반응형

아침 산책길에 이슬을 머금어 영롱하게 빛나는 거미줄.잘 보이지도 않을 정도로 가는 거미줄이지만, 그 강도는 놀랄만합니다.

거미줄은 강철에 버금가는 강도는 물론 매우 높은 인성까지 있어 기계적으로 매우 우수한 섬유인데요. 이를 이용하면 방탄복, 초고장력 케이블 등의 제품을 만들 수 있구요. 게다가 생체적합성을 지녀 상처의 봉합, 인공장기 제장 등에서 매우 유용하게 사용될 수 있습니다.

하지만 자연산 거미줄을 배양하는 것은 사실상 불가능한데요. 거미는 누에처럼 고치를 만들지도 않을 뿐만 아니라, 양식을 하려 해도 영역을 이루고, 다른 거미와 싸우는 습성 때문에 경제성이 없기 때문입니다.

이에 따라 세계의 많은 연구진들은 거미줄과 유사한 조직을 만드는 자연모사 인공섬유 개발에 열을 올리고 있는데요.

하지만, 박테리아 유전자에 거미줄 단백질을 삽입해 생체 섬유를 만들려는 시도는 시행착오에 의존해 진행된 실험이 대부분인 실정입니다.
 

거미줄 모사 인공 생체섬유 개발 성공

KAIST 기계공학과 유승화 교수팀은 컴퓨터 모델링을 이용해 거미줄을 모사한 인공 생체섬유를 최근 개발했습니다.
 

KAIST 기계공학과 유승화 교수팀이 합성에 성공한 인공거미줄KAIST 기계공학과 유승화 교수팀이 합성에 성공한 인공거미줄

 

이번 연구로 앞으로 자연에서 생성되는 다양한 생체섬유의 합성과정에 대한 이해가 가능해져 거미줄에 버금가는 인공 생체섬유의 설계 제작을 앞당길 것으로 기대되는데요.

연구팀은 예측 가능한 모델링을 기반으로 다양한 단백질을 선제적으로 탐색하고, 인공 거미줄 설계 및 제작과정에 반영해 기존의 시행착오를 극복했습니다.

거미줄은 물속에서 안정성을 갖는 친수성과 반대로 물과 쉽게 결합되지 않는 소수성을 가진 영역이 교차로 존재하는 펩타이드 단백질이 가교를 이루며 결합한 구조인데요.

거미줄은 거미의 실 분비 기관인 실샘에 존재하는 단백질 용액이 실관을 통과하며 전단유동을 통해 고체화돼 형성됩니다.

연구팀은 새롭게 개발된 컴퓨터 모델을 이용해 다양한 종류의 단백질 용액의 전단유동 하에서의 변화를 조사, 이를 통해 단백질의 아미노산 체인이 충분히 길면서 적절한 비율의 소수성과 친수성 영역을 가질 때만 단백질 간의 연결도가 급격히 증가해 높은 강성과 강도를 갖는 생체섬유 합성이 가능하다는 것을 밝혔습니다.

전단유동 전후의 단백질 용액 모델링 결과 및 네트워크 연결도 분석 결과전단유동 전후의 단백질 용액 모델링 결과 및 네트워크 연결도 분석 결과 - 균일하게 연결되어 있던 단백질 네트워크가, 전단유동을 거치면서 유체 흐름 방향으로 정렬된 더 높은 밀도의 연결도를 가진 네트워크로 바뀌는 것을 볼 수 있으며, 이로 인해 더 높은 강성과 강도를 갖게 된다. 모델링을 통해 이러한 네트워크 연결도 증가는 적절한 친수성-소수성 아미노산 비율을 갖고 길이가 충분히 긴 단백질에 대해서만 관찰되는 것을 확인하고, 이를 실험에 반영하여 인공 거미줄 합성에 성공하였다.



이를 통해 연구팀은 모델링으로 제시된 단백질을 박테리아의 유전자 조작으로 합성, 실관을 모사한 방적과정을 통해 인공 거미줄을 제작하는 데 성공했습니다.

