반응형

우리나라가 세계에서 4번째로 서브미터급 상용 인공위성 보유국이 됐습니다.

한국항공우주연구원이 제작한 다목적실용위성 아리랑 3호는 18일 오전 1시 39분 00초에 일본 다네가시마 우주센터에서 미쓰비시중공업이 제작한 H2A 로켓에 실려 성공적으로 발사됐습니다.

이날 예정된 시간에 정확히 발사된 아리랑 3호는 발사 16분 3초 만에 고도 676.35㎞, 동경 129.189도, 북위 2.059도 필리핀 인근 상공에서 H2A 로켓과 분리됐습니다.

이어 오전 2시 19분 경에는 남극 트롤 지상국에 자신의 상태 정보를 전송하며 건재함을 과시했습니다.

항우연 지상국은 3시 18분 18초에 아리랑 3호와 교신에 성공하고 위성 상태에 관한 데이터를 내려 받아 분석 중입니다. 

다음은 발사 순간을 담은 사진입니다.

 

반응형
반응형

※ 다음 자료는 한국항공우주연구원이 발간한 '다목적실용위성 아리랑 3호 프레스킷'을 바탕으로 한 것입니다.


아리랑 3호 탑재체 조립/정렬/시험의 긴 여정

<한국항공우주연구원 탑재체광학팀 이응식 선임연구원>

685Km상공에서 0.7m 해상도를 갖는 우주용 전자광학카메라을 우리 손으로 우리 실험실에서 처음으로 직접 개발한다는 희망과 설레임으로 시작한 아리랑 3호 탑재체 개발. 엔지니어로서 가질 수 있는 최대의 보람이자 이런 기회가 주어진 것을 감사하게 생각하며 연구를 진행하였다. 아리랑 2호 탑재체는 해외공동개발이어서 경험 많은 해외업체가 앞장서서 많은 부분을 해결하고 우리는 도와주며 배우는 과정이었지만, 아리랑 3호 카메라 개발은 부분품은 해외업체에서 제작을 하지만 설계부터 조립/정렬/시험까지 우리가 수행하는 방식이었다. 새롭게 구축한 정밀 시험시설에서 처음으로 고해상도 우주용 카메라를 개발하는 과정에 많은 어려움이 있을것이라는 해외 협력업체들의 자문과 우리 스스로 어려움이 예상되는 부분에서 많은 준비를 하였다.

우주용 전자광학카메라 조립/정렬/시험을 간락하게 설명하면, 다섯 개의 반사경을 나노미터 급으로 정렬한 광학모듈과 CCD와 전자보드로 구성된 초점면어셈블리를 정렬한 후 발사 및 우주환경 시험 통과하면 개발을 완료하게 된다. 광학모듈 조립/정렬 및 초점면어셈블리 정렬 과정은 여러 문제들을 해결하였지만 예상보다 순조롭게 진행되어 우리도 하니까 할 수 있다는 섣부른 자신감을 막 가지려는 때에 환경시험이 기다리고 있었다.

발사 진동시험 후 구조적 특성은 변화가 없었지만 초점면어셈블리의 미끄러짐과 광학모듈 내의 변화로 인한 초점이동이 관찰되었다. 초점면어셈블리는 조립/정렬 시의 어려움보다는 영상 품질을 최우선으로 설계하였기 때문에 CCD와 전자보드를 일체형으로 크고 무겁게 만들어 진동 시험에 의해 위치가 변화하였다. 광학모듈은 해외개발자들 사이에서 이야기되는 소위 자리잡기에 의해 광학적으로 제일 예민한 두 번째 반사경의 상대위치가 미세하게 수 마이크론 이동된 현상이 관찰되었다. 많은 원인 분석 및 추가 시험을 통하여 개선안을 마련하여 적용한 후 두 번째 진동시험을 수행하였다. 두 번째 진동 시험에서는 초점면어셈블리의 회전 변형이 발생하고 복사특성 시험 후 다시 회복되는 현상이 관찰되었다. 이는 복사특성 시험 중 초점면어셈블리 주변 온도 상승으로 인한 안정화효과로 이해하고 장착응력 풀림과정을 새로이 적용하여 해결하였다. 이를 적용한 후 두 번의 추가 진동 시험에서는 변형이 발생하지 않았다. 발사 시의 진동을 견뎌내고 우주환경 조건에서 성능이 만족됨을 확인하는 환경시험이 우주개발 프로제트의 제일 어려운 부분이라는 기본을 다시한번 깨닫게 해준 과정이었다.

