이화여대 김동하 교수와 장윤희 박사과정생(제1저자) 연구팀이 전기가 잘 통하는 탄소를 나노크기로 만들어 결합한 하이브리드 탄소나노소재로 차세대 연료감응형 태양전지의 효율을 높일 수 있는 기술을 개발했습니다. 이중블록공중합체의 직접 탄소화 기법에 의해 제조된 탄소/TiO2 하이브리드 박막의 (a) SEM 및 (b) AFM사진
연구팀은 분자량 10만 이상의 고분자로 직접 제조한 하이브리드 탄소나노소재를 염료감응형 태양전지에 도입해 효율을 높였습니다.
염료감응형 태양전지는 식물의 광합성 원리를 응용한 태양전지로, 기존 상용화된 실리콘 태양전지에 비해 제작방법이 간단하면서 경제적이며 투명하게 만들 수 있어, 건물의 유리창 등에 직접 활용할 수 있는 차세대 태양전지입니다.
현재 전 세계 연구자들은 염료감응형 태양전지의 효율을 높이고 상용화하고자 집중적으로 연구하고 있습니다.
연구팀이 개발한 염료감응형 태양전지는 하이브리드 탄소나노소재를 전지의 한쪽 전극(광전극)에 붙여 전기를 잘 통하게 하면서도 경계면의 저항을 최소화해 기존 전지 효율보다 최대 40% 이상 향상됐습니다.
또 연구팀이 제조한 하이브리드 탄소나노소재는 고분자를 기반으로 해 비교적 쉽게 만들 수 있어, 태양전지를 포함한 다양한 에너지 소자의 전극물질로 다양하게 활용될 수 있습니다.
이번 연구결과는 'Nano Letters'지 온라인 속보(12월 12일자)에 소개됐고, 내년 1월호에 게재될 예정입니다.
(논문명: An Unconventional Route to High Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin Films into TiO2 Nanoparticle Photoanode)
(a) 이중블록공중합체의 직접 탄소화 기법에 의해 제조된 탄소/TiO2 하이브리드 나노소재의 전도성을 평가한 순환 전압 전류(cyclic voltammetry, CV) 분석 그래프(초록)이다. 대조군으로 유리상 탄소 전극(glassy carbon electrode, 검정)과 P25 TiO2(상용화된 TiO2 나노입자, 빨강)의 CV 그래프와 직접 탄소화 기법에 의해 제조된 순수 탄소의 CV 그래프(파랑)를 나타내었으며, 직접 탄소화 기법으로 제조된 탄소의 경우 가장 많은 전류가 흐르고 있음을 알 수 있으며, 하이브리드 탄소/TiO2의 경우에는 TiO2의 낮은 전도성 때문에 순수한 탄소에 비하여 낮은 전류가 흐르는 것으로 판단된다. (b~d) 여기된 전자의 이동을 분석하기 위해서 전기화학적 임피던스 분석(electron impedance spectroscopy, EIS)을 하였다.
(b)는 등가회로(equivalent circuit)를 나타내며, (c)는 Nyquist plot으로 탄소/TiO2 박막이 도입된 염료감응형 태양전지의 경우에는 도입되지 않은 태양전지보다 저항이 작은 것을 알 수 있다.
(d)는 전자의 life time을 알 수 있는 Bode phase plot 이다. 그래프로부터 탄소/TiO2 박막이 도입된 염료감응형 태양전지에서 여기된 전자의 life time이 긴 것을 확인 하였으며, 탄소/TiO2 박막이 도입된 형태에 따라 차이가 있음을 알 수 있는데, TiO2 나노입자의 아래쪽과 위쪽에 모두 도입된 경우(초록)에 가장 낮은 저항과 가장 긴 life time을 나타낸 것을 확인 할 수 있다.
용 어 설 명
블록공중합체의 자기조립 (block copolymer self-assembly) :
블록공중합체는 화학적으로 성분이 다른 두 가지 이상의 고분자가 사슬 한쪽 끝을 통하여 공유결합으로 연결된 특이한 유형의 고분자이다.