연구팀은 강한 거미줄 생성 원리가 밝혀지기 시작했기 때문에 향후에는 실제 거미줄 강도에 버금가는 생체 섬유 제작이 가능할 것으로 전망하고 있는데요.

또 생체 적합성을 갖기 때문에 인체 내에서도 부작용이 발생하지 않아 바이오메디컬용으로 사용이 가능할 것으로 보고, 궁극적으로는 부작용이 없는 바이오메디컬에 특화된 생체 섬유 제작을 목표로 하고 있습니다.

이번 연구는 체계적 설계를 통한 인공 생체섬유의 제작이 가능함을 증명한 것으로, 향후 인공 생체섬유 합성의 새 가능성을 열은 것으로 평가받고 있습니다.

한편, 이번 연구에는 미국 매사추세스 공대, 플로리다 주립대, 터프츠 대학 등이 참여했고, 연구 결과는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 28일자 온라인 판에 게재됐습니다.

 

 연 구 개 요


거미줄은 강철에 버금가는 강도와 Kevlar에 버금가는 인성(섬유가 끊어질 때까지 흡수하는 에너지)를 가지는 매우 뛰어난 기계적 성질을 지니고 있으며, 생체적합성을 지니고 있어서 상처봉합이나 인공장기 등 다양한 바이오메디컬 분야에 응용이 가능하다.

그러나 거미는 누에처럼 고치를 만들지도 않고 자기영역을 침범하면 싸우기 때문에 사육을 통한 거미줄을 생산 방법은 경제성이 없고, 유전자 조작을 통한 인공거미줄 제작이 많이 시도되어 왔다. 그러나 실샘에 있던 거미줄 단백질 용액이 실관을 따라 이동하며 자가조립을 통해 거미줄이 만들어지는 과정을 실험을 통해 밝히기 어려웠으며, 원자레벨의 시뮬레이션은 다수 거미줄의 상호작용을 모사하기에 충분히 효율적이지 않아서, 인공거미줄의 설계와 구현에 많은 어려움이 존재하였다.

본 연구에서는 다수의 거미줄의 상호작용을 모사할 수 있는 간단하지만 효율적인 컴퓨터 모델을 개발하여 거머줄의 조립에 영향을 미치는 인자들을 밝혀내었고, 박테리아에 유전자 조작을 통하여 실제와 유사한 재조합 거미줄 단백질을 합성한 후, 거미실관과 유사한 유체흐름(전단유동*)을 모사한 공정을 통해 인공거미줄을 제작하였다.

연구진은 컴퓨터 시뮬레이션을 이용하여 거미줄 단백질이 녹아있는 용액이 미세한 관을 통해 배출되는 방적과정을 통해 분자들이 한쪽방향으로 정렬되어 높은 강도의 섬유를 만드는 것을 알아내었다. 거미줄 단백질 분자는 친수성과 소수성 영역이 교차로 존재하는 고분자이고, 전단유동을 통해 유속 방향으로 정렬하며 서로 다른 분자들의 소수성 영역끼리 가교를 만들고 연결도가 좋아지면서 높은 강성과 강도를 갖게 된다. 소수성 영역의 비율이 너무 적으면 강성이 약해지고 너무 많아지면 거미줄이 생성되지 않고 뭉치기만 한다는 사실을 밝혀내어, 적절한 비율의 단백질 합성이 중요함을 밝혀내었다. 또한, 거미줄 단백질 길이가 충분히 길어야만 전단유동 과정을 통해 연결도가 좋아진다는 사실을 밝혀내었다.

박테리아 유전자 조작을 통한 단백질 합성 과정은 수개월이 걸리기 때문에, 시뮬레이션을 통한 다양한 친수성-소수성 영역 비율과 길이를 가진 단백질의 선제적 탐색은 매우 중요하다. 시뮬레이션을 통해 제시된 단백질은 박테리아 유전자 조작을 통해 합성되었고, 거미실관을 모사한 주사기를 이용한 간단한 방적과정을 통해 인공거미줄이 합성될 수 있었다. 상온의 단백질 수용액에 기반한 본 연구진의 제작방식은 추후 대량생산으로 전환되기에 용이할 것으로 보인다.

