반응형

최근 우리나라 전체가 메르스 여파로 들썩였는데요.

KAIST 연구진이 단백질 효소를 이용해 메르스와 같은 신종 바이러스 병원균 감염 여부를 진단할 수 있는 기술을 개발에 눈길을 끌고 있습니다.

박현규  KAIST 생명화학공학과 교수팀이 개발한 기술은 특정 단백질이나 효소를 인식하는 물질 압타머(Aptamer)를 이용해 다양한 표적 DNA를 분석할 수 있는 기술을 개발했습니다.

압타머는 표적 물질과 결합할 수 있는 특성을 가진 DNA입니다.

기존 분자 비콘(Molecular beacon) 프로브 기반 유전자 분석은 분석 대상인 표적 DNA가 변경되면 이에 대응하는 새로운 분자 비콘 프로브가 필요하기 때문에 다양한 표적 DNA를 분석하는데 많은 비용이 소요되는 단점이 있었습니다.

이에 박현규 교수팀은 DNA 중합효소와 결합해 활성을 저해시키는 압타머를 고안했는데요.

이를 역으로 이용해 표적 DNA가 존재하는 경우에만 압타머가 DNA 중합효소와 결합하지 않고 활성을 유지할 수 있게 조절하는 기술을 최초로 개발한 것입니다.

표적핵산에 의한 DNA 중합효소 활성 변화를 이용해 표적 핵산을 검출한 모식도표적핵산에 의한 DNA 중합효소 활성 변화를 이용해 표적 핵산을 검출한 모식도

이번에 개발된 기술은 조절된 DNA 중합효소의 활성이 핵산 신장 및 절단 반응을 일으키고,그 결과 형광 프로브(TaqMan probe)의 형광신호 측정이 가능한 것이 핵심인데요.

이를 통해 동일한 형광 프로브를 이용하면서도 다양한 표적 DNA를 민감하게 검출할 수 있는 새로운 유전자 진단 기술 개발이 가능해진 것입니다.

이를 활용하면 표적 DNA의 종류에 따라 새로운 프로브를 사용해야 했던 기존 기술과 달리 동일한 형광 프로브를 이용하기 때문에 다양한 표적핵산을 값싸고 손쉽게 검출할 수 있고요.

기술을 응용하면 여러 다른 병원균의 감염 여부까지 수월하게 파악할 수 있을 것으로 전망됩니다.

이번 연구는 메르스처럼 새로운 병원체에 대한 진단 키트를 용이하게 제작할 수 있어 여러 병원균에 대해 신속히 대응할 수 있고, 향후 유전자 진단 분야에서 새 원천기술로 널리 활용될 것으로 기대됩니다.

한편, 이번 연구결과는 영국왕립화학회가 발행하는 케미컬 커뮤니케이션즈(Chemical communications) 6월호 후면 표지논문으로 선정됐습니다. 

연  구  개  요

기존의 핵산 기반 검출 기술은 형광 및 소광제 물질이 표지된 U자형의 DNA 프로브인 분자비콘(molecular beacon)에 기반을 두고 있다.

이 기술은 표적 핵산의 존재에 의한 분자비콘의 구조 변화에 따른 형광 신호 생성의 유무를 확인함으로써 이루어진다 . 이 기술은, 핵산의 분리과정 없이 표적 핵산을 신속하게 분석할 수 있기 때문에, 다양한 형태의 분자비콘 기반 핵산 분석 기술 개발에 적용되어 왔다.

하지만, 상기 언급한 분자비콘 기반의 분석 기술은 표적 핵산과 분자비콘이 1:1로 반응하여 형광신호를 발생시키므로, 높은 민감도를 구현하기 힘들다는 단점을 가지고 있다. 또한, 서로 다른 표적 핵산의 분석을 위해 이에 대응하는 새로운 분자비콘이 필요하므로, 다양한 표적 핵산을 분석하는데 많은 비용이 드는 문제점을 지니고 있다.