이러한 고분자는 자기 조립을 함으로써 나노 크기 수준에서 구(sphere), 실린더(cylinder), 자이로이드(gyroid), 라멜라(lamellae)를 포함한 다양한 형태의 주기적인 구조를 발현하는 특징을 가진다.
또한, 한 쪽 블록에만 선택적으로 무기물을 결합시킴으로써 유-무기 하이브리드 구조체를 제조할 수 있는 주형(template)의 역할을 할 수 있다.
직접 탄소화 기법 (direct carbonization) :
별도의 탄소 전구체를 필요로 하지 않고, 직접 탄소화기법에 의해 고분자를 탄소질의 물질로 전환할 수 있는 기법이다. 자외선 조사를 통한 고분자의 가교(cross-linking)를 유도하고, 열처리함으로써 탄소질의 물질로 전환될 수 있으며, 블록공중합체의 자기조립 현상에서 비롯된 규칙적이고 질서도가 높은 하이브리드 탄소 나노소재의 제조 및 제어가 가능하다.
<연 구 개 요>
염료감응형 태양전지는 기존의 상용화된 실리콘 기반의 태양전지와 비교하여 높은 광전환 효율을 보일 뿐 아니라, 상대적으로 제작이 간단하며, 경제적인 차세대 태양전지이다. 본 연구팀은 탄소/TiO2 하이브리드 박막(hybrid thin film)을 이중블록공중합체(diblock copolymer)를 이용하여 제조하였고, 이를 염료감응형 태양전지의 광전극에 도입하여 효율 향상을 유도하였으며, 그 기구를 제시하였다. a) 이중블록공중합체(PS-b-P4VP)를 이용한 탄소/TiO2 하이브리드 박막 제조의 모식도; b) 탄소/TiO2 하이브리드 박막이 도입된 염료감응형 태양전지의 모식도 탄소질 생성을 위하여 별도의 전구체나 활성화 촉매를 사용하지 않고도, 자기조립 이중블록공중합체의 자외선 조사를 통한 안정화(UV stabilization) 및 열처리를 통한 직접 탄소화(direct carbonization)를 통해 용이하고 경제적으로 탄소질의 박막을 제조할 수 있으며, 이중블록공중합체의 한 블록에만 특정 무기물이 특이적으로 결합할 수 있는 특성을 이용하여 탄소/TiO2 하이브리드 박막을 제조할 수 있었다.(그림 a) 이중블록공중합체의 안정화 및 직접 탄소화에 의해 제조된 탄소/TiO2 하이브리드 박막을 염료감응형 태양전지의 구성요소인 광전극에 도입하여(그림 1,b), 염료 감응형 태양전지의 광전환 효율을 최대 40%까지 향상시키는데 성공하였다(그림2). 전류밀도-전압(photocurren-voltage) 그래프 본 연구에서 제안된 탄소/TiO2 하이브리드 박막의 제조기법은 이중블록공중합체를 이용한 용이하고 경제적인 기법이며, 이중블록공중합체의 자기조립 성질을 조절하면 다양한 구조 및 조성을 갖는 하이브리드 나노구조체를 제조할 수 있다. |
<김동하 교수> 1. 인적사항 4. 주요연구업적 |
<장윤희 박사과정생> 1. 인적사항 |
'과학산책 > 한국연구재단' 카테고리의 다른 글
1월 이달의 과학기술자상, 그래핀 비밀 밝힌 건대 박배호 교수 (0) | 2012.01.04 |
---|---|
'유전자가위 기술', Nature Methods 2011 올해의 기술 선정 (0) | 2011.12.30 |
미래 양자컴퓨터 개발의 걸림돌 해결 (0) | 2011.12.28 |
나노 기술로 청정에너지 수소 생산 (0) | 2011.12.25 |
나노물질을 잡는 집게 (0) | 2011.12.22 |