얼마 전 미국에서 군용 투명망토를 개발해 화제가 됐습니다.

시연 장면을 보면 투명망토를 뒤집어 쓴 저격수가 주변의 배경색과 흡사해 멀리서 볼 때 찾기가 쉽지 않았는데요.


미군이 도입한 투명망토 시연 그래픽 / 출처=KBS미군이 도입한 투명망토 시연 그래픽 / 출처=KBS


개인위장은 물론 크기에 따라 전차, 레이더 등의 장비 위장도 가능해 전술적 가치가 높을 전망입니다.

하지만 이 투명망토에도 치명적 단점이 있는데요. 바로 전력이 있어야만 투명 상태가 유지된다는 것입니다.

메타물질

투명망토가 실현 가능한 이유는 투명 기능의 근본 소재인 메타물질 때문입니다. 


투명망토의 소재인 메타물질의 작동 원리 / 출처=YTN투명망토의 소재인 메타물질의 작동 원리 / 출처=YTN


메타물질은 자연에서 발견되지 않는 특이한 광학적 성질을 얻기 위해 인위적으로 설계된 물질인데요.

이는 빛의 파장보다 짧은 구조물로 구성돼 투명망토나 고해상도 렌즈 제작에 활용되고 있습니다. 

그런데 메타물질의 변조된 광학적 특성을 유지하기 위해선 지속적인 자극, 즉, 전력이 공급돼야 하는데요. 전력이 소모되면 투명 상태도 사라지는 치명적인 약점을 갖고 있습니다.

메모리 메타물질

이를 극복할 수 있는 방법은 전력 공급이 멈춘 후에도 변조된 메타물질의 상태가 유지되는 것인데요. 이를 실현하는 소재를 메모리 메타물질이라고 합니다.

현재 세계적으로 연구가 진행되는 메모리 메타물질은 열적 자극에 의해 광특성이 조절되는 바나듐산화물 계열과 강한 광학적 자극에 의해 조절되는 저메늄-안티몬-텔루륨 등이 대표적인데요. 

바나듐산화물 기반 메모리 메타물질의 경우 상변화 온도가 60℃ 내외이기 때문에 고온 또는 열적으로 고립된 환경에서만 메모리 특성이 유지되고, 상온에서는 20분 정도만 가능합니다. 

KAIST가 개발한 상온 메모리 메타물질

KAIST 기계공학과 민범기 교수팀이 메타물질의 광학적 특성을 기억할 수 있는 메모리 메타물질과 이를 응용한 논리연산 메타물질을 개발했습니다.


메모리 메타물질의 구조도. 전극 배열(TTE), 강유전체, 그래핀, 메타원자, 폴리이미드 기판으로 구성되어 있고, k 방향으로 입사하는 빛의 전기장 (E)은 전극 배열과 수직임메모리 메타물질의 구조도. 전극 배열(TTE), 강유전체, 그래핀, 메타원자, 폴리이미드 기판으로 구성되어 있고, k 방향으로 입사하는 빛의 전기장 (E)은 전극 배열과 수직임


기존 보고된 메모리 메타물질은 고온에서만 기억되거나 부피가 큰 광학적 장치에 의해서만 동작 가능해 현실적 응용에 한계를 보였는데요.

연구팀은 메타물질에 그래핀과 강유전체 고분자를 접목시키는 방법을 개발해 이를 극복했습니다.

연구팀이 사용한 강유전체 고분자는 탄소를 중심으로 불소와 수소가 결합한 분자인데요. 이는 외부 전압의 극성에 따라 회전하는 성질을 갖게 됩니다.

이 강유전체 고분자는 상온에서도 안정적으로 변화 상태를 유지할 수 있고요 그래핀과 접촉돼 메모리 성능이 개선된 것이 특징입니다.


강유전체에 의해 그래핀에 비휘발적 도핑이 되는 모식도. 전기 음성도가 작은 수소(H)와 전기음성도가 큰 불소(F)로 이루어진 영구 쌍극자가 인가하는 전압 극성에 따라 정렬함.강유전체에 의해 그래핀에 비휘발적 도핑이 되는 모식도. 전기 음성도가 작은 수소(H)와 전기음성도가 큰 불소(F)로 이루어진 영구 쌍극자가 인가하는 전압 극성에 따라 정렬함.


또 초박형 상태로 제작할 수 있어 천과 같은 모양을 만들 수 있고요.

무엇보다 다중 상태의 기억이 가능하고, 빛의 편광 상태도 기억할 수 있는 것으로 연구결과 증명됐습니다.

KAIST가 개발한 논리연산 메타물질

연구팀은 메모리 메타물질의 원리를 응용해 논리 연산이 가능한 논리연산 메타물질도 함꼐 개발했습니다. 

