블로그 이미지
과학이야기
최신 과학기술 동향

calendar

      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30    

Notice

Recent Comment

Archive

3차원 나노금형을 고가의 노광장비를 사용하지 않고 값 싸게 대량 생산할 수 있는 원천기술이 개발됐습니다.

3차원 나노금형 제작기술은 차세대 메모리, 나노센서 등을 값 싸게 제작할 수 있는 나노임프린트 공정의 핵심기술입니다.

한국기계연구원 정준호 박사팀은 KAIST 김상욱 교수팀과 공동으로 3차원 나노금형 제작기술 개발에 성공했습니다.

연구팀은 금속 산화물 소재의 3차원 집적 나노임프린트 공정과 블록 공중합체 자기 조립공정을 융합해 30㎚급 3차원 나노금형을 제작했습니다.

이번에 개발된 기술은 공정이 단순할 뿐만 아니라 대면적 3차원 곡면 상에 수십 나노미터 크기의 구조물을 제작할 수 있습니다.

 

(A) 금속산화물 직접 나노임프린트와 블록공중합체 자기조립의 융합을 통한 나노금형 제작공정도
(B) 금속산화물 직접 나노임프린트공정에 의해 제작된 800 nm 주기의 금속산화물 패턴
(C) 금속산화물 패턴 안에 블록공중합체 자기조립공정에 의해 형성된 30 nm급 패턴

 

(A) 금속산화물 직접 나노임프린트를 사용한 3차원 곡면 구조 제작 공정도
(B) 3차원 곡면 구조 단면 전자현미경 사진
C) 3차원 곡면 구조 원자현미경 사진

3차원 금속산화물 곡면 상에 형성된 30 nm급 패턴, 블록공중합체 코팅두께에 따른 패턴 형상 변화
(A: 20 nm 두께, B: 40 nm 두께, C: 50 nm 두께, 각각의 단면사진(D-F))

연구팀은 이를 바탕으로 금속 나노와이어 기반의 투명전극을 개발할 예정입니다.

이번 연구결과는 나노분야 저명 국제 학술지 'small'(IF: 7.33)  5월 21일 자 내부 표지논문으로 선정되었습니다.

2012년 5월 21일자 'small'지의 내부표지 사진


<금속산화물소재 직접 나노임프린트공정>

기존의 나노패턴형성 공정에서 필수적인 고비용의 식각공정 없이 한 번에 금속산화물 소재의 나노패턴을 제작할 수 있는 공정이다.
금속산화물을 함유한 유무기 소재가 코팅된 기판에 나노금형을 가압한 후 자외선을 조사하여 경화 시키고 나노금형을 분리한다. 최종적으로 300oC 열 처리를 통해 유기물을 제거하게 된다.

<블록공중합체 자기조립>

블록공중합체는 서로 다른 화학적 구조를 가지는 고분자 블록들이 공유결합을 통하여 연결되어 있는 분자구조를 가지고 있다.
한 물질 내에 존재하는 고분자 블록들은 상분리를 일으키려고 하나 서로 공유결합으로 연결되어 있기 때문에 상분리가 제한되어 결국 구 (sphere), 실린더 (cylinder) 등의 형태로  5~50㎚의 주기를 갖는 나노 패턴을 형성한다.
일반적인 블록공중합체 자기조립으로 형성되는 나노패턴은 무질서한 배향 방향을 가질 뿐 아니라 많은 결함을 내포하고 있다.
따라서 실질적인 응용을 위해서는 나노패턴의 배향과 배열을 원하는 형태로 조절할 수 있는 기술이 필요하다.

<금속산화물 직접 나노임프린트 공정과 자기조립공정의 융합기술>

직접 나노임프린트 공정을 이용하여 넓은 면적에 큰 주기의 금속 산화물 패턴을 제작하고 금속 산화물 패턴 내부에 정렬된 블록 공중합체 나노구조를 형성시키는 기술이다.
식각공정을 사용하지 않는 직접 나노임프린트 공정으로 제작한 금속산화물 패턴은 표면 조도가 매우 우수하며 고온에서도 안정한 격벽구조를 유지할 수 있어 결함이 없는 블록공중합체 나노구조를 형성시킬 수 있다.

 

 용  어  설  명 

나노금형:
나노임프린트 공정의 필수부품으로 나노크기의 패턴이 새겨진 금형

나노임프린트 공정:
나노금형을 사용하여 도장을 찍듯 기판 상에 나노패턴을 전사하는 공정으로, 전량 수입에 의존하는 수백억대 노광장비로도 구현이 어려운 10 ㎚이하의 패턴 형성도 가능한 공정

 

posted by 글쓴이 과학이야기

댓글을 달아 주세요

2012. 2. 7. 11:33 대덕밸리과학소식/KAIST


반도체 회로의 초미세 제품개발 경쟁이 갈수록 치열해지고 있습니다.


그러나 현존 최첨단 반도체 기술로도 10㎚(나노미터) 이하의 반도체 제작은 불가능한데요.

기존 실리콘을 대체할 신물질을 이용한 차세대 반도체는 국가경쟁력 강화를 위해 반드시 풀어내야 할 숙제입니다.