< 아리랑 3호 탑재체 열진공 시험 준비 >

프랑스의 유명한 전자광학카메라 제작사가 해변에 광학시험실을 만들었다가 파도에 의한 미세한 진동 영향으로 성능측정이 불가능해져 시험실을 다시 건축했다는 이야기도 들은 바 있다. 우리도 실험실 구축 시에 이런 부분에 많은 노력과 세심한 주의를 기울여 수치상으로 표현되는 진동노이즈 레벨이 요구조건에 만족하는 실험실을 구축하였다. 그러나 685Km 상공에서 0.7m의 지상 물체를 구분하며 외곽선을 선명히 촬영해야 되는 아리랑 3호 카메라는 드러나지 않는 미세한 진동노이즈에도 성능 측정을 쉽게 허락하지 않았다. 주변에 사람과 자동차가 하나도 없는 새벽에 측정하는 등 진동원을 줄이기 위한 과학적 노력과 함께 감성과 예술의 시각으로 카메라를 느끼며 정렬과 성능시험을 수행하였다.

아리랑 3호와 비슷한 성능인 프랑스의 Pleiades 위성도 탑재체 개발 시의 여러 기술적 문제로 수년간 지연되어 작년말 발사되었다. 고해상도 우주용 카메라 개발에는 경험 많은 선진 해외업체들도 우리와 비슷한 어려움을 겪는다는 사실에 잠시나마 위안을 삼으며, 탑재체 개발 노하우를 축척하는 힘들지만 보람 있는 여정이었다고 기억한다. 우리 실험실에서 우리 손으로 개발한 아리랑 3호가 촬영한 선명한 영상이 많은 사람들을 활짝 웃게 만들기를 간절히 기원한다.

반응형
반응형

 ※ 다음 자료는 한국항공우주연구원이 발간한 '다목적실용위성 아리랑 3호 프레스킷'을 바탕으로 한 것입니다.


 
□ 개요

사업명

다목적실용위성3호 개발사업

사업목표

한반도 정밀지상관측 등 국가 영상정보 수요충족을 위지구저궤도용 해상도 70cm급 광학관측 카메라 탑재위성의 국내주도개발

사업기간

2004년 8월 ~ 2012년 8월

사업예산 및 참여부처

총 2,826.5억원

교육과학기술부(1,936.5억원/총괄)
지식경제부(890억원)

추진체계

주관기관

한국항공우주연구원

참여기업

(주)한국항공우주산업, (주)대한항공, (주)한화, (주)두원중공업 등

주요 연구내용

•시스템 및 본체 개발
•고해상도 광학 탑재체 개발
•수신시스템 및 관제시스템 개발
•영상자료 활용기반 구축

 

□ 추진배경

우주기술은 21세기 첨단산업을 선도할 핵심 복합기술로 국가 안전 및 위상제고, 신산업 창출 등을 위해 필요한 국가 전략사업

○ ‘우주개발중장기기본계획’에 따라 한반도의 정밀지상관측, 환경․농업분야 관측 등 다양한 정보수요에 대응하기 위해 고해상도 카메라가 탑재된 다목적실용위성 개발

실용급 인공위성기술의 국내 독자 개발능력 확보를 통한 핵심영상정보의 자주적 획득․활용

 