이 논리연산 메타물질은 단일 입력에 의해서만 변조 가능했던 기존 메타물질의 단점을 해결한 것인데요.

그래핀으로 두 개의 강유전체 층과 샌드위치 구조를 가진 메타물질을 제작하고, 두 전기적 입력의 논리연산 결과가 광학적 특성으로 출력되게 만든 구조를 활용했습니다.

이를 통해 다중 입력에 의한 조절이 가능해져 메타물질의 특성을 다양하게 변화시키거나 조절할 수 있는 방법론을 제시했습니다.


투과도의 다중상태 (00, 01, 10, 11)의 메모리 특성투과도의 다중상태 (00, 01, 10, 11)의 메모리 특성


이번 연구는 메모리 메타물질을 통해 저전력으로 구동 가능한 초박형 광학 소자 발전에 큰 역할을 할 것으로 기대됩니다.

한편 이번 연구에는 KAIST 기계공학과 김우영 박사와 김튼튼 박사, 김현돈 박사과정이 1저자로 참여했고요. 연구결과는 과학전문지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 2016년 1월 27일자 온라인 판에 게재됐습니다. 

(논문명 : Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operation)


 용 어 설 명


그래핀(graphene)

탄소의 동소체 중 하나이며 탄소 원자들이 모여 2차원 평면을 이루고 있는 구조로써, 각 탄소 원자들은 육각형의 격자를 이루며 육각형의 꼭짓점에 탄소 원자가 위치하고 있는 벌집구조 모양이다. 원자 1개의 두께로 이루어진 얇은 막으로, 두께는 0.2 (1㎚는 10억 분의 1m)로 엄청나게 얇으면서 물리적·화학적 안정성도 높다. 


강유전체(ferroelectric)

외부에서 인가되는 전기장에 의해 영구 쌍극자가 정렬하여 물질의 표면에 전하를 가질 수 있는 물질. 외부 전기장이 제거되면 정렬된 영구 쌍극자가 그 상태를 유지하는데, 양의 전하일 때와 음의 전하일 때 표면 전하의 극성이 다르므로 이를 디지털 신호의 0과 1에 대응하여 메모리 소자로 이용 가능함. 


메타물질(metamaterial)

자연계에 존재하지 않는 특성을 얻기 위해 빛의 파장보다 작은 인공 구조물들의 집합체. 예를들어, 300㎛ 파장의 빛에 대해서 수십 의 인공적으로 제작한 구조체들의 배열로 이루어진 경우, 300 파장에 대해서 메타물질로 동작할 수 있음. 인공 구조물의 모양, 배열, 크기에 따라 음굴절, 고굴절, 0굴절 물질 구현이 가능하며 고 해상도 렌즈 및 투명망토에 응용가능함.


메모리 메타물질(memory metamaterial)

메타물질은 외부에서 인가되는 기계적, 전기 및 자기적, 열적, 광학적 자극에 의해 광학적 특성이 변조가능한데, 일시적인 외부 자극에 의해 변조된 광학적 특성이 외부 자극을 제거시켜도 변조된 특성이 계속 유지되는 메타물질. 변조된 특성을 지속적으로 얻기 위해 지속적인 외부 자극을 인가해야할 경우, 에너지 소모가 크고, 전원 장치와 항상 연결되어야 하므로 메모리 메타물질은 이러한 에너지 낭비를 줄일 수 있음.


연 구 개

1. 연구배경

메타물질은 일반적으로 관찰할 수 없는 특이한 광학적 특성을 얻기 위하여 빛의 파장보다 훨씬 짧은 구조물로 구성된 인공물질로써 음굴절, 0굴절, 고굴절률물질 구현이 가능하며 고해상도 렌즈 및 투명망토 등에 응용가능한데, 외부에서 인위적으로 공급되는 기계적, 전기 및 자기적, 광학적 또는 열적인 자극에 의해 변조가능한 메타물질의 연구가 활발히 이루어지고 있다. 이러한 변조 가능한 메타물질은 외부 자극에 반응하는 물질을 이용하거나 반도체 공정 기술로 제조된 미세전자기기 시스템과 접목시킴으로써 구현 가능하다. 그러나 변조된 광학적 특성을 지속시키기 위해서는 불가피하게 외부에서 지속적인 자극이 공급되어야 하는데, 이는 많은 전력 소모의 원인이 되어 불필요한 자원 낭비를 초래하게 된다. 이러한 단점을 극복하기 위해 외부의 자극이 제거된 이후에도 변조된 광학적 특성이 유지가능한 메모리 메타물질이라는 개념이 대두되었다. 

