과전자현미경을 이용해 관찰했습니다.

다른 길이의 분자를 사용하여 합성된 금속유기골격구조체를 보여주는 모식도. IRMOF-74-I 에서 IRMOF-74-XII 로 점점 연결된 벤젠 (benzene)숫자가 늘어나 기공의 크기가 원자단위에서 늘어가고 있다.


이번 연구는 그동안 불가능했던 큰 크기의 단백질 및 고분자들을 규칙적 배열을 가지는 다공성 물질을 개발해 고용량으로 저장하는 원천기술로, 고용량으로 집적된 단백질 약을 원하는 곳에 투여함과 동시에 제거해야 할 분자들을 선택적으로 흡수함으로써 난치병이나 희귀병 치료에 획기적인 역할을 할 수 있을 것으로 기대받고 있습니다.

이번 연구는 오마르 야기(Omar M. Yaghi) 교수와 오사무 테라사키(Osamu Terasaki) 교수가 공동으로 수행했습니다.

이번 연구결과는 '사이언스(Science)' 5월호(25일자)에 게재되었습니다.

크기에 따라서 다른 단백질이 저장 되는 것을 보여주는 그래프
각 그래프에서 그래프가 아래쪽으로 내려갈수록 단백질이 많이 저장되었음을 나타내는 것이며, 검은색 그래프는 금속유기골격구조체에 각각의 크기가 다른 단백질이 삽입되었을때의 변화를 나타내는 것이며 빨간색은 대조군이다.
이 그래프에서 확인 할 수 있는 바와 같이 각각의 조절된 다른 크기를 가지는 금속유기골격구조체는 크기가 다른 단백질 분자들을 선택적으로 흡수 할 수 있었다.
이것은 큰 크기의 고분자가 원자단위에서 조절된 기공을 가지는 금속유기골격구조체에 저장됨을 보여주는 첫 번째 사례이다.

 

각각 다른 기공크기를 가지고 합성된 금속유기골격구조체에 다양한 크기의 단백질 및 고분자가 저장 될 수 있음을 역동적으로 나타내는 모식도

 

<보 충 자 료>

지금까지 일정한 방향으로 배열된 큰 기공크기의 금속유기구조체를 만드는 것은 구조의 불안정성과 물질 내부에서 서로 얽히는(interpenetrating) 문제로 인하여 불가능 하다고 여겨져 왔다.
그러나 단백질이나 고분자 같은 거대 분자를 효율적으로 저장하기 위한 노력은 계속 이어져 왔다.

또한 기존의 메조포어를 가지는 물질 (mesoporous silica, porous carbon 등) 같은 경우 원자크기의 영역에서 그 기공의 크기와 구성을 조절하는 것은 불가능 하였다.

그러나 금속유기골격구조체의 경우 화학반응에 의해 모든 결합이나 문자들의 길이가 조절되기 때문에 원자단위의 영역에서 구조를 조정하는 것이 가능 하였다.

이 논문에서는 벤젠(benzene)링의 개수에 따라 길이가 달라지는 (linker)를 사용하여 1개의 벤젠에서부터 최대 12개의 벤젠을 가지는 링커를 합성하고, 그 링커들을 사용하여 금속유기골격구조체를 만듦으로서 10의 마이너스 10승 m 단위에서의 기공 크기 조절이 가능하였다.

또한 기공의 크기가 조절된 유기골격구조체를 사용하여 vitamin-B12(27 Å), MOP-18(34 Å), myoglobin(35-44 Å), green fluorescent protein(45 v)의 크기가 다른 물질을 선택적으로 저장 할 수 있음을 ultraviolet-visible (UV-Vis) spectrophotometry를 이용하여 확인 할 수 있었다.

 

 용 어 설 명

금속유기골격구조체 :
금속과 유기물질을 사용하여 일정하게 배열된 구조를 가지는 골격체

단백질 :
아미노산이 펩타이드 결합을 하여 생긴 여러 개의 아미노산으로 이루어진 고분자 화합물.

다공성 물질 :
물질의 내부나 표면에 작은 구멍이 많이 있는 성질.