□ 정부부처간 공동협력 개발 

교육과학기술부는 전체의 시스템개발을 총괄하고 지상국, 활용기반 구축을 주관, 지식경제부는 위성본체 개발 및 국산화개발을 주관함 

다목적실용위성개발사업 추진위원회를 통하여 사업계획, 관련 기관 간 예산 및 역할 조정, 외국기관과의 협약 등 주요사항을 확정 

총괄주관기관(항우연) 주도로 사업을 수행하고 민간기업이 개발에 참여

 

□ 개발체계 

○ 다목적실용위성 1호 및 2호기 개발을 통해 축적된 경험과 기술을 바탕으로 3호 개발사업을 추진 

○ 위성본체 개발은 항우연이 주도적으로 주관하고, 부분품 개발에 다목적실용위성 1호, 2호 등에 참여한 기업을 중심으로 참여 

○ 탑재체 개발 중 부분체 설계, 광학모듈 정렬/시험, 조립/성능시험 등은 항우연이 주도적으로 주관

- 구성품 하드웨어(반사경, 고안정성 경통 구조체, 카메라 전자부, 영상자료처리장치 등) 개발은 해외 기술협력을 통하여 수행 

○ 지상국개발 중 관제시스템은 다목적실용위성 1호 및 2호 개발에 경험이 있는 전자통신연구원(ETRI)이 참여 

수신․처리시스템 구축 및 인터페이스는 항우연이 개발을 주도하고 주요 수신․처리시스템 및 S/W개발은 외부 국내기업을 통해 수행

 

□ 주요경과

일자

내용

2004. 8

사업착수

2005. 3

임무정의 검토회의(Mission Definition Review)

2005. 11

요구사항 검토회의(System Requirement Review)

2006. 2

시스템 설계 검토회의(System Design Review)

2006. 11

위성본체 예비설계 심사(Bus Preliminary Design Audit)

2007. 8

시스템 예비설계 검토회의(System Preliminary Design Review)

2008. 8

위성본체 상세설계 심사(Bus Critical Design Audit)

2008. 11

탑재체 상세설계 심사 (Payload Critical Design Audit)

2008. 12

시스템 상세설계 검토회의(System Critical Design Review)

2009. 11

조립/시험 전 검토회의(Integration Readiness Review)

2010. 7

본체/탑재체 개발모델 지상검증 완료

2011. 10

탑재체 비행모델 지상검증 완료

2011. 12

위성체 열진공 환경시험 완료

2012. 1

위성체 발사환경시험 완료

2012. 2

선적 전 검토회의(Pre Ship Review)

2012. 3

발사장 운송

2012. 5

발사(예정)

2012. 8

사업종료

 

□ 주요 개발 과정 사진

<설계검토회의>

<구조/열 시험모델>

<태양전지판 전개 시험>

<본체 성능점검>

<열진공시험 준비 - MLI 장착>

<광학탑재체 AEISS 개발>

<광학정렬 실험실>

<전자파 환경시험>

<진동시험>


<음향환경 시험>

□ 국산화품목 및 수행 기관

 

분류

국산화 품목

수행기관

탑재체

전자광학 카메라 조립/정렬/시험
- 광학모듈 정렬/시험
- 전자광학카메라 조립/성능시

한국항공우주 연구원

위성본체

- 위성 구조체 제작
∙탑재모듈
∙전자모듈
∙태양전지판
∙추진모듈
∙위성체어댑터

(주)대한항공

- 열제어부품 제작
∙다층박막 단열재
∙이차면경

두원중공업(주)

- 추력기 제작 및 추진계 조립
∙이중추력기
∙추진계 조립

(주)한화

- 전력계 및 원격측정명령계 부품 제작
∙종합탑재 컴퓨터
∙전력제어 및 분배기
∙S-대역 트랜스폰더

한국항공우주산업(주)

- 초고주파신호 분배기 제작

(주)엠앤엠링스

- 태양센서 제작

(주)쎄트렉아이

반응형
반응형

※ 다음 자료는 한국항공우주연구원이 발간한 '다목적실용위성 아리랑 3호 프레스킷'을 바탕으로 한 것입니다.