본 연구를 통해 생산된 인공거미줄의 강도와 탄성은 자연의 거미줄에 비해 아직 미흡하지만, 근본적인 거미줄 자가조립과정을 이해하기 시작한 것에 큰 의의가 있으며, 추후에는 원하는 대로 강도, 인성, 탄성을 조절할 수 있는 인공 거미줄 제작 공정 및 그 응용 방법을 개발하는 것이 궁극적 목표이다.


  용 어 설 명

전단유동
전단유동유체의 흐름방향과 수직하게 변하는 유속의 분포가 존재할 때, 유체 혹은 유체 내의 물질은 전단력을 느끼게 되는데, 이런 형태의 유체흐름을 전단유동이라고 한다. 유체와 고체의 마찰력 때문에 강물의 유속은 중앙부분이 가장자리보다 빠르고, 마찬가지로 주사기 바늘 속의 유체의 흐름도 가운데가 가장자리보다 빠른데, 이와 같은 유체의 흐름이 전단유동의 예이다. 

 

 유승화 교수 이력사항

□ 인적사항
KAIST 기계공학과 조교수
E-mail: ryush@kaist.ac.kr

□ 학 력
2000. 03 ~ 2004. 02 학사 KAIST 물리학과
2004. 09 ~ 2006. 01 석사 Stanford University 물리학과
2004. 09 ~ 2011. 09 박사 Stanford University 물리학과

□ 경 력
2011. 10 ~ 2012. 03 연수연구원 Stanford University 기계공학과
2012. 04 ~ 2013. 01 연수연구원 MIT 건설 및 환경공학과
2013. 07 & 2014. 07 방문교수 University of Trento 건설환경기계공학과
2013. 02 ~ 현재 조교수 KAIST 기계공학과

□ 연구 분야
물질의 강도와 어셈블리를 결정하는 근본적인 메카니즘을 나노부터 벌크까지 다양한 스케일의 이론과 모델링을 통해 이해하고, 기계적으로 강건한 신물질 합성에 적용하는 것이 핵심 연구 주제이다.
나노물질-고분자 복합재, 그래핀, 금속 유리, 나노결정 등 다양한 물질들의 합성과 기계적 성질에 대한 멀티스케일 모델링 연구를 진행하고 있다.

□ 수상 실적
2013-2014 University of Trento, Invited Professor Grant
2006-2008 Stanford Graduate Fellowship

반응형
반응형

인공근육 소재는 강하고 유연하면서도 전기적 특성이 우수해야 합니다.

이를 위해 그래핀, 탄소나노튜브 등 기계적, 전기적 특성이 매우 우수한 나노물질이 고강도 나노복합소재 개발에 널리 사용되어왔습니다.

그러나 2차원 면구조로 된 그래핀을 결합하여 섬유 형태로 제조하는 것이 매우 어려워 주로 탄소나노튜브 기반의 인공근육 섬유 연구에 초점을 맞추어 왔습니다.

그러나 탄소나노튜브의 뛰어난 물리적 특성에도 불구하고, 섬유 제조 과정에서 탄소나노튜브들이 인력에 의해 서로 엉켜 탄소나노튜브 기반 섬유의 기계적 특성을 향상시키는데 한계가 있었습니다.

일부 연구팀은 이를 해결하기 위해 탄소나노튜브 섬유 제조 후에 엉킴을 강제로 풀어 추가적으로 배열하기 위한 후처리를 제시했습니다.

그러나 후처리 방법이 복잡해 기계적 물성을 향상시키기 위한 최적 조건을 찾는데 어려움이 따르고 있습니다.

□ 그래핀을 이용해 거미줄보다 6배, 방탄복 소제인 케블라보다는 12배 이상 우수한 기계적 특성을 갖는 인공근육 섬유가 개발됐습니다.

