반응형

'이달의 과학기술자상' 3월 수상자로 자연의 광합성 현상을 모방하여 태양에너지로부터 최종적으로 화학물질을 생산할 수 있는 인공광합성 원천기술을 개발한 KAIST 박찬범 교수(43)가 선정됐습니다.

박찬범 교수는 바이오소재(Biomaterials) 분야의 석학으로, 인공광합성을 위한 고효율 나노바이오소재들을 개발하여 학계의 주목을 받아왔습니다.

광합성은 식물 등 자연계의 생물체가 태양광을 에너지원으로 하여 일련의 물리화학적 반응들을 통해 탄수화물과 같은 화학물질을 생산하는 현상입니다.

식물의 엽록소는 태양광을 받으면 전자를 방출하고(광반응), 이 전자는 주변으로 전달돼 연쇄적 화학반응을 일으키면서 환원에너지를 생산합니다.

또 햇빛이 없는 밤에는 낮에 재생했던 에너지를 이용해 이산화탄소를 탄수화물로 환원시킵니다.

박찬범 교수는 이러한 자연계의 광합성시스템을 모방하기 위하여 광반응의 엽록소 대신에 태양전지 등에서 사용되는 양자점 등 나노크기의 광감응 소재로 빛에너지로부터 화학적 환원에너지를 고효율로 재생하는데 성공했습니다.

또한 자연계의 연쇄적이고 복잡한 암반응 대신에 단순한 생체촉매반응을 이용하여 빛에너지로부터 최종적으로 메탄올 등 화학연료, 의약품 등 고부가가치 정밀화학물질을 생산하는 친환경 녹색생물공정 개발의 전기를 마련했습니다.

박 교수가 개발한 나노바이오소재 기반 인공광합성기술은 무한한 에너지원인 태양광을 사용해 화학연료, 정밀화학제품 등을 생체촉매반응으로 합성한다는 점에서 파급효과가 매우 큽니다.

박찬범 교수는 Advanced Materials, Angewandte Chemie 등 재료분야의 권위 있는 학술지에 2008년 이후 교신저자로서 48편의 논문을 발표하였고, 이 학술지들의 인용지수(IF)의 합계가 323(1편당 평균: 6.73)으로 매우 높습니다.

특히 인공광합성에 대한 연구결과로 지난해에만 총 6편의 표지논문을 발표하는 등 학계의 큰 주목을 받았습니다.

또 박 교수가 개발한 나노바이오소재 기반 인공광합성 기술은 2010년도 대한민국 10대 과학기술뉴스로 선정되기도 했습니다.

<박찬범 교수> 

● 인적사항

 ▶성명 : 박찬범 (朴燦範)
 ▶소속 : 카이스트 신소재공학과

● 학    력

▶1995 ∼ 1999    포항공과대학교 화학공학과, 박사
▶1993 ∼ 1995    포항공과대학교 화학공학과, 석사
▶1987 ∼ 1991    포항공과대학교 화학공학과, 학사

● 경    력

▶2008 ∼ 현재
▶2006 ∼ 2008
▶2002 ∼ 2006
▶1999 ∼ 2002
카이스트 신소재공학과, 부교수 (영년직)
카이스트 신소재공학과, 조교수
애리조나주립대학교, 조교수
UC Berkeley, 박사후연구원


● 주요업적 : 나노바이오소재 기반 인공광합성 기술개발
□ 자연의 광합성현상을 모방하여 태양에너지로부터 시작하여 최종적으로 메탄올 등 화학연료, 의약품 등 고부가가치 정밀화학물질을 태양에너지를 이용해 생산하는 친환경 녹색생물공정 원천기술 개발


반응형
반응형

유기태양전지는 반도체고분자의 광반응을 통해 전기에너지를 생산하면서도 고가의 실리콘을 사용하지 않아 가격이 저렴합니다.
또 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원입니다.

유기태양전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용될 수 있습니다.

그런데 효율이 문제였습니다.

유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮기 때문에 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점입니다.

이러한 문제를 해결하기 위해 반도체고분자의 수송 특성을 향상시키려는 다양한 연구들이 전 세계적으로 진행되어 왔습니다.

이 가운데 특히, 탄소나노튜브나 나노와이어 등을 이용해 전자나 정공의 빠른 수송 경로를 제공해주는 방법이 꾸준히 연구됐는데요.

그러나 전자와 정공이 동시에 탄소나노튜브나 나노와이어에 주입되어 자기들끼리 재결합 함으로써, 결국 외부에서 채집되는 전류가 증대되지 못하거나 오히려 감소하는 고질적인 문제가 발생했습니다.

이 같은 문제를 포함해 유기태양전지의 낮은 광변환 효율 등이 상용화에 걸림돌이 돼 이에 대한 성능향상이 시급히 요구돼 왔습니다.

이 같은 문제점을 우리나라 KAIST에서 해결했습니다.

김상욱 교수


KAIST 신소재공학과 김상욱 교수팀과 전기및전자공학과 유승협 교수팀이 탄소나노튜브를 유기태양전지에 적용해 에너지 변환효율을 크게 향상시키는데 성공했습니다.

 연구팀은 유기 태양전지의 반도체고분자에 붕소 또는 질소 원소로 도핑된 탄소나노튜브를 적용해 전자나 정공 중 한쪽만을 선택적으로 수송하도록 함으로써, 이들의 재결합을 막아 유기태양전지의 효율을 33%나 향상시켰습니다.

도핑된 탄소나노튜브가 적용된 유기태양전지의 구조 도식.(탄소나노튜브(까만 실같은 것)가 적용된 빨간 부분에서 광반응이 일어나서 전기에너지를 생산 할 수 있습니다.)

또 도핑된 탄소나노튜브는 유기용매 및 반도체고분자내에서 매우 쉽고 고르게 분산되는 특성을 보여, 기존의 값싼 용액공정을 그대로 사용해 효율이 향상된 태양전지를 만들 수 있음을 확인했습니다.

이번 연구결과로 반도체고분자가 이용되는 유기트랜지스터나 유기디스플레이 등 다양한 전자기기의 성능향상도 가능할 것으로 기대되고 있습니다.

이주민 연구원

유승협 교수













 용어설명

도핑 : 고순도로 된 물질의 전기적인 특성을 변화시키기 위해서 강제적으로 불순물을 고순도 물질내에 넣어주는 것. 이때 넣는 불순물을 도펀트라고  한다.

반응형

+ Recent posts