표면적 :
물질을 구성하고 있는 원자가 공간 내에서 규칙적으로 배열되어 생성된 겉넓이

메조포어 :
20~500 크기를 가지는 미세기공

투과전자현미경 :
고진공 하에서 아주 얇은 시편을 전자 빔을 이용해 원자 단위로 확대하여 볼 수 있는 장비

 

<Omar M. Yaghi 교수>

1. 인적사항

○ 소  속 : KAIST 공과대학 EEWS대학원
○ 연락처 : yaghi@kaist.ac.kr


2. 학    력
○ State University of New York 학사 1984
○ University of Illinois, Urbana 박사 1990
○ Harvard University, Postdoctorial Fellow 1992


3. 경력사항
○ 2010. 3.~현재 KAIST EEWS 대학원 교수
○ 2012. 1.~현재 University of California, Berkeley 교수


4. 주요연구실적
○ 2011 세계 인용횟수 2위의 화학자 선정 (Top one quarter of one percent of the most highly cited chemists (ranked number 2 of 6,548))
○ 2008 AAAS Newcomb Cleveland Prize for most outstanding paper published in Science during 2006-2007
○ 2007 세계 인용횟수 10위의 화학자 선정 (Top one quarter of one percent of the most highly cited chemists (ranked number 10 of 6,548))
○ 2007 100 papers with over 100 citations per paper (1997-2007)
○ 2006 Listed among the "Brilliant 10" scientists and engineers

5. 출판
○ 국외논문 150여편 게재
○ Science 및 Nature 20편 게재
○ 22개의 특허 보유

<Osamu Terasaki 교수>

1. 인적사항
○ 소  속 : KAIST 공과대학 EEWS대학원
○ 연락처 : 042-350-1711,
         
2. 학    력
○ Tohoku University 학사 1965
○ Tohoku University 석사 1967
○ Tohoku University 박사 1982

3. 경력사항
○ 2010. 3.~현재 현재 KAIST EEWS 대학원 교수
○ 2003. 3.~2011. 9. Stockholm 대학 화학과 교수
○ 1967. 2.~2003. 2. Tohoku 대학 교수

4. 주요수상경력
○ 2008 Humboldt Research Award (Alexander von Humboldt Foundation)
○ 2007 The Donal W Breck Award, International Zeolite Association
○ 2001 The Best Paper Award, Japanese Society of Electron Microscopy.

5. 출판
○ 300 편 이상의 국제 학술 논문 출판
○ Science 및 Nature 14편 게재
○ 저서 2권


반응형
반응형

현재 미국에는 미래 과학기술이 자신을 살릴 것이라 믿으며 냉동상태로 보관되고 있는 사람(시신)이 100명이 넘는다고 합니다.

냉동인간은 시신의 체내에서 피를 모두 빼고 대신 동결보호제를 주입한 뒤 액체질소를 채운 영하 196℃의 금속용기 안에 보관하는 것입니다.

현재까지는 이 같은 방식으로 보존만 할 뿐 다시 소생시킬 수 있는 기술은 없습니다.

냉동인간의 해동과정에서 얼음이 재결정화면서 세포의 파괴가 진행되는데 현재 기술로는 이를 해결할 방법이 없습니다.

그러나 이 때 진행되는 현상을 분석해 결빙현상을 막아주는 해동기술에 적용하면 한가닥 가능성이 생기는 셈인데, 이를 연구하려면 액체 상태에서 원자분석이 가능해야 합니다.

여기에 이용되는 것이 투과전자현미경인데, 아직까지 액체를 원자단위로 연구할 방법은 없었습니다.

■ 투과전자현미경은 0.004nm에 불과한 아주 짧은 파장의 전자빔을 이용하기 때문에 가시광선을 이용하는 광학현미경 보다 약 1000배 높은 분해능을 갖고 있습니다.

따라서 계면의 결정구조와 격자결함 등 원자단위까지 분석이 가능해 최근 다양한 종류의 차세대 신소재 연구에 필수적인 장비로 사용되고 있습니다.

그러나 투과전자현미경은 0.001~0.00001 기압(atm)의 고진공상태에서 사용하기 때문에 액체를 관찰하려해도 고정이 되지 않고 즉시 공중으로 분해되기 때문에 관찰이 불가능합니다.

게다가 투과전자현미경의 원리상 전자빔이 수백 나노미터 이하의 시편을 투과해야 되는데 액체를 그만큼 얇게 만드는 것도 매우 어렵습니다.

KAIST 신소재공학과 이정용 교수팀은 꿈의 신소재인 그래핀을 이용해 수백 나노미터 두께로 액체를 가두는 데 성공했습니다

과학계의 오랜 숙원으로 꼽히던 액체를 원자단위까지 관찰하고 분석하는 기술이 세계 최초로 개발된 것입니다.

탄소원자들이 육각 벌집모양의 한 층으로 형성된 그래핀은 두께가 0.34nm로, 지금까지 합성할 수 있는 물질 중 가장 얇은 물질입니다.

