사물인터넷은 옷이나 책 등 모든 사물이 인터넷을 기반으로 서로 연결돼 사람과 사물 또는 사물과 사물 간의 정보를 주고 받을 수 있는 능력을 갖게 되는 것인데요.

이를 위해서는 무엇보다도 전자기기나 기판이 사물에 자연스럽게 장착될 수 있도록 웨어러블, 플렉서블 기술, 특히 가볍고 전력 소모가 적으면서도 유연성을 가진 소자 제작 기술이 필요합니다.

개시제를 이용한 화학 기상 증착법(iCVD) 개발

KAIST 생명공학과 임성갑 교수, 전기 및 전자공학과 유승협, 조병진 교수 공동 연구팀은 최근 10㎚(나노미터) 이하의 얇고 유연하게 휘어지면서도 균일한 두께를 유지하는 고분자 절연막을 개발해 사물인터넷 실현을 한 걸음 앞당겼습니다.

연구팀은 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, iCVD)’을 이용한 고분자 절연막을 개발했는데요.

이 기술은 단량체(monomer)와 개시제(initiator)를 기화시켜 저진공의 반응기 안에 주입하고 열에너지로 활성화시켜 고분자를 필름 형태로 합성하는 방법으로, 기존 고분자 합성 방식과 달리, 용매나 첨가제가 필요 없어 고 순도 고분자를 쉽게 합성할 수 있고요. 또 낮은 공정 온도 특성으로 종이처럼 화학적, 물리적 자극에 약한 물질 위에도 도포할 수 있습니다. 

iCVD 공정의 모식도. (i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성iCVD 공정의 모식도. (i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성

연구팀이 iCVD로 구현된 박막은 절연 특성이 기존 고분자 박막으로는 구현할 수 없는 매우 높은 수준을 보이면서 플렉서블 전자 소자 등 차세대 전자 기술에 핵심적인 역할을 할 수 있을 것이로 기대됩니다.

기존 무기물 소재 절연막이나 전자소자 재료는 유연성이 부족하고, 고온에서만 공정이 가능해 열에 약한 다른 재료들과의 조합이 어려웠고요.

또 용액을 이용해 만든 기존 고분자 소재 절연막은 표면장력에 의한 뭉침 현상으로 균일도에 한계가 따르고, 잔류 불순물로 인해 절연 특성도 좋지 못한 경우가 많았습니다.

연구팀은기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법인 iCVD를 사용, 이 같은 문제를 극복했는데요.

연구 결과 액체 대신 기체 상태의 반응물을 이용해 균일도를 높이고 불순물을 최소화해, 10 이하의 얇은 두께에서도 무기물 기반 소재에 필적하는 절연성을 갖는 것으로 확인됐습니다.

연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자 (좌측)와 떼었다 붙였다 할 수 있는 전자소자 (우측) 이미지.연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자 (좌측)와 떼었다 붙였다 할 수 있는 전자소자 (우측) 이미지.

이에 따라 연구팀은 개발한 절연막을 유기반도체, 그래핀, 산화물반도체 등 차세대 반도체 기반 트랜지스터에도 적용, 우수한 이동도를 갖는 저전압 트랜지스터를 개발하는데 성공했습니다.

이를 바탕으로 연구팀은 우수한 유연성을 바탕으로 스티커 필름 형태의 전자 소자를 시연하는 데 성공했고, 또 동국대 노용영 교수팀과 협력해 iCVD 고분자 절연막이 대면적 유연 전자소자 기술에 적용할 수 있음도 확인했습니다.

이번 기술은 향후 다양한 미래형 전자기기 제작에 핵심 요소소재로 활용돼 기술경쟁력 우위 확보에도 큰 역할을 할 것으로 기대됩니다.

한편, 이번 연구 결과는 재료분야 국제 학술지인 ‘네이처 머티리얼스(Nature Materials)’ 3월 10일자 온라인 속보판에 게재됐습니다.