□ 발사 예정일시 : 2012. 05. 18(금), 01:39:01(현지/한국시각)

○ 발사 윈도우* : 01:39:01 ~ 01:42:01(현지시각, 한국시각)

* 인공위성의 발사 가능 시간대(위성발사 후 궤도안착 까지 태양전지판 등에 대한 태양 광선의 입사상황을 고려할 때 한정된 시간구간 내에서 발사 가능)

 

□ 발사체 및 발사장

발사체 : H-IIA

○ 발사장 : 일본 다네가시마 우주센터(JAXA)

○ 발사용역업체 : 일본 미쓰비시 중공업사

 

□ 발사 후 지상 궤적

 

□ 발사 형상

○ H-IIA 발사체는 정지궤도 천이궤도(36,226km×250km)에 4000kg의 위성발사가 가능한 발사체로, 이번 발사 시 우리나라의 아리랑 3호와 JAXA의 GCOM-W1 및 소형위성 2기를 동시에 발사할 예정

○ 2단 발사체에 아래의 그림과 같이 위성이 탑재된 이중 발사 형상으로 발사하게 되며 아리랑 3호는 상단 페어링에 내에 위치

- GCOM-W1 및 2개의 소형위성은 하부페어링 내에 위치

 

□ 발사 준비 

발사준비과정은 위성 및 관련 지상장비 등이 발사장에 도착한 이후에 진행되는 위성체 작업, 발사체 작업, 공동 작업 등을 의미 

○ 아리랑 3호는 한국에서의 최종 기능점검을 완료(’12.2.28)하고 3월 16일, 안전하게 다네가시마 발사장으로 이동 완료 

○ 발사 준비일정 : 약 60일 정도 소요예정

일(Day)

점검 항목

L-60 ~ L-31

위성 기능 점검

L-30 ~ L-26

위성 추진제 충전

L-25 ~ L-15

위성 최종 점검

L-14

상단/하단 페어링 종합

L-10

페어링과 발사체 결합

L-7

임무준비 점검회의

L-6

발사 리허설

L-5

종합 전기접속 시험

L-3

발사준비 점검회의

L-1

발사대로 이동

L-0

발사

 

□ 발사 

발사체 이륙 및 위성분리 주요단계 

순서

시간

주요단계

고도(km)

발사체

이륙

L+0 초

발사 (Lift-off: L)

-

L+126 초

고체로켓부스터 분리

59

L+250 초

상단 페어링 분리

148

L+396 초

1단 주엔진 연소 중지

301

L+404 초

1단 분리

313

L+410 초

2단 엔진 점화

322

L+926 초

2단 연소 중지

676

발사체와

위성분리

L+976 초

아리랑 3호 위성 분리

676

L+1161 초

하단 페어링 분리

679

L+1391 초

GCOM-W1 위성 분리

683

L+2000 초

SDS-4 위성 분리

696

L+3000 초

HORYU-2 위성 분리

692

발사 후 단계별 고도
 

 

발사 예상경로

 

□  사용궤도 및 궤도 획득 프로세스

 

아리랑 3호는 평균고도 685km 의 태양주기궤도상에서 임무를 수행하게 되며, 적도를 북반구 방향으로 상승통과하는 평균 지방시(승교점 지방시)는 오후 1시 30분이다. 다음은 발사체와 위성체 분리이후, 위성이 최종운용궤도에 안착하기까지의 과정을 요약한 것이다. (아리랑 3호가 최종운용궤도에 안착하는 상세계획은 발사체와 분리된 이후 발사체의 진입 정밀도에 따라 달라진다)

 

< 발사 이후 위성 지상 궤적 >

 

□ 1단계 : 위성체 분리 (L+976.2초)  

○ 발사 후 976.2초 이후 위성체가 발사체로부터 분리된다. 이때의 고도는 676km 이고, 원궤도이다.