그래핀으로 나노미터 크기의 결정이 담긴 액체를 감싸면 투과전자현미경 안에서 그래핀이 투명하게 보이며, 또한 액체를 감싸고 있는 그래핀은 강도가 매우 뛰어나 고진공 환경에서도 액체를 고정시킬 수 있습니다.

즉 투명한 유리 어항에 담긴 물속의 물고기들을 눈으로 볼 수 있는 것처럼 투명한 그래핀을 이용해 액체를 담아 그 속에 있는 결정들을 원자단위에서 관찰 할 수 있는 원리입니다.

그래핀 두 층으로 이루어진 그래핀 액체 용기를 보여주는 모식도이다. 회색으로 보여지는 그래핀이 위아래로 두층이 있고 그 사이에 백금 원자들을 포함한 유기 용액의 액체가 담겨있다.

연구팀은 이를 이용해 세계 최초로 액체 안에서 원자단위로 백금 결정들이 초기 형성되는 것과 성장과정을 관찰하는 데 성공했습니다.

가장 왼쪽의 녹색 모식도는 두 개의 백금 결정들이 서로 결합하는 것을 보여준다. 이것을 실제 투과전자현미경 안에서 두 개의 백금 결정들을 원자 단위에서 관찰한 것이 두 번째 사진이다. 화살표로 표시된 것이 두 개의 백금 결정들이다. 현재 백금 결정들은 액체 안에 담겨 있는 상태이다. 오른쪽으로 갈수록 시간이 지남에 따라 두 개의 백금 결정들이 하나로 합쳐지면서 그 모양이 육각형으로 변해가는 것을 볼 수 있다. 이 투과전자현미경 사진에서 백금들 안에 하얀 점들은 원자가 아니고 원자의 규칙을 보여주는 격자 사진이다. 이 격자 사진의 하얀 점들은 원자와 1대 1로 매칭할 수 있다. 즉, 이것은 원자 단위에서 관찰된 것이다.


이 기술은 액체가 고체로 결정화되는 메카니즘을 확인할 수 있어 나노 크기의 재료 제조나 전지 내에서 전해질과 전극 사이의 반응, 액체 내에서의 각종 촉매 반응, 혈액 속 바이러스 분석, 몸속 결석의 형성과정 등 다양한 분야에 활용될 전망입니다.

이번 연구는 이정용 교수의 지도아래 육종민 박사(제1저자)가 박사학위 논문으로 미국 UC버클리대 알리비사토스 교수, 및 제틀 교수와 공동으로 수행됐습니다.

연구결과는 세계적 학술지 '사이언스(Science)' 4월호(6일자)에 게재됐습니다.

 

그래핀 액체 용기 안에서 백금 원자들을 포함한 액체에 투과전자현미경을 이용해 전자 빔을 조사하였을 때 백금 결정들이 자라나는 것을 역동적인 모식도로 표현한 것

 

 용  어  설  명

투과전자현미경 :
고진공 하에서 아주 얇은 시편을 전자 빔을 이용해 원자 단위로 확대하여 볼 수 있는 장비

그래핀 :
육각의 벌집구조로 결합한 탄소가 연속적으로 연결되어 탄소 원자 한 층의 두께를 가진 2차원의 평판 모양을 이룬 탄소소재

광식각 기술 :
빛에 민감한 고분자를 이용하여 미세한 패턴을 형성하는 반도체용 미세형상 제작 기술

결정구조 :
물질을 구성하고 있는 원자가 공간 내에서 규칙적으로 배열되어 결정을 이루는 구조다.

격자결함 :
결정체 속에서 결정격자가 불완전한 상태인 것을 말한다. 실제로 결정은 여러 이유로 원자가 결여되어 있거나 원자의 배열이 흐트러져 있다. 이는 물질의 열전도도나 전기전도도, 재료의 강도에 큰 영향을 끼친다.

계면 :
기체상, 액체상, 고체상 등의 3상 중 인접한 2개의 상(相)사이의 경계면이다. 흡착이나 분자의 배향 등, 특유한 현상이 나타난다.

재결정 :
온도에 따른 용해도 차이를 이용해 원하는 용질을 다시 결정화시키는 방법.

<보 충 설 명>

그동안 과학자들은 투과전자현미경으로 액체를 관찰하기 위해 산화규소나 질화규소 기판을 광식각 패턴기술을 통해 액체를 담을 수 있는 용기를 만들었다.
그리고 그 용기 안에 결정들이 포함된 액체를 담아 결정들의 성장이나 거동을 관찰하려고 노력해 왔다.

