반응형

'이달의 과학기술자상' 3월 수상자로 자연의 광합성 현상을 모방하여 태양에너지로부터 최종적으로 화학물질을 생산할 수 있는 인공광합성 원천기술을 개발한 KAIST 박찬범 교수(43)가 선정됐습니다.

박찬범 교수는 바이오소재(Biomaterials) 분야의 석학으로, 인공광합성을 위한 고효율 나노바이오소재들을 개발하여 학계의 주목을 받아왔습니다.

광합성은 식물 등 자연계의 생물체가 태양광을 에너지원으로 하여 일련의 물리화학적 반응들을 통해 탄수화물과 같은 화학물질을 생산하는 현상입니다.

식물의 엽록소는 태양광을 받으면 전자를 방출하고(광반응), 이 전자는 주변으로 전달돼 연쇄적 화학반응을 일으키면서 환원에너지를 생산합니다.

또 햇빛이 없는 밤에는 낮에 재생했던 에너지를 이용해 이산화탄소를 탄수화물로 환원시킵니다.

박찬범 교수는 이러한 자연계의 광합성시스템을 모방하기 위하여 광반응의 엽록소 대신에 태양전지 등에서 사용되는 양자점 등 나노크기의 광감응 소재로 빛에너지로부터 화학적 환원에너지를 고효율로 재생하는데 성공했습니다.

또한 자연계의 연쇄적이고 복잡한 암반응 대신에 단순한 생체촉매반응을 이용하여 빛에너지로부터 최종적으로 메탄올 등 화학연료, 의약품 등 고부가가치 정밀화학물질을 생산하는 친환경 녹색생물공정 개발의 전기를 마련했습니다.

박 교수가 개발한 나노바이오소재 기반 인공광합성기술은 무한한 에너지원인 태양광을 사용해 화학연료, 정밀화학제품 등을 생체촉매반응으로 합성한다는 점에서 파급효과가 매우 큽니다.

박찬범 교수는 Advanced Materials, Angewandte Chemie 등 재료분야의 권위 있는 학술지에 2008년 이후 교신저자로서 48편의 논문을 발표하였고, 이 학술지들의 인용지수(IF)의 합계가 323(1편당 평균: 6.73)으로 매우 높습니다.

특히 인공광합성에 대한 연구결과로 지난해에만 총 6편의 표지논문을 발표하는 등 학계의 큰 주목을 받았습니다.

또 박 교수가 개발한 나노바이오소재 기반 인공광합성 기술은 2010년도 대한민국 10대 과학기술뉴스로 선정되기도 했습니다.

<박찬범 교수> 

● 인적사항

 ▶성명 : 박찬범 (朴燦範)
 ▶소속 : 카이스트 신소재공학과

● 학    력

▶1995 ∼ 1999    포항공과대학교 화학공학과, 박사
▶1993 ∼ 1995    포항공과대학교 화학공학과, 석사
▶1987 ∼ 1991    포항공과대학교 화학공학과, 학사

● 경    력

▶2008 ∼ 현재
▶2006 ∼ 2008
▶2002 ∼ 2006
▶1999 ∼ 2002
카이스트 신소재공학과, 부교수 (영년직)
카이스트 신소재공학과, 조교수
애리조나주립대학교, 조교수
UC Berkeley, 박사후연구원


● 주요업적 : 나노바이오소재 기반 인공광합성 기술개발
□ 자연의 광합성현상을 모방하여 태양에너지로부터 시작하여 최종적으로 메탄올 등 화학연료, 의약품 등 고부가가치 정밀화학물질을 태양에너지를 이용해 생산하는 친환경 녹색생물공정 원천기술 개발


반응형
반응형

광합성은 생물체가 태양광을 에너지원으로 사용, 일련의 물리화학적 반응들을 통해 탄수화물과 같은 화학물질을 생산하는 자연현상입니다.

인류는 지금 지구온난화와 화석연료 고갈이라는 문제점을 안고 있습니다.


이를 해결하기 위해 온난화의 원인인 이산화탄소를 배출하지 않고 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고 있습니다.

KAIST 신소재공학과 박찬범 교수와 류정기 박사팀이 태양전지 기술을 이용해 자연계의 광합성을 모방한 인공광합성 시스템 개발에 성공했습니다.

박찬범 교수

류정기 박사



이 기술은 정밀화학 물질들을 태양에너지를 이용해 생산해 내는 '친환경 녹색생물공정' 개발의 중요한 전기가 될 전망입니다.

박 교수팀은 자연광합성 현상을 모방해 빛에너지로부터 천연, 비천연 아미노산, 신약 원료물질(precursor) 등과 같은 고부가가치 정밀화학 물질 생산이 가능한 신개념 '생체촉매기반 인공광합성 기술'을 개발했습니다.

이번 연구에서 연구팀은 자연현상 모방을 통해 개발된 염료감응 태양전지의 전극구조를 이용해 다시 자연광합성 기술을 모방해 발전시킬 수 있다는 것을 증명했습니다.

이번 연구 결과는 광합성효율을 획기적으로 향상시킴으로써 인공광합성 기술의 산업화에 한 걸음 더 다가선 것으로 평가받고 있습니다.

이번 연구는 독일에서 발간되는 재료분야 국제저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 2011년 4월 26일자에 게재됐고 특허출원도 완료됐습니다.

자연광합성에서 가시광선에 의해 엽록소 분자상에 생성된 여기전자는 바닥상태로 돌아가기 전에 재빨리 주변의 반응 장소로 전달돼 산화환원반응을 일으키게 되는데(그림 1a), 이러한 반응기작을 모방해 개발한 것이 차세대 태양전지의 하나로 각광받는 염료감응 태양전지다(그림 1b).

자연광합성과 염료감응 태양전지 기술에 착안한 박 교수팀은 염료감응 태양전지의 광전극을 이용해 보조인자를 광전기화학적으로 재생하고, 이를 산화환원용 효소반응과 연결시켜 빛에너지로부터 광학이성질체, 약물 전구체와 같은 고부가가치 정밀화학 물질들을 고효율로 생산하는 기술을 개발했다(그림 1c).



 용 어 설 명

인공광합성(aritificial photosynthesis): 자연 광합성을 모방하여 태양광을 이용하여 수소, 메탄올와 같은 화학연료 또는 고부가가치의 정밀화학물질을 생산하는 기술.

산화환원용 효소 (oxidoreductases): 생체촉매인 효소 (enzyme)의 일종으로 각종 산화환원반응에 관여하여 반응생성속도를 촉진시키는 단백질(protein).

반응형

+ Recent posts