상기 기술의 문제점을 극복하기 위하여 연구 노력한 결과, 본 연구팀은 다양한 표적 핵산의 검출에 보편적으로 적용될 수 있는 민감도가 우수한 효소 기반 검출 시스템을 개발하였다.

본 기술은 DNA 신장 반응(extension reaction)을 수행하는 핵산 중합효소(DNA polymerase)인 Taq 핵산 중합효소 및 이에 특이적으로 결합하여 활성을 저해시키는 DNA 압터머(DNA aptamer)를 도입하였다.

구체적으로, 표적 핵산의 검출을 위해 DNA 압터머에 표적 핵산을 특이적으로 인식하는 단일가닥 DNA를 포함하도록 디자인하였으며, 이 부분이 표적 핵산과 결합하여 DNA 압터머로부터 떨어져나갈 경우, DNA 압터머는 Taq 핵산 중합효소와 더 이상 결합하지 않게 되고 핵산 중합효소의 활성은 증가하게 된다.

이러한 표적 핵산과 DNA 압터머의 상호작용을 통한 핵산 중합효소의 활성 변화는 TaqMan 프로브(TaqMan probe)에 기반을 둔 프라이머 신장 반응(primer extension reaction)에서 유래하는 형광신호를 통해 실시간으로 분석할 수 있다.

상기 기술은 기존의 핵산 기반 검출 기술과 비교하여 표적 핵산을 인식하는 부분과 이 결과로 유래되는 신호를 검출하는 부분이 따로 분리되어 있기 때문에, 신호를 검출하는 부분의 구성요소인 TaqMan 프로브는 동일하게 유지하며, 표적 핵산을 인식하는 부분의 구성요소인 DNA 압터머의 염기서열만의 변화를 통해 다양한 표적 핵산을 범용적으로 분석할 수 있다. 따라서, 다양한 표적 핵산의 분석에 드는 비용을 매우 절감할 수 있다.

 

 용 어 설 명

압타머
저분자 화합물로부터 단백질까지 다양한 종류의 표적 물질에 대해서 높은 친화성과 특이성을 가지고 결합할 수 있는 작은 단일가닥 DNA

DNA 중합효소
DNA를 복제하여 증폭시키는 역할을 하는 효소

분자 비콘(Molecular beacon)
표적핵산에 상호보완적인 염기서열을 포함하는 헤어핀 구조의 DNA로서, 양 말단에 형광체와 소광체가 각각 달려있다.

TaqMan 프로브
5’ 말단과 3’ 말단에 각각 형광체와 소광체가 달린 짧은 단일가닥 DNA

 

박현규 교수 이력사항

□ 인적사항
○ 소 속 : KAIST 생명화학공학과

□ 학 력
○ KAIST 생명화학공학과 학사 1990
○ KAIST 생명화학공학과 석사 1992
○ KAIST 생명화학공학과 박사 1996

□ 경력사항
○ 1996~2002 삼성종합기술원, 선임연구원
○ 2002~2006 KAIST 생명화학공학과, 조교수
○ 2006~2012 KAIST 생명화학공학과, 부교수
○ 2012~현재 KAIST 생명화학공학과, 교수
○ 2015~2018 KAIST 지정 석좌교수

 

 

 

 

반응형
반응형

스마트폰과 같은 휴대용 전자기기에 적용되는 정전기방식 터치스크린은 손가락의 접촉을 통해 발생하는 정전용량 변화를 감지해 작업을 수행하도록 설계되어 있습니다.

이를 이용해 앞으로 병원에 가지 않고도 스마트폰을 가지고 간단한 질병을 진단하는 시대가 열릴 전망입니다.

KAIST 생명화학공학과 박현규 교수와 원병연 연구조교수 팀이 스마트폰 등에 사용되는 정전기방식 터치스크린을 이용해 생체분자를 검출하는 원천기술을 세계 최초로 개발했습니다.

박 교수팀은 DNA가 자체 정전용량을 가지면서도 농도에 따라 정전용량이 변화한다는 사실에 착안해 정전기방식의 터치스크린을 생체분자 검출에 활용할 수 있을 것이라고 예상했습니다.