그러나 규소화합물 기판들은 상대적으로 중원소일 뿐만 아니라 그 두께가 두꺼워 투과전자현미경 안에서 전자빔과 기판의 상호작용으로 인해 액체 속 결정들의 원자단위 분석이 어려웠다.

한편 투과전자현미경을 이용한 생물체 연구의 경우에는 살아있는 생물을 그대로 관찰할 수 없었기 때문에 일정한 단계를 거쳐 조직이나 세포의 구조와 내용물을 살아있을 때의 상태대로 보존하면서 죽여 생물 시료를 만들었다.

그러나 이는 죽은 상태이기 때문에 생물체의 메카니즘을 확인할 수는 없었다. 또한 고정->탈수->매몰->절편제작->염색 등의 과정을 거쳐 관찰하는 것은 매우 복잡하다.


<이정용 교수>

1. 인적사항
○ 소  속 : KAIST 공과대학 신소재공학과

2. 학    력
○ 서울대학교 재료공학과 학사 1974
○ KAIST 재료공학과 석사 1976
○ U. C. Berkeley 재료공학과 박사 1986

3. 경력사항
○ 1986. 7.~현재 KAIST 교수
○ 1981. 10.~1986. 7. 미국 Lawrence Berkeley Laboratory 연구조교
○ 1976. 1.~1981. 8. 금성사/금성정밀공업 중앙연구소 사원/과장

4. 주요연구실적
○ 2010 한국물리학회에서 Best Poster Award 수상
○ 2008 교육과학기술부 국가연구개발 우수개발성과패 수상
○ 2008 한국학술진흥재단 학술연구조성사업 우수성과사례 인증패 수상
○ 2001 한국과학기술단체총연합회 과학기술우수논문상 수상
○ 1996 KAIST 학술상 수상
○ 1985 미국전자현미경학회 Presidential Student Award 수상
○ 1985 미국금속학회 Scholastic Achievement Award 수상

5. 출판
○ 국외논문 400여편 게재
○ 저서 7권
○ 13개의 국내 특허 보유 

<육종민 박사>

1. 인적사항
○ 소  속 : KAIST 신소재공학과

2. 학    력
○ KAIST 신소재공학과 학사 2004
○ KAIST 신소재공학과 석사 2007
○ KAIST 신소재공학과 박사 2012

3. 경력사항
○ 2012. 3.~현재 울산 과학기술대학교 방문 연구원
○ 2012. 3.~현재 KAIST 응용과학 연구소 연수 연구원
○ 2010. 2.~2011. 8. 미국 U.C. Berkeley에 방문 연구
○ 2008. 8.~2009. 8. 미국 Lawrence Berkeley National Laboratory의 National Center for Electron Microscopy에 방문 연구

4. 주요수상경력
○ 2010 BK 21 해외 장기 연수 장학금 수상
○ 2008 BK 21 해외 장기 연수 장학금 수상
○ 2007 한국장학재단 대학원생 국가연구장학금 수상

5. 출판
○ 15 편의 국제 학술 논문 출판
○ 8번의 국내 및 국제 학회 발표
○ 3개의 국내 특허 보유


 

반응형
반응형

그래핀은 흑연(그래파이트)의 한 층 한 층을 이루는 얇은 막이 박리된 상태를 의미하며, 탄소 원자가 육각형의 규칙적인 평면 구조를 이루고 있습니다.
그래핀의 한 층은 매우 투명하고 높은 전기전도도를 보이기 때문에, 특히 현재 급격한 가격 상승을 보이는 Indium Tin Oxide(ITO) 투명 전극을 대체 할 수 있을 것으로 기대받고 있습니다.
또 그래핀의 유연한 성질은 미래 산업에서 필요로 하는 유연하고 접을 수 있는 소자 및 초고속 반도체 소재로서 이용될 수 있습니다.
그래핀은 탄소 원자가 안정적으로 초박막 상태를 유지할 수 있는 구조로서, 양자홀 효과와 같은 특이한 물리적 성질을 보이기 때문에, 산업계는 물론 학계에서도 매우 높은 관심을 보이고 있는 신소재입니다.
하지만 그래핀을 실질적인 산업에 응용하기 위해서는 양질의 그래핀을 대량으로 생산할 수 있는 기술을 확보하는 것이 관건입니다.
 