한양대 김선정 교수팀은 그래핀과 탄소나노튜브가 결합된 나노구조가 인공근육 섬유 제조 과정에서 스스로 배열하는 특성을 이용해 기계적 특성이 우수한 인공근육 신소재를 개발했습니다.

김 교수팀은 거미줄의 나노구조가 배열하는 원리인 생체모방 차원에서 아이디어를 얻어 그래핀과 탄소나노튜브를 물리적으로 결합시켜, 그 나노구조가 스스로 배열하는 특성을 이용하여 섬유제조 공정에서 추가적인 열처리 또는 인장 방법 없이 간단한 공정으로 섬유의 기계적 특성을 향상시켰고 대량생산도 가능하게 했습니다.

김 교수팀이 개발한 그래핀/탄소나노튜브 복합체 섬유는 기존 탄소 기반 섬유와 달리 고무 밴드에 바느질을 할 수 있는 질기고 유연함을 보이고, 고강도 스프링 형태로 만들어 질 수 있고, 외부 비틀림에 매우 강한 특성을 가지고 있습니다.  

이번에 개발한 새로운 그래핀 섬유는 인공근육 뿐만 아니라 센서, 액추에이터, 에너지 저장 등으로 활용될 수 있어 에너지 기반 산업에 크게 기여할 전망입니다.

FEATURED IMAGE 설명: 화학적 방법으로 제조된 그래핀(reduced graphene oxide)을 이용하여 강하고 매우 긴 그래핀 섬유가 개발되었다. 습식방사 방법으로 제조된 섬유는 배열된 그래핀이 서로 네트워크를 이루어 결합되어 있기 때문에 강하고 유연한 특성을 갖는다.



이번 연구결과는 세계 최고 권위의 과학전문지 Nature 자매지인 '네이처 커뮤니케이션(Nature Communications)'에 2월 1일자로 게재되었습니다. 
(논문명: Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes)

신민균 박사와 이보미, 김시형, 이재아 학생이 인공근육 섬유 제조를 위해 함께 실험을 진행하고 있다.

 

인공근육 :
전기적 에너지를 운동 에너지로 변환시켜 일상생활에 유용하게 이용할 수 있는 물질이나 액츄에이터(구동기).

그래핀 :
탄소원자들이 벌집 모양으로 결합하여 원자 하나 두께의 2차원 평면 구조로 된 나노소재

탄소나노튜브 :
단일벽 탄소나노튜브는 6각형 고리로 연결된 탄소들이 긴 대롱 모양을 이루는 지름 1나노미터(10억분의 1 미터) 크기의 미세한 원통형 분자.
탄소원자가 결합해 벌집 모양의 구조를 갖게 된 탄소평면이 도르르 말려서 튜브모양이 됐다고 해서 붙여진 이름이다.

인성(toughness) :
단위부피당 물질이 부서지기 전까지 흡수할 수 있는 에너지로서 물질이 외부 힘에 견딜 수 있는 정도  

 

<연 구 개 요>

Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes M. K. Shin et al. (Nature Communications - 2012. 2. 1. 출판)