특히 최근 광식각 패턴기술이 적용되던 반도체 회로의 크기가 물리적 한계에 도달하면서 이런 요구는 더욱 높아지고 있습니다.

이에 따라 생체소재를 이용해 초미세 회로을 제작하는 연구가 전 세계적으로 진행되고 있습니다.

이 중 DNA는 2㎚(나노미터)까지 정교한 미세패턴이 구현 가능해 차세대 신소재로 각광받고 있습니다.

2나노급 반도체가 개발되면 우표 크기의 메모리 반도체에 고화질 영화 1만 편을 저장하는 등 현재 상용중인 20나노급 반도체보다 약 100배나 많은 용량을 담을 수 있습니다.

□ KAIST 신소재공학과 김상욱 교수팀이 DNA를 그래핀 위에서 배열시키는 기술을 활용해 초미세 반도체 회로를 만들 수 있는 원천기술을 개발했습니다.

이번 신기술 개발을 통해 기존에 사용되고 있는 물리적 방식의 최첨단 기술로도 불가능하다고 여겨졌던 2 ㎚(나노미터)급의 선폭을 갖는 반도체 개발이 가능해질 전망입니다.

연구팀은 'DNA 사슬접기'라고 불리는 최첨단 나노 구조제작 기술을 이용해 금속 나노입자나 또는 탄소나노튜브를 2㎚(나노미터) 까지 정밀하게 조절할 수 있는 점을 발견했습니다.

그러나 이 기술은 실리카나 운모 등 일부 제한된 특정 기판위에서만 패턴이 형성되기 때문에 반도체칩에는 적용이 불가능했습니다.

이에 김 교수팀은 다른 물질과 잘 달라붙지 않는 그래핀을 화학적으로 개질해 표면에 다양한 물질을 선택적으로 흡착하도록 만들었습니다.

DNA 들이 결합하면서 DNA 오리가미를 형성과 함께 그래핀 산화물 표면과 질소도핑/환원 그래핀 산화물 표면에 흡착되는 모습.

개질된 그래핀은 원자수준으로 매우 평탄하면서도 기계적으로 잘 휘거나 변형되는 그래핀의 장점을 갖고 있습니다.

이 위에 DNA 사슬접기를 패턴화할 경우 기존에는 불가능했던 잘 휘거나 접을 수 있는 형태의 DNA 회로구성이 가능할 전망입니다.

화학적으로 개질된 그래핀 위에서 형성된 직사각형 모형의 DNA 사슬접기 모양과 측정 사진



다양한 기능을 발휘하는 그래핀 소재 위에 2나노 급의 초미세 패턴을 구현할 수 있는 DNA 사슬접기를 배치시키는 기술은 기계적으로 유연한 나노반도체나 바이오센서 등 다양한 분야에 원천기술로 활용될 전망입니다.

이번 연구결과는 화학분야의 세계 최고 권위의 학술지인 '앙게반테 케미(Angewandte Chemie International Edition)' 1월호에 표지논문으로 발표됐으며 관련 기술은 국내외 특허출원을 마쳤습니다.

 

 용  어  설  명

그래핀 :
육각의 벌집구조로 결합한 탄소가 연속적으로 연결되어 탄소 원자 한 층의 두께를 가진 2차원의 평판 모양을 이룬 탄소소재

광식각 기술 :
빛에 민감한 고분자를 이용하여 미세한 패턴을 형성하는 반도체용 미세형상 제작 기술

DNA 사슬접기 :
긴 단일 DNA 사슬 하나와 정교하게 설계된 짧은 단일 DNA 사슬들이 염기 서열 규칙에 따라 이중나선 DNA 구조로 접히면서 다양한 모양의 나노구조물을 형성하는 생체소재. 
DNA는 염기서열에 따라 규칙적으로 결합되어 유전정보를 저장하는 생체소재이며, 2006년도에 최초로 개발된 DNA Origami (DNA 사슬접기)는 긴 DNA 사슬을 마치 뜨개질하듯 정밀하게 설계된 짧은 DNA 사슬들과 결합시켜 다양한 형태의 나노 구조물을 만드는 최첨단 나노기술이다.

탄소나노튜브 :
육각의 벌집구조로 결합한 탄소가 수 nm(나노미터) 크기의 직경을 갖는 튜브를 형성한 탄소소재

나노 기술 :
1나노미터는 10억분의 1m다.
즉 사람 머리카락의 1만분의 1 굵기로 반도체 회로를 그려넣는 초미세 가공기술이다. 반도체는 회로선 폭이 가늘어질수록 원가가 절감되고 에너지 효율도 높아진다

 

 <보 충 설 명>

플레시 메모리의 회로 선폭에 대한 로드맵

2013년도에 10nm급 패턴 (16nm) 개발예정으로 되어 있고, 2011년 이후 현재 양산은 22nm 회로선폭으로 제작되고 있음을 나타냄

DNA사슬 형성과정

DNA 오리가미가 형성되는 과정을 모식도로 표현한 것이며 실제로 형성된 DNA 오리가미를 AFM 장비를 이용하여 그래핀 산화물 위에 잘 흡착되어 있는 것을 측정한 것임.