위성체 분리 위치는 동경 129.103도 / 북위 2.375도 이며, 분리 직후 발사체 관제국에서 위성체가 분리되었다는 발사체 신호를 수신하여 한국항공우주연구원으로 전달해 줄 계획이다.

□ 2단계 : 위성으로부터 첫 원격자료 수신 (L+39분) 

위성이 발사체와 분리 된 이후, 첫 교신은 남극에 위치한 KSAT사*(노르웨이)의 트롤(Troll) 지상국에서 수행된다.

노르웨이 트롬쇠(Troms)에 위치한 위성 원격측정 및 명령 서비스 제공 업체로,북극의 스발바드 지상국(북위 78도)과 남극의 트롤 지상국(남위 72도)을 운영함. 이곳에 분포된 안테나를 이용, 일일 15회 위성 원격측정 및 명령 제공이 가능함,

이 시기에는 태양전지판의 성공적인 전개 여부는 확인이 불가능하고, 위성의 현재 상태에 대한 모니터링이 가능하다.

 

□ 3단계 : 위성체 분리 시점의 궤도정보 획득 (L+1시간)

발사체 회사는 발사이후 1시간이 경과하면, 위성체 분리 당시의 정밀궤도정보를 한국항공우주연구원에 제공할 계획이며, 이를 이용해 초기분리궤도와 최종운용기준궤도의 차이에 대한 분석을 수행한다.

 

□ 4단계 : 태양전지판 전개 성공 여부 확인 (L+100분)

발사 1시간 29분 이후, 위성체는 KSAT사의 노르웨이 스발바드 지상국과 교신을 하게 되며, 이 교신에서 태양전지판의 성공적인 전개 여부를 1차적으로 확인한다.

발사 1시간 40분 이후, 대한민국의 대전 지상국(항우연)과 교신을 하게 되며, 이 교신에서 태양전지판의 성공적인 전개 여부를 최종 확인한다.

다만, 발사 초기에는 궤도 정보의 오차가 크기 때문에 위성의 정확한 위치를 알기 어렵고 위성의 초기 자세에 따라 지상국과의 교신이 어려울 수도 있다. 통상 발사 후 4시간이 경과하면 비교적 정확한 궤도 정보를 확인 할 수 있어 발사 성공 여부 및 위성의 건강 상태를 알 수 있다.
 

□ 5단계 : 최종운용기준궤도 안착 (초기운용 기간(LEOP) 중)

위성본체에 장착된 GPS 수신기의 운용을 통해 아리랑 3호의 궤도결정을 수행한 이후, 초기분리궤도와 그 일치성 여부를 분석하고, 최종운용기준궤도로 궤도안착을 수행하기 위한 궤도조정 계획을 수립한다.

 

□ 초기구동 및 점검 (IAC, Initial Activation & Check-out)

인공위성이 궤도 상에서 정상 운용되기 위해 필요한 구성 장치의 전원을 투입한 후 정상동작 여부를 확인하는 절차

위성본체 궤도상 초기 구동 및 점검 수행 : L ~ L+1주

- 발사 후 각 부분체별 상태 점검

- X-band 안테나 전개

- 각 부분체별 궤도 상 성능 점검

- 안전모드로부터 임무모드까지 모드 전환 및 각 부분체별 상태 점검

- 임무 기동 성능 검증을 위한 기동 시험

- 궤도 조정 성능 검증을 위한 궤도 조정 시험

AEISS 탑재체 궤도상 초기 구동 및 점검 수행 : L+2주 ~ L+3주

- 탑재체 각 장치 별 상태 점검

- 안테나 추적 기능 점검

- 영상 촬영 기능 점검

- 영상 전송 기능 점검 

 

검보정 (Cal/Val, Calibration and Validation)

시스템 성능을 확인하고, 시스템이 설계 특성을 갖도록 조정하는 작업

검보정 : L+4주 ~ L+23주 [TBD]