 강하고 가벼운 고분자 섬유는 자동차 복합소재뿐만 아니라 방탄조끼에 응용될 수 있기 때문에 섬유 개발 관련 연구가 지속적으로 수행되고 있다.
고분자 섬유에 탄소나노튜브를 첨가하여 고강도 나노복합소재를 만드는 것은 최근 주요 연구의 흐름이다.
또한, 탄소나노튜브 기반 복합소재는 일반적으로 전기적 특성이 향상되기 때문에 에너지 저장 소재, 센서, 구동기 등에 다양하게 응용될 수 있다.
따라서 복합소재의 응용 범위와 가치를 높이기 위해서는 재료가 외부 힘에 의해 파단할 때까지 흡수할 수 있는 최대 에너지, 즉 재료의 인성(toughness, 질긴 특성)을 향상시키는 것이 주요 해결 과제이다.
일반적으로 재료의 인성과 기계적 강도는 섬유 내부의 마이크로구조에 의해 영향을 크게 받는다.
따라서, 열처리 또는 기계적 후처리 등을 통해 마이크로구조를 적절히 디자인 하는 것은 재료 연구에 있어 매우 중요하다. 이러한 관점에서 매우 강하면서 질긴 탄소나노튜브/고분자 복합섬유 제조가 시도되었다.
특히, 복합섬유의 인성 및 기계적 강도 향상을 위해 탄소나노튜브와 고분자를 섬유의 축 방향으로 배열시키는 다양한 방법이 고안되었으나 탄소나노튜브가 서로 엉켜 풀기 힘든 성질 및 복잡한 섬유 제조 과정과 경제성 문제 때문에 최적의 복합섬유를 얻는데 많은 어려움이 있다.

본 연구팀은 기존 탄소나노튜브 기반의 복합섬유 제조 방법의 문제점을 해결하기 위해서 그래핀 기반의 복합섬유를 개발하였다.
구체적으로 그래핀과 단일벽탄소나노튜브를 물에 분산시켜 만든 용액을 고분자 용액 내에서 섬유 형태를 갖도록 방사하여 그래핀/탄소나노튜브/고분자로 구성된 나노복합섬유를 제조하였다.
제조 과정에서 그래핀과 탄소나노튜브의 강한 상호작용에 의해 결합된 그래핀/탄소나노튜브 나노구조가 스스로 배열하는 현상은 섬유 제조 후 별도의 후처리를 하지 않아도 섬유의 기계적 강도를 크게 증가시킬 수 있다.
특히, 그래핀과 탄소나노튜브가 1:1의 비율로 결합되었을 때 시너지 효과가 극대화 되어 가장 물성이 좋은 탄소 기반 복합섬유가 제조될 수 있음을 증명하였다.
그래핀/탄소나노튜브 복합체 섬유는 후처리를 하지 않고 단일벽탄소나노튜브 또는 그래핀만 사용하여 제조한 섬유에 비해 기계적 특성이 10배 이상 증가되었고, 자연계에 존재하는 강하고 유연한 거미줄 보다 인성이 6배 이상 증가하였다.
이번 그래핀/탄소나노튜브 복합소재는 기존 탄소 기반 섬유와 달리 강하면서 유연성이 매우 뛰어나 고무 밴드 및 옷감 등에서 바느질이 가능하기 때문에 휴대용 전자, 복합소재 산업에 크게 기여할 수 있다.
또한, 간단한 열처리를 통해 스프링 형태로 만들 수 있으며 이는 기존 탄소나노튜브 스프링에 비해 전단 계수(shear modulus)가 60배 이상 높아 마이크로크기의 직경을 갖는 고강도 스프링으로 사용될 수 있다.
나노복합체 신소재는 그래핀과 탄소나노튜브에 의한 우수한 전기전도성과 표면적 효과로 인해 에너지 저장 및 인공근육 소재로서 응용될 수 있다.

<김선정 교수>

1. 인적사항
 ○ 소 속 : 한양대학교 생체공학과      
  
2. 학력
   1994, 한양대학교 공업화학과 박사
 
3. 경력사항
   2006-현재, 생체인공근육 창의연구단장
   2005-현재, 한양대학교 공과대학 교수

4. 전문 분야 정보
- 교육과학기술부?한국연구재단 창의리더연구사업 연구책임자 (2006 - 현재)
- 생체인공근육 분야, 국제학술지(SCI) 141, 특허등록 12

5. 수상 경력
- 2010, 기초우수성과(교육과학기술부)
  - 2009, 최우수 교수상(한양대학교)
  - 2007, 국가연구개발 우수성과 100선(교육과학기술부)
  - 2007, 대표적 우수성과 50선(한국연구재단)
  - 2006, 대표적 우수성과 50선(한국연구재단)


반응형

+ Recent posts