지금까지 보고된 메모리 메타물질은 열적 자극에 의해 광특성이 조절되는 바나듐 산화물 계열과 강한 광학적 자극에 의해 조절되는 저메늄-안티몬-텔루륨 같은 상변화 물질을 이용하여 구현되었다. 그러나 현실적으로 응용되기에는 한계가 있었다. 바나듐 산화물 기반 메모리 메타물질의 경우, 바나듐 산화물의 상변화 온도가 섭씨 60도 정도이므로 메모리 메타물질은 고온 또는 열적으로 고립된 환경에서만 메모리 특성을 유지할 수 있어서 상온에서는 20분 정도의 기억시간이 보고되었다. 저메늄-안티몬-템루륨 기반 메타물질의 경우, 부피가 큰 광학적 장치에 의해서 상변화를 여기할 수 있어서 장치에 제약이 있었다. 다양한 분야에 응용되기 위해 메모리 메타물질은 상온에서, 오랜 시간동안 메모리 특성이 유지되어야 하며 장치의 부피가 작을수록 적합하다.

이러한 현실적인 문제점을 해결하기 위해 그래핀 기반 메타물질에 메모리 특성이 우수한 강유전체 고분자를 접목함으로써 메모리 메타물질의 신뢰성을 향상시킬 수 있고 전기적으로도 구동가능하다. 

2. 연구내용

본 연구에서는, 그래핀 기반 메타물질과 그래핀에 인접한 강유전체 고분자, 강유전체 고분자에 전기적 입력을 위한 전극 배열이 순서대로 형성된 구조로 제작되었다. 전극배열과 그래핀 사이에 전압을 인가하게 되면 강유전체 고분자를 이루는 영구 쌍극자들이 전기장의 극성에 따라 정렬하게 되는데 전압을 제거시켜도 영구 쌍극자 정렬이 유지가 된다. 그러므로 강유전체 고분자-그래핀 복합체에서 그래핀은 비휘발적인 도핑이 된다. 이러한 비휘발적 도핑을 이용하여 그래핀 기반 메타물질의 광특성을 저장할 수 있는 메모리 메타물질을 제작하였다. 

인가되는 전압의 크기에 따라 다중 상태의 다양한 광학적 특성 (투과도, 위상, 편광상태)이 저장됨을 확인하였다. 모든 저장된 광학적 특성은 상온에서, 10만초 이상 유지됨을 확인하였고, 외삽에 의해 추정한 결과 10년 이상 저장가능하였다. 또한 반복적인 전압 인가에 의해 쉽게 광학적 특성이 변조됨을 알 수 있었다. 

□ 본 연구에서는, 강유전체-그래핀 복합체에 의한 구조를 이용하여 그래핀에 비휘발적인 도핑을 유도하여, 메모리 메타물질에서 광학적 특성의 기억시간을 향상시켰다. 

□ 본 연구에서는, 다양한 광학적 특성에 대해 메모리 메타물질에 기억시킬 수 있음을 확인하였다. 특히 편광상태 기억 가능한 메모리 메타물질은 최초보고이다.

□ 본 연구에서는, 단일 입력에 의해 구동되는 메모리 메타물질의 원리를 확장시켜 논리 연산 가능한 메타물질도 시연하였다. 논리 연산 가능한 메타물질은 그래핀 기반 메타물질에서 그래핀의 상층 및 하층에 독립적으로 제어 가능한 강유전체로 감싼 샌드위치 구조로 제작되었다. 두 개의 입력되는 전압의 극성에 따라 그래핀에 인가되는 비휘발적 도핑 상태는 4가지 조합이 가능하다.  

□ 본 연구에서는, 논리 연산 가능한 메타물질에 회로적인 구성을 변화시킴으로써 2 비트 디지털-아날로그 변환 가능한 메타물질도 시연하였다. 


민범기 교수 이력사항


○ 소  속 : KAIST 기계공학과   1. 인적사항  


2. 학력

 ○ 1999: Seoul National Univ. 전기공학부, 학사

 ○ 2001: Seoul National Univ. 전기․컴퓨터공학부, 석사

 ○ 2003: Caltech. 응용물리, 석사

 ○ 2006: Caltech. 응용물리, 박사


3. 경력사항

 ○ 2011~현재 : 부교수, KAIST

 ○ 2009~2011 : 조교수, KAIST 

 ○ 2007~2008 : Postdoctoral Scholar, UC Berkeley, USA 

 ○ 2006~2007 : Postdoctoral Scholar, Caltech., USA


4. 관심분야정보

 ○ 마이크로/나노광학

 ○ 메타물질 및 소자



저작자 표시 비영리 변경 금지
신고
posted by 이재형 과학이야기