- 기하보정(geometric) : 위성 영상의 정확한 위도, 경도 추정 등위성 영상의 위치와 관련된 특성 보정

- 방사보정(radiometric):입사 광량과 신호 관계 추정 등 위성 영상의 방사 관련된 특성 보정

- 공간보정(spatial):위성 영상의 해상도 관련 보정

 

□ 위성 운용

○ 초기 운용 단계에서 위성 시스템의 기능 및 성능에 대한 확인이 완료되면 정상 운용 단계로 진입한다. 정상 운용 시점에서는 지상 시스템 운용 절차에 의거하여 아래의 운용 업무가 수행된다.

- 위성 시스템 기능/성능 모니터링 및 제어

- 위성 시스템 운용 계획 수립

- 위성 시스템의 궤도/자세 결정 및 궤도 예측/조정/관리

- 위성 시스템/지상 시스템 간의 통신 상황 모니터링

- 지구 관측 영상 자료 수신/처리 및 사용자 배포 

< 아리랑 3호 영상제공 서비스 관련시설 >

 

 
□ 영상제공 서비스 절차 

정상 운용 단계에서의 사용자 서비스 관련 지상시스템 운영 절차

- 사용자로부터 촬영 주문 접수

- 촬영 계획 및 임무 계획 생성

- 위성 명령 생성 및 전송

- 지구 관측 자료 수신/처리

- 지구 관측 영상 제품 생성 및 사용자 배포 

< 정상운용단계 지상시스템 운용절차 >

  

□ 한국항공우주연구원 위성정보연구센터 

○ 위치 : 대전 한국항공우주연구원 내 
○ 주요 기능 : 위성 관제와 영상 데이터 처리
- 위성의 상태 확인과 명령 송신을 통한 위성 관제를 담당
- 각 기관에서 보낸 임무 요청을 바탕으로 임무를 계획하고 해당 명령을 위성으로 보내어 아리랑 위성의 임무 수행을 지원
- 위성 영상 수신, 저장, 처리 및 사용자 배포 

○ 주요연혁

- 1998년 11월 27일 준공
- 1999년 12월 21일 발사된 다목적실용위성(아리랑) 1호 운용
- 2006년 7월 28일 발사된 다목적실용위성(아리랑) 2호 운용
- 2009년 6월 발사된 통신해양기상위성(천리안) 위성 운용 

○ 센터 구성

- 안테나동 : 다중대역 안테나와 RF 장비
- 위성운영동 : 운용 장비 통합감시시스템/무중단 전력공급시스템/출입통제시스템/실시간 위성신호감시 및 저장 시스템/저저항접지시설/처리시스템 및 운영실 등

 

□ 지상운영시스템

○ 아리랑 위성 지상운영시스템은 순수 국내기술로 개발되었으며, 항우연은 위성운영 부분에 대해서 ISO 9001 인증을 획득

○ 지상운영 시스템은 위성관제시스템기반시설시스템으로 구성

- 위성관제시스템 : 위성 상태 감시ㆍ조정, 임무수행을 위한 계획 및 명령 등의 기능을 수행하며 항우연 종합관제실에 설치 운영

- 기반시설시스템 : 건물, 종합관제실, 네트워크, 통신, 해외 안테나 망, 전력 및 오디오 시설과 유지보수 부분 등으로 구성

  

□ 위성관제시스템 구성(서브시스템) 

원격측정 및 명령 서브시스템 (TTC : Telemetry, Tracking and Command Subsystem)

- 위성과의 관제 RF 통신, 위성 추적, 레인징 기능을 제공한다. 위성운 서브시스템(SOS)으로부터 위성통제 명령 신호와 위성 추적 명령을 수신하고 CCSDS 처리, 4 Kbps로 포맷된 데이터의 변조 등을 수행한다. 또한 아리랑 3호로부터 4.096Kbps 및 1.5625Mbps로 원격측정자료를 수신한 후 원격측정 데이터를 복조하여 SOS로 전송한다.
 