이를 규명하기 위해 박 교수팀은 대표적 생체분자인 DNA를 터치스크린 위에 가하고 정전용량 변화량을 감지한 결과 터치스크린을 이용해 DNA의 유무와 농도를 정확하게 검출할 수 있음을 확인했습니다.

정전용량 터치스크린 방식의 한가지인 surface capacitive touchscreen을 이용한 시스템 모식도. 여러 지점을 동시에 접촉했을 때 접촉점의 시료 농도에 따라 터치 신호의 위치가 변하는 원리를 이용한 방법. 동시에 두 개의 미지 시료의 농도를 측정할 수 있다.

정전용량 터치스크린 방식의 한가지인 projected capacitive touchscreen을 이용한 시스템 모식도. 현재 스마트폰 등에 쓰이는 터치스크린 방식으로서, 터치스크린 표면 내부에 여러 라인의 전극이 패턴되어 있어, 각 전극의 정전용량 변화를 각각 측정함으로써 여러 접촉 시료의 농도를 동시에 검출할 수 있다.



이 결과에 따라 DNA 뿐만 아니라 세포, 단백질, 핵산 등 대부분의 생체분자가 정전용량을 갖고 있기 때문에 다양한 생체물질의 검출에도 활용될 수 있다는 가능성을 제시했습니다.

이번 연구는 모바일기기 등에 입력장치로만 이용했던 터치스크린을 생체분자 등의 분석에 이용할 수 있음을 세계 최초로 입증한 결과입니다.

연구 결과는 화학 분야의 세계적 학술지 '앙게반테 케미(Angewandte Chemie International Edition)' 1월호(16일자) 표지논문으로 선정됐습니다.

터치스크린을 이용한 생체 분자 검출 시스템 모식도 (앙게반테 케미 논문 표지). 휴대용 모바일 기기의 입력장치인 터치스크린 위에서 세포, 단백실, 핵산, 소분자 등의 생체 분자를 검출할 수 있다.


<연 구 개 요>

질병의 감염 또는 발병 여부, 건강상태의 지속적인 모니터링, 맞춤 의학 등을 위한 체외진단 시장에서 분자진단검사는 연평균 성장률 약 19%로 가장 빠르게 성장하고 있는 분야이며, 건강에 대한 관심이 높아짐에 따라 이에 대한 관심이 고조되고 있습니다.
그러나 현재의 진단 방법은 고가의 대형 분석 장비와 고도로 숙련된 인력을 필요로 하기 때문에, 대학 병원 등의 전문 기관에서만 가능한 실정입니다.
따라서, 시료를 검사 기관으로 보내고 받는 시간이 필요하기 때문에, 결과적으로 시료의 채취로부터 결과 통보까지 며칠 씩 소요됩니다.
이에 따라, 최근 신종플루 (H1N1)가 창궐한 경우처럼 신속한 대응이 필요한 경우에는 한계가 생겨, 결과 통보 전에 환자가 사망하는 경우가 발생하기도 하였습니다.

이와 같은 한계를 극복하고자, 환자가 시료를 채취하여 그 자리에서 검사를 수행하는 시스템이 필요하게 되었는데, 그것을 현장진단 시스템 (POCT, point-of-care testing) 이라고 합니다.
현재 상용화 된 가장 대표적인 현장진단 시스템은 혈당측정기이며, 다양한 병원물질을 대상으로 현장진단 시스템을 개발하기 위한 연구가 지속되고 있습니다.

그러나, 이와 같이 개발된 분석칩은 소형화되는 반면에, 이를 분석하기 위한 분석 장비는 아직도 소형화 되지 못하는 경우가 많습니다.
이런 관점에서 전기식 분석 방법은 가격이 저렴하고, 조작이 간편하고, 분석 장치의 소형화가 용이하여 현장진단 시스템 구현에 매우 적합한 분석 방법입니다.