꿈의 신소재 그래핀은 가장 우수한 전기적 특성이 있으면서도 투명하고, 기계적으로도 안정하면서 자유자재로 휘어지는 차세대 전자소재입니다.

그러나 현재 제조되고 있는 그래핀은 다결정성을 지니고 있어, 단결정일 때보다 상당히 낮은 전기적, 기계적 특성을 보입니다.

이것은 그래핀의 특성이 결정면의 크기와 경계구조에 큰 영향을 받기 때문입니다.

따라서 우수한 특성을 갖는 그래핀을 제조하기 위해서는 그래핀 결정면의 영역(도메인)과 경계를 쉽고 빠르게 관찰하는 것이 향후 그래핀의 물성을 크게 향상하고 상업화하기 위한 핵심기술입니다.

정희태 교수

KAIST 정희태 교수팀은 LCD에 사용되는 액정의 광학적 특성을 이용해, 그래핀 단결정의 크기와 모양을 대면적에 걸쳐 쉽고 빠르게 시각화할 수 있는 기법을 개발했습니다.

특히 그래핀의 단결정을 시각화함으로써, 단결정에서 얻을 수 있는 이론값에 가장 가까운 전기전도도를 직접 측정하는데 성공했습니다.

이번 연구는 우리나라가 보유한 세계 최고의 액정배향제어기술을 토대로, 대면적에 걸쳐 그래핀의 결정면을 누구나 쉽게 관찰할 수 있는 방법을 제시한 것입니다.

연구팀은 그래핀을 쉽게 대면적에서 관찰할 수 있는 기법을 개발하여 그래핀 상용화분야에서 원천기술을 획득했습니다.

또 그래핀을 이용한 투명전극, 플렉시블 디스플레이, 태양전지와 같은 전자소자 응용연구에도 한 걸음 다가섰습니다.

이번 연구는 정희태 석좌교수가 주도하고 김대우 박사과정생, 김윤호 박사(공동1저자), 정현수 박사과정생(제3저자)이 참여했습니다.

(왼쪽부터)정현수 박사과정생, 김윤호 박사, 김대우 박사과정생

연구 결과는 나노과학 분야의 권위 있는 학술지인 'Nature Nanotechnology' 온라인 속보(11월 20일)에 게재되었습니다.
(논문명: Direct visualization of large-area graphene domains and boundaries by optical birefringency)


 용  어  설  명

결정면(crystal face) :
결정의 외형을 나타내는 평면으로 격자면과 평행인 면

액정배향제어기술 :
액정의 방향을 일정하게 만드는 기술

광학적 특성 :
어느 물질에 빛을 통과시키거나 반사시킬 때 생기는 특성

액정(Liquid Crystals)

액체와 같이 유동성이 있으면서 고체적인 특성을 나타낸다. 전기-광학적 특성이 매우 뛰어나 LCD 구동을 위한 핵심 물질로 사용된다. 자연계에는 네마틱, 스메틱, 콜레스테릭 등 다양한 종류의 액정이 존재하며, 현재 LCD에 사용되는 액정은, 기판의 표면성질에 따라 배향을 쉽게 조절할 수 있는 네마틱 계열의 액정물질이다. 비등방성(anisotropy)을 가지는 액정분자의 구조적인 특징 때문에, 고유한 전기-광학적 특성을 보인다. 본 연구에서는 그래핀 표면에서 일정방향으로 배향되었을 때 나타나는, 액정물질의 굴절률 차이(복굴절, birefringency)를 이용함으로써 그래핀 도메인을 관찰할 수 있었다.

<연 구 개 요>

꿈의 신소재인 그래핀을 산업에 응용하기 위해서는 우수한 물성을 가지면서 대량의 그래핀 생산 기술을 확보하는 것이 최대의 관건이다. 2010년 Andre Geim 교수(Univ. of Manchester)가 스카치테이프를 이용하여 흑연에서 그래핀을 떼어내는 방법 이후에 수많은 그래핀 연구의 발전이 있어 왔으나, 현재까지 가장 큰 이슈 중의 하나가 이론적인 특성보다 상당히 낮은 전기적, 기계적 물성을 보인다는 것이다.

연구결과에 의하면, 이러한 문제의 가장 큰 원인이 현재까지 화학기상성장(CVD) 방법, 화학적 방법 등을 이용하여 합성된 그래핀이 다결정성을 이루어져 있어, 단결정을 가졌을 때 예상되는 이론적인 특성보다 상당히 낮은 전기적, 기계적 물성을 보인다. 이는 다결정성 그래핀에서 발생하는 도메인 간의 경계구조가 에서 전기적, 기계적 성질이 크게 영향을 미치기 때문이라고 알려져 있다. 따라서 이상적인 전기적 특성을 가지는 양질의 그래핀을 제조하기 위해서 그래핀의 도메인과 경계를 관찰하는 것이 그래핀의 상업화에 매우 중요하다.