위성운용 서브시스템(SOS : Satellite Operations Subsystem)

- 위성이 보내오는 상태 정보를 실시간으로 분석하고 임무 수행에 필요한 명령을 위성으로 송신한다. TTC를 통해 받은 위성의 원격측정데이터를 수신하여 분석 가능한 자료로 처리한다. 처리된 위성의 상태 데이터는 관제시스템 내의 MPS나 FDS에 배포되며, 원시데이터는 대용량 저장장치에 보관된다. 보관된 데이터는 위성의 상태변화 추이분석에 사용된다. 또한, SOS는 MPS로부터 전달된 촬영계획을 이용하여 명령으로 변환한 후, 위성에 전송하는 역할을 수행한다. 

 

임무계획 서브시스템(MPS : Mission Planning Subsystem)

- 위성의 궤도 이벤트를 예측하고 위성체 운계획 및 사용자로부터 전달된 영상촬영계획을 이용하여 임무 스케줄링을 수행하여 촬영계획을 생성하고 이를 SOS로 전달한다. 촬영계획에 따른 임무일정표는 영상수신을 위해 IRPE(Image Receiving and Processing Element)로 전송된다. 또한, 위성의 자세 기동에 필요한 GPF(Guidance Parameter File)와 위성 X-대역 안테나 구동에 필요한 TPF(Tracking Parameter File)를 생성하는 역할을 수행한다.

   

비행역학 서브시스템(FDS : Flight Dynamics Subsystem)

- 위성의 궤도예측, 궤도결정, 궤도조정 기능을 제공한다. 궤도예측은 고정밀도궤도전파기를 사용하며, 사용자의 선택에 따라 섭동력 성분을 조정할 수 있다. 또한, 궤도결정은 GPS 항행해 또는 안테나 추적 데이터를 이용한 운궤도결정과 위성의 GPS 원시 자료 및 IGS(International GPS Service) 정보를 이용하는 정밀궤도결정으로 구분된다. 궤도조정은 임무궤도를 유지하기 위해 필요한 궤도조정 시각 및 추력기 사용시간을 계산하는 것이다. 이 외에도 위성의 원격측정데이터를 이용하여 PVT 방법을 통해 위성의 잔여연료량을 계산하는 기능이 포함된다. FDS에서 생성된 정밀한 궤도정보는 IRPE로 전달되어 영상처리에 사용된다. 

 

위성시뮬레이터 서브시스템(SSS, Satellite Simulator Subsystem)

- 위성의 동작상태를 S/W로 모사하는 기능을 가지며 위성으로 보낼 명령을 입력하면 시뮬레이션 결과를 보여준다. 따라서 고가의 위성체를 대신하여 각종 시험과 운영자 교육에 사용되며 위성 발사 후에는 위성 장애 원인 분석과 위성 상태 예측에 이용된다.

반응형
반응형

※ 다음 자료는 한국항공우주연구원이 발간한 '다목적실용위성 아리랑 3호 프레스킷'을 바탕으로 한 것입니다.



국내 최초의 서브미터급(1m 이하) 해상도 지구관측위성 

0.7m급 해상도의 전자광학카메라를 탑재하여 정밀한 지구관측 가능

- 현재 운용 중인 아리랑 2호(해상도 1m)보다 높은 해상도로 개발되어 지구 저궤도 관측위성 개발기술 향상
저궤도 : 지구 표면으로부터 200∼2000km인 고도의 인공위성 궤도를 의미

향후 4년간 공공안전, 재해재난, 국토ㆍ자원관리, 환경감시 등에 활용될 고해상도 지구관측영상 공급예정 

한국항공우주연구원과 국내기업체들 간 협력으로 개발

- (주)한국항공우주산업, (주)대한항공, (주)한화, (주)두원중공업, 세트렉아이 등 다수의 국내업체 참여
- 서브미터급 고해상도 광학탑재체의 국내 독자 조립/정렬/시험 등 개발능력 확보 