한편, 세포, 단백실, 핵산, 각종 이온 등의 생체 분자는 대부분 특정조건에서 전하를 띠고 있어, 생체 분자 용액에 전압이 인가되면 전극 표면에 정전용량의 변화가 발생합니다.
이와 같은 개념의 정전용량 바이오센서 (capacitive biosensor) 도 현재 연구가 되고 있는 분야입니다. 그러나, 이 연구들도 대부분 특수하게 고안된 분석칩에서 전문 분석 기기를 사용하고 있습니다.
본 연구팀은 현재 휴대용 모바일 기기의 입력장치로 사용되고 있는 터치스크린이 손가락의 접촉에 따른 전극의 정전용량 변화를 검출한다는 원리에 착안, 전용의 분석칩이나 분석기기 없이 터치스크린만으로도 생체 분자의 존재 또는 생체 분자의 농도를 측정할 수 있음을 최초로 입증하였습니다.
본 연구에서는 정전용량 터치스크린의 두 가지 방식인 surface capacitive 방식과, projected capacitive 방식의 터치스크린을 각각 사용하여, 검출 대상 생체분자로서 성병 유발 인자 중 하나인 클라미디아 DNA를 정량한 결과, 기존의 흡광 기반의 DNA 정량 방법과 완벽히 일치하는 결과를 보여주었습니다.
따라서, 현재의 터치스크린으로 생체 분자의 검출이 충분히 가능하며, 이를 통해 향후 터치스크린이 탑재된 모바일 기기 등을 개인 휴대용 진단 장치로 사용할 수 있을 것으로 기대합니다.


 용  어  설  명

정전용량 방식 터치스크린 :
터치스크린은 구현방식에 따라 저항막 방식, 정전용량 방식, SAW(초음파) 방식, IR(적외선) 방식으로 구분되며, 과거에는 저항막 방식이 주류였으나, 아이폰과 안드로이드폰 등 스마트폰이 등장한 이후에는 정전용량 방식이 주로 사용되고 있음. 손가락 등의 전도성 소재가 터치스크린 표면의 전극에 접촉했을 때의 정전용량의 변화를 감지하며, 여러 개의 접촉 지점을 동시에 인식할 수 있음

정전용량 :
절연되어 있는 물체에 전하(電荷) Q를 줄 때, 물체가 갖는 전위(電位) V와의 비. 정전 용량 기호 C, 단위 패럿(F), 1F는 1C의 전하로 1V의 전위(또는 전위차)가 생기는 크기.
 

 <박현규 교수 프로필>

1. 인적사항
○ 소  속 : 카이스트 생명화학공학과

2. 학    력
○ KAIST 화학공학과 학사 1990
○ KAIST 화학공학과 석사 1992
○ KAIST 화학공학과 박사 1996

3. 경력사항
○ 2006. 3. ~ 현재 카이스트 생명화학공학과 부교수
○ 2002. 4. ~ 2006. 2. 카이스트 생명화학공학과 조교수
○ 1996. 2. ~ 2002. 3. 삼성종합기술원 선임연구원

4. 주요연구실적 (최근 3년간)
○ "A touchscreen as a biomolecule detection platform" Byoung Yeon Won and Hyun Gyu Park*, Angew. Chem. Int. Ed., in press. - will be highlighted as a front cover article
○ "A highly efficient electrochemical biosensing platform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam" Moon Il Kim, Youngjin Ye, Byoung Yeon Won, Sujeong Shin, Jinwoo Lee* and Hyun Gyu Park*, Adv. Funct. Mater., 21(15), 2868-2875.
○ "Label-free colorimetric detection of nucleic acids based on target-induced shielding action against the peroxidase mimicking activity of magnetic nanoparticles" Ki Soo Park, Moon Il Kim, Dae-Yeon Cho and Hyun Gyu Park* , Small, 7(11), 1521-1525. - Highlighted as a front cover article
○ "Cell-based quantification of homocysteine utilizing bioluminescent Escherichia coli auxotrophs" Min-Ah Woo, Moon Il Kim, Byung Jo Yu, Dae-Yeon Cho, Nag-Jong Kim, June Hyoung Cho, Byung-Ok Choi, Ho Nam Chang and Hyun Gyu Park*, Anal. Chem., 83(8), 3089-3095 - Highlighted as a front cover article 
○ "Illusionary polymerase activity triggered by metal ions: Use for molecular logic-gate operations" Ki Soo Park, Cheulhee Jung and Hyun Gyu Park* , Angew. Chem. Int. Ed., 49(50), 9757-9760, - Highlighted as a cover article & Nature featured this paper at 'News & Views' of January 6th issue of 2011.