DNA 사슬접기가 그래핀에 흡착된 상태를 측정

DNA 사슬접기가 화학적으로 개질된 여러 종류의 그래핀에 따라 흡착된 상태를 AFM 장비를 이용하여 측정한 것이며 그것을 증명하기 위해서 XPS 장비를 사용하여 마그네슘 이온이 존재함을 확인한 자료 

A) 그래핀 산화물에 DNA 오리가미가 선택적으로 흡착됨을 AFM 분석과 흡착된 영역에 마그네슘 이온이 존재함을 XPS 분석으로 확인

B) 질소도핑/환원 그래핀 산화물에 DNA 오리가미가 선택적으로 흡착됨을 AFM 분석과 흡착된 영역에 마그네슘 이온이 존재함을 XPS 분석으로 확인

C) 환원 그래핀 산화물에 DNA 오리가미가 흡착되지 않음을 AFM 분석과 마그네슘 이온이 적게 분포함을 XPS 분석으로 확인

D) 그래핀에 DNA 오리가미가 흡착되지 않음을 AFM 분석과 마그네슘 이온이 적게 분포함을 XPS 분석으로 확인


화학적으로 개질된 그래핀 위에 DNA 사슬접기를 흡착시킨 후에 DNA 사슬접기 내에 특정 위치의 DNA 사슬 단일 가닥과 CNT와 결합된 다른 DNA사슬 단일 가닥과 결합하면서 CNT의 흡착 위치를 제어하는 것을 표현

DNA 사슬접기는 긴 원형의 단일 DNA 사슬에 수백개의 짧은 DNA 단일 사슬들과 이중나선 구조를 형성하면서 긴 원형의 단일 DNA사슬이 포개지면서 형성하는 것으로 짧은 DNA 단일 사슬들 중에 CNT에 결합되어 있는 DNA사슬과 결합할 수 있는 특정 단일 DNA 사슬을 사용하므로써 CNT의 위치를 제어 할 수 있습니다.


posted by 글쓴이 과학이야기

댓글을 달아 주세요

2010. 12. 10. 03:00 대덕밸리과학소식/KAIST

유기태양전지는 반도체고분자의 광반응을 통해 전기에너지를 생산하면서도 고가의 실리콘을 사용하지 않아 가격이 저렴합니다.
또 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원입니다.

유기태양전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용될 수 있습니다.

그런데 효율이 문제였습니다.

유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮기 때문에 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점입니다.

이러한 문제를 해결하기 위해 반도체고분자의 수송 특성을 향상시키려는 다양한 연구들이 전 세계적으로 진행되어 왔습니다.

이 가운데 특히, 탄소나노튜브나 나노와이어 등을 이용해 전자나 정공의 빠른 수송 경로를 제공해주는 방법이 꾸준히 연구됐는데요.

그러나 전자와 정공이 동시에 탄소나노튜브나 나노와이어에 주입되어 자기들끼리 재결합 함으로써, 결국 외부에서 채집되는 전류가 증대되지 못하거나 오히려 감소하는 고질적인 문제가 발생했습니다.

이 같은 문제를 포함해 유기태양전지의 낮은 광변환 효율 등이 상용화에 걸림돌이 돼 이에 대한 성능향상이 시급히 요구돼 왔습니다.

이 같은 문제점을 우리나라 KAIST에서 해결했습니다.

김상욱 교수


KAIST 신소재공학과 김상욱 교수팀과 전기및전자공학과 유승협 교수팀이 탄소나노튜브를 유기태양전지에 적용해 에너지 변환효율을 크게 향상시키는데 성공했습니다.

 연구팀은 유기 태양전지의 반도체고분자에 붕소 또는 질소 원소로 도핑된 탄소나노튜브를 적용해 전자나 정공 중 한쪽만을 선택적으로 수송하도록 함으로써, 이들의 재결합을 막아 유기태양전지의 효율을 33%나 향상시켰습니다.

도핑된 탄소나노튜브가 적용된 유기태양전지의 구조 도식.(탄소나노튜브(까만 실같은 것)가 적용된 빨간 부분에서 광반응이 일어나서 전기에너지를 생산 할 수 있습니다.)

또 도핑된 탄소나노튜브는 유기용매 및 반도체고분자내에서 매우 쉽고 고르게 분산되는 특성을 보여, 기존의 값싼 용액공정을 그대로 사용해 효율이 향상된 태양전지를 만들 수 있음을 확인했습니다.

이번 연구결과로 반도체고분자가 이용되는 유기트랜지스터나 유기디스플레이 등 다양한 전자기기의 성능향상도 가능할 것으로 기대되고 있습니다.

이주민 연구원

유승협 교수













 용어설명

도핑 : 고순도로 된 물질의 전기적인 특성을 변화시키기 위해서 강제적으로 불순물을 고순도 물질내에 넣어주는 것. 이때 넣는 불순물을 도펀트라고  한다.

posted by 글쓴이 과학이야기

댓글을 달아 주세요

prev 1 next