 

 용 어 설 명

개시제를 이용한 화학 기상 증착(Initiated chemical vapour deposition, iCVD)
단량체 (monomer)와 개시제 (initiator)를 기화하여 저진공의 반응기 안에 주입하고, 주입된 개시제를 열에너지로 활성화시켜 고분자를 필름 형태로 합성하는 방법. 기존의 고분자 합성 방식과는 달리, 용매 (solvent)나 첨가제 (additive)를 필요로 하지 않기 때문에 높은 순도를 가지는 고분자를 쉽게 합성할 수 있다는 장점을 갖고 있다. 또 낮은 공정 온도로 인하여 종이와 같은 화학적, 물리적 자극에 약한 물질 위에도 고분자를 도포할 수 있다.

절연막(insulator)
도체, 반도체와 달리 전자 또는 정공의 흐름을 막아 주는 역할을 하는 물질. 절연막은 소자 내부에서 가장 넓은 면적을 차지하면서도, 두께에 따라 그 절연 성능이 민감하게 변하는 특징이 있기 때문에 전자소자용 재료 중에서도 핵심 요소이다.

트랜지스터(Transistor) & 전계효과트랜지스터(Field effect transistor, FET)
트랜지스터는 전류의 증폭 작용과 스위칭 역할을 하는 반도체 소자로, IC 칩, 디스플레이와 같은 전자 기기의 핵심 구성 요소가 되는 중요한 소자이다. 트랜지스터는 구동 원리에 따라 다양한 종류로 나뉘는데, 이 중 전계효과트랜지스터 (FET)는 통상적으로 게이트, 소스, 드레인 전극과 반도체 (semiconductor), 절연막 (insulator)로 구성되며, 게이트 (gate) 전극에 전압을 걸어 반도체층 사이에 전자 (electron) 또는 정공 (hole)이 흐를 수 있도록 하는 원리로 전류를 제어하는 트랜지스터이다. FET의 저전력화를 위해서는 절연특성이 유지되는 한 절연막의 두께를 최대한 낮추는 것이 유리하다. 
 

임성갑 교수 

1. 인적사항
 ○ 소 속 : KAIST 생명화학공학과
 ○ e-mail : sgim@kaist.ac.kr

2. 학력
  1997: 서울대학교 (학사: 화학공학과)   
  1999: 서울대학교 (석사: 화학과학과)  
  2009: MIT (박사: 화학공학과)  
 
3. 경력사항
  1999 - 2002: LG화학 기술연구원 
  2002 - 2004: LG Display 연구소
  2009 - 2010: Harvard Medical school, postdoctoral fellow
  2010 - 현재: KAIST, 부교수

유승협 교수 

1. 인적사항
 ○ 소 속 : KAIST 전기 및 전자공학과
 ○ syoo_ee@kaist.ac.kr, http://ioel.kaist.ac.kr

2. 학    력
 ○ 서울대학교 물리학과, 학사, 1996 
 ○ 서울대학교, 물리학과, 석사, 1998
 ○ University of Arizona, 광과학부, 박사, 2005
 
3. 경력사항
○ 2006 ~ 현재 KAIST 전기 및 전자공학과 부교수
○ 2011 ~ 현재 삼성디스플레이-KAIST 디스플레이 연구센터장
○ 2011 ~ 2012 독일 University of Technology Dresden, 방문교수
○ 2005 ~ 2006 미국 Georgia Institute of Technology, 박사후 연구원

조병진 교수 

1. 인적사항
 ○ 소 속 : KAIST 전기 및 전자공학과
 ○ e-mail : elebjcho81@kaist.ac.kr

2. 학력
  1985: 고려대학교 (학사: 전기전자공학과)   
  1987: KAIST (석사: 전기 및 전자공학과)  
  1991: KAIST (박사: 전기 및 전자공학과)  
 
3. 경력사항
  1991 - 1993: IMEC, Research Fellow  
  1993 - 1997: Hyundai Electronics Ind. Co., Section Manager
  1997 - 2007: National University of Singapore, 교수
  2007 - 현재: KAIST, 교수

저작자 표시 비영리 변경 금지
신고
posted by 이재형 과학이야기