반응형
반응형

신속하고 간편한 신개념 심혈관질환 진단시스템이 개발됐습니다.

박현규 교수

KAIST 생명화학공학과 박현규 교수는 대장균을 이용해 심혈관질환을 유발하는 혈액 속 호모시스테인(Homocysteine)의 농도를 분석하는 기술을 개발했습니다.

연구팀은 유전자 재조합을 통해 서로 다른 두 개의 생물발광 대장균 영양요구주를 만들어 호모시스테인에 대한 두 균주의 성장차이를 생물발광 신호로 분석했습니다.

이 기술은 많은 수의 혈액 샘플을 대량으로 동시에 분석할 수 있어 매우 경제적이기 때문에 최근 급성장하는 호모시스테인 정량검사 분야의 상업화에 커다란 진보를 일궈낸 것으로 평가받고 있습니다.

우민아 박사과정

기존의 효소반응 또는 고성능 액체크로마토그래피(High Performance Liquid Chromatography)를 이용하는 방법은 비교적 긴 시간이 소요되며 가격이 비싼 단점이 있었습니다.

연구팀은 이를 극복해 아무런 추가 조작 없이 유전자 재조합 대장균을 배양하고, 이에 따라 자동적으로 생성되는 발광신호를 측정함으로써 호모시스테인을 매우 신속하고 간편하게 측정했습니다.

박 교수는 이 기술이 심혈관질환을 유발하는 호모시스테인을 유전자 재조합 대장균을 이용해 정확하게 분석하는 신개념 분석법으로 학계에서 최초로 발표된 신기술이다라고 평가하고 있습니다.

이번 연구는 그 중요성을 인정받아 분석화학 분야의 세계적인 학술지인 '어낼리티컬 케미스트리(Analytical Chemistry)' 4월호(4월 15일자) 표지논문으로 선정됐습니다.

 

박 교수팀은 아미노산의 일종인 메싸이오닌(Methionine)에만 의존해 성장하는 영양요구주(Auxotroph)와 메싸이오닌과 호모시스테인(Homocysteine) 모두에 의존해 성장하는 영양요구주를 각각 유전자 조작법을 통해 만들었다. 이후 균주 속에 생물발광(Bioluminescent)을 유도할 수 있는 표지유전자를 주입함으로써 두 균주의 성장차이를 생물발광 신호차이로 인식해 호모시스테인 농도를 측정하는 방법을 개발했다.
또한 이 두 균주를 아가로스(Agarose) 용액과 혼합된 고형 상태로 96-홈판 (96-well plate)에 배열하고 각각의 홈에 혈액 샘플을 넣어서 4시간 가량 배양한 후 발광신호(Luminescence)를 측정함으로써 매우 간편하고 빠르게 호모시스테인을 분석하여 심혈관질환을 진단하는 기술을 구현했다.


 용 어 설 명

호모시스테인(Homocysteine): 아미노산의 일종인 메치오닌을 탈메칠화한 것으로 시스테인(Cysteine) 합성의 중간물질

영양요구주(Auxotroph): 식물 세포계나 미생물 등에 있어서 무기염류와 탄소원으로만 이루어진 합성배지로는 증식할 수 없고 1종 또는 그 이상의 영양소를 보충하여 비로소 생육하는 균주

생물발광(Bioluminescent): 생물이 스스로 또는 공생 생물의 작용에 의해 발광하는 현상

아가로스(Agarose): 해초에서 분리한 갈락토오스가 주성분인 다당류로써 점성을 갖고 있기 때문에 세포를 고정해서 배양하는 고형배지의 조제용으로 사용됨.