이러한 그래핀 도메인 조절의 중요성에도 불구하고, 그 도메인과 경계를 쉽게 관찰하는 방법의 개발이 그래핀 연구에 있어서 가장 큰 난점 중의 하나로 여겨져 왔다. 기존의 라만 2D 맵핑(Raman 2D mapping) 분석, 저 에너지 전자 회절(Low Energy Electron Diffaction) 분석, 투과전자현미경(Transmittance Electron Microscopy) 분석으로는  그래핀의 도메인을 관찰하는데 많은 시간이 요구될 뿐 아니라, 그 관찰 범위 또한 수 마이크로로 제한적이라 현실적으로 불가능한 방법들이었다. 따라서 그래핀의 특성을 조절하기 위해서 범용적이며, 손쉽게 그래핀의 결정면을 관찰하는 방법이 최근 그래핀 연구의 핵심이다.

이에, KAIST 생명화학공학과 정희태 석좌교수 연구팀은 LCD에 사용되는 액정의 고유한 광학적인 특성을 이용하여, 대면적에 걸쳐 그래핀의 단결정의 크기 및 모양을 쉽고 빠르게 시각화 할 수 있는 기법을 개발하였다. 특히 그래핀 단결정을 시각화함으로써, 단결정에서 얻어질 수 있는 이론값에 근사하는 전기전도도를 직접적으로 측정하는 쾌거도 이루었다.

(좌) 그래핀 결정면을 따라 배향된 액정분자 배향 모식도(우) 광학현미경으로 관찰된 실제 그래핀 결정면의 모습

그림 (좌) 모식도에서 보는 바와 같이, 그래핀 표면에 형성된 네마틱 액정분자의 알킬분자구조는 그래핀 층의 육각형 구조의 지그재그 간격과 일치하기 때문에, 그래핀 층의 결정방향에 따라 각 도메인에서 적합한 방향으로 에피택시(epitaxy)하게 배향된다. 또한 액정 분자체에 포함된 벤젠링 구조는 sp2 혼성결합으로 이루어진 육각형 벌집모양의 그래핀 표면과 강한 상호작용을 하여, 액정 분자체의 배향은 그래핀 도메인 배향과 일치하여 배향될 수 있다. 이렇게 그래핀의 도메인에 따라 배향된 액정분자체의 복굴절 색상을 편광현미경으로 관찰하게 되면, 그림 (우)에서 보는 바와 같이 그래핀 도메인에 따라 액정 층이 각각 다른 색을 띄게 되어 그래핀의 도메인과 경계구조를 광학적으로 손쉽게 확인할 수 있다.
 
이러한 그래핀 결정면의 광학적 시각화 방법은 손쉬운 액정 코팅방법을 사용함으로써 그 작업이 단순하고 시간과 비용이 줄어드는 동시에 편광현미경으로 관찰 가능한 범위(~수cm 이상)의 매우 넓은 영역의 결정구조를 확인할 수 있어 그래핀 특성을 연구하는데 필수적이다. 이러한 액정코팅을 통해 그래핀 도메인을 관찰하는 기법은 CVD로 합성된 그래핀뿐만 아니라, 다양한 합성법(기계적 박리, 화학적 합성 등)으로 만들어진 모든 그래핀 도메인 관찰에 적용 가능한 기술로서, 향후 그래핀 소재 연구 분야에서 광범위하게 사용될 수 있을 것으로 예상된다.

세계적으로 반도체와 디스플레이에서 강한 면모를 보이고 있는 우리나라는 그래핀을 쉽게 대면적에서 관찰할 수 있는 기술까지 보유하게 됨으로써, 그래핀 상용화분야에서 원천기술을 갖게 되었으며, 그래핀을 이용한 투명전극, 플렉시블 디스플레이, 태양전지와 같은 전자소자 응용연구에 한 발짝 다가설 수 있게 되었다. 그래핀을 이용한 새로운 응용의 신기원을 열게 되었으며, 차세대 전자소자 산업분야에서 시장 선점 및 막대한 부가가치 창출 등을 통해 국가경쟁력 강화에 크게 기여할 것으로 기대된다.

반응형

+ Recent posts