발광신호(Luminescence): 루미네선스, 형광이나 인광처럼 열을 동반하지 않는 발광현상으로써 물질이 흡수한 에너지를 빛으로 방출하는 현상

생물발광 영양요구주를 이용한 심혈관질환 유발 요소인 혈액 속 호모시스테인 분석 모식도(어낼리티컬 케미스트리 표지)

 

반응형
반응형

전기화학적 방법을 이용해 기존보다 사용이 간편하고 가격이 저렴하며, 분석 장치를 소형화 할 수 있는 유전자 진단 기술을 카이스트에서 개발했습니다.

KAIST 박현규 생명화학공학과 교수가 전기화학적 활성을 가진 핵산 결합 분자인 메틸렌 블루(Methylene Blue)를 이용해 전기화학적 실시간 중합효소 연쇄 반응(Real-Time PCR) 기술을 개발했습니
.

박현규 교수

현재 유전자 분석 분야에서 가장 널리 사용되고 있는 Real-Time PCR(Polymerase Chain Reaction) 방법은 형광 신호를 이용하기 때문에 고가의 장비와 시약이 사용되는 분석 기술입니다.

이에 반해 전기화학적 방법은 사용이 간편하고 가격이 저렴하며, 무엇보다 분석 장치를 소형화 할 수 있는 이점이 있습니다.

연구팀은 산화/환원을 통해 전기화학적인 신호를 발생하는 물질인 메틸렌 블루가 핵산과 결합하면 전기화학적 신호가 감소하는 현상에 착안, 이를 PCR에 적용해 핵산의 증폭 과정을 전기화학적 신호를 통해 실시간으로 검출할 수 있는 전기화학적 Real-Time PCR을 구현하는 데 성공했습니다.

또 이 신호 변화 현상이 메틸렌 블루의 확산 계수와 관련된 것임을 규명해 향후 다양한 방법으로 응용될 수 있는 신호 발생을 기반으로 한 기술도 확립했습니다.

연구팀은 이를 기반으로 전극이 인쇄된 작은 칩을 제작해 성병 유발 병원균인 클라미디아 트라코마티스(Chlamydia trachomatis)의 유전자를 대상으로 연구를 수행했습니다.

그 결과 기존 형광 기반의 Real-Time PCR과 거의 동일한 성능을 보였다. 따라서 다양한 질병 진단을 비롯해 다양한 유전자 연구 분야에 적용할 수 있음을 입증했습니다.

Real-Time PCR 기술이 현재 유전자 진단 분야에서 가장 확실한 분석 방법임에도 불구하고 형광 기반의 분석 방법이다 보니 고가의 검출 장비 및 분석 시약을 필요로 합니다.

이번 연구 결과로 유전자 진단에 소요되는 시간과 비용을 획기적으로 절감할 수 있을 전망입니다.
 
한편, 세계적인 학술지인 '아날리스트(The Analyst)' 4월호(4월 21일자) 표지논문으로 선정됐습니다.

신호 분자 결합에 의한 전기화학적 Real-Time PCR 모식도 (아날리스트 표지)

 

 용 어 설 명

Real-Time PCR : 실시간 중합효소연쇄반응. 중합효소연쇄 반응을 통해 증폭되는 핵산을 실시간으로 모니터링을 하고 해석하는 기술

PCR(Polymerase Chain Reaction) : 중합효소 연쇄 반응. 현재 유전물질을 조작해 실험하는 거의 모든 과정에 사용되는 검사법으로, 검출을 원하는 특정 표적 유전물질을 증폭하는 방법이다. 1985년에 캐리 멀리스(Kary B. Mullis)에 의해 개발됐다.

Chlamydia Trachomatis : 클라미디아 트라코마티스(chlamydia trachomatis)라는 병원균에 의한 성병으로 성적 접촉으로 점염되어 비뇨생식계에 질병을 일으키는 감염증의 가장 흔한 원인균.

반응형
반응형

KAIST 생명화학공학과 박현규 교수가 핵산중합효소의 비정상적인 활성을 금속이온을 통해 조절하고, 이를 이용해 바이오 컴퓨터를 포함하는 미래 바이오 전자 분야의 핵심기술인 로직 게이트를 구현하는 기술을 개발했습니다.

DNA를 새롭게 생성해 증폭시키는 효소인 핵산중합효소는 증폭 대상인 목적 DNA와 프라이머(primer)의 염기쌍이 서로 상보적인 짝(A와 T, C와 G)을 이룰 경우에만 가능하다고 알려졌습니다.

박현규 교수

박 교수는 이러한 기존의 개념을 뛰어넘어 특정 금속이 있을 경우에는 상보적인 염기쌍이 아닌 T-T 및 C-C 염기쌍으로부터도 핵산중합효소의 활성을 유도해 핵산을 증폭할 수 있다는 사실을 규명했습니다.

이는 수은 및 은 이온과의 결합을 통해 안정화 된 비 상보적인 T-T와 C-C 염기쌍을 상보적인 염기쌍으로 인식하는 핵산중합효소의 착각 현상에 기인한 것으로, 박 교수는 이를 '중합효소 활성 착오(Illusionary polymerase activity)'로 묘사했습니다.

연구팀은 이 현상을 기반으로 바이오 컴퓨터 등 초고성능 메모리를 가능하게 하는 미래 바이오전자 구현을 위한 핵심기술인 로직게이트를 구현했습니다.

이번 연구는 기존에 연구되어온 금속 이온과 핵산의 상호작용연구에서 한 걸음 더 나아가 이를 효소활성 유도와 연관시킨 최초의 시도로써, 금속이온의 초고감도 검출 및 새로운 단일염기다형성(single nucleotide polymorphism) 유전자 분석 기술로 적용할 수 있다는 것이 박 교수의 설명입니다.

특히 기존 핵산 기반 기술들과 비교해 비용이 저렴하고 간단한 시스템 디자인을 통해 정확한 로직 게이트 구현이 가능함으로써 분자 수준의 전자소자 연구에 큰 진보를 가져올 전망입니다.

금속이온에 의한 핵산중합효소 활성 유도 모식도 (앙게반테 케미 표지)




  용  어  설  명

○ 핵산 : 생명체의 기본 유전 물질로 아데닌(A)-티민(T) 및 구아닌(G)-시토신(C) 염기쌍의 연속으로 구성된 이중나선 구조

○ 상보성 : 두 가닥의 DNA가 서로 결합하여 이중나선의 DNA 구조를 형성할 때 한쪽 가닥의 A와 G가 다른쪽 가닥의 T와 C에 각각 결합하는 DNA 염기들간의 결합 규칙(A-T & G-C)

○ 핵산 증폭 : 소량의 DNA를 분석 가능한 충분한 양으로 만들기 위한 일련의 과정으로 핵산중합효소를 이용하여 짧은 시간에 10 억배 가량의 증폭된 산물을 생성

○ 핵산중합효소 : 증폭시킬 대상인 목적 DNA를 주형으로 해서 이에 상보적인 DNA 가닥을 생성함으로써 DNA를 증폭시키는 효소

○ 프라이머(primer) : 핵산중합효소가 목적 DNA를 주형으로 해서 새로운 DNA 가닥을 생성할 때 시발점 역할을 하는 짧은 DNA 가닥을 필요로 한다. 이러한 주형 DNA의 한쪽 끝에(3′말단) 상보적인 짧은 길이의 DNA 가닥

○ 단일염기다형성(single nucleotide polymorphism) : 인종에 상관없이 인간은 99.9%  유전자가 일치하지만 0.1%는 다르다. 이 차이는 인간 게놈 (genome) 의 특정 위치에서 하나의 염기서열(A,T,G,C)의 차이 때문에 일어나며 이를 단일염기다형성이라 한다. 단일염기다형성은 질병의 발병 원인 및 특정 질병에 효과적인 약물이 무엇인지를 판단하는 근거로 사용될 수 있기 때문에 신약개발과 맞춤의약 분야에 있어서 그 중요성이 증대되고 있다.

○ 로직 게이트 : 논리연산을 실행 할 수 있는 디지털 회로의 기본적인 요소

반응형

+ Recent posts