‘12년 5월 일본 다네가시마 우주센터에서 발사예정(발사체 : H-IIA)

< 아리랑 3호 형상 >

 
□ 서브미터급 광학카메라를 탑재한 초고해상도 위성 개발

○ 세계 상업용 위성영상판매 시장을 주도하고 있는 미국의 GeoEye-I, World View I&II, 프랑스의 Pleiades 위성 등과 같이 서브미터급 위성영상을 제공하는 고해상도 지구관측위성

< 서브미터급 지구관측위성 현황 >

위성

제작사(국가)

전자광학 카메라 성능

발사시기

EROS-B

IAI(이스라엘)

(흑백)0.87m, (칼라)3.5m

2003

GeoEye I

Orbital(미국)

(흑백)0.41m, (칼라)1.65m

2008

World ViewII

Ball Aerospace(미국)

(흑백)0.46m (칼라)1.84m

2009

Pleiades

EADS Astrium(유럽)

(흑백)0.5m, (칼라)2.0m

2011

다목적실용위성 시리즈 개발을 통해 고해상도 광학카메라의 지속적인 성능향상을 도모하여 위성개발 선진국과의 기술격차 해소
※ 아리랑 1호(’94 발사) : 해상도 6.6m → 2호(’06 발사) : 해상도 1m → 3호(’12 발사) : 해상도 0.7m → 3A호(’14 발사예정) : 해상도 0.55m 

< 다목적실용위성 전자광학 탑재체 개발 현황 >


□ 급속기동 촬영성능을 보유한 위성 개발

고성능의 급속기동 촬영* 성능을 바탕으로 여러 지역의 영상을 신속하게 촬영하여 제공할 수 있음

* 위성의 흔들림을 최소화한 채 빠르게 기동하여 촬영하는 기능으로 동일한 위치에서 여러 지역 촬영 및 한 지역 반복 촬영 등 다양한 촬영이 가능

 

□ 상용 위성영상 시장 진입 활성화

세계 지구관측 위성영상 시장규모는 '09년에 10억불을 넘어선 것으로 추정되며 '18년까지 약 39억불 규모로 성장 예상(Euroconsult 2009)

- 아리랑 2호는 ’07년부터 위성영상시장에 진출하여 대만, UAE, 유럽우주청 등에 2,200만불 상당의 직수신권 판매 및 약 26억원의 개별영상판매 실적 달성(’11.12 현재)

아리랑 3호를 통해 상용 위성영상시장을 주도하고 있는 초고해상도(서브미터급) 위성영상 시장에 진입함으로써 위성영상 판매 활성화

 

□ 국민 삶의 질 및 국가위상 제고

○ 지상․환경관측, 농작물 작황 및 산불피해 분석 등 국가 재난관리업무에 필요한 위성 영상정보 제공지원

홍수, 가뭄, 지진 등 재해재난 발생 시 피해저감을 위해 위성영상을 제공하는 국제기구인 인터내셔널 차터 활동 등을 통해 국제사회에 기여

○ 국내주도의 인공위성 개발을 통해 청소년들에게는 꿈과 희망을, 국민에게는 우주개발 국가로서의 자긍심 제고

 

 □ 아리랑 3호의 주요 부분

 

위성체는 상부 구조모듈, 장비 모듈, 추진모듈, 태양전지판으로 구성

- 상부 구조모듈 : 탑재체(AEISS) 온도 유지를 위한 다층박막단열재(MLI)와 히터, 지상국과의 통신을 위한 송수신 안테나가 위치
- 장비 모듈 : 전력계 장비, 자세제어계 장비, 원격측정 명령계 장비 등이 위치
- 추진 모듈 : 위성의 궤도조정과 자세제어를 위해 사용되는 추진제 탱크, 소형 추력기 등이 위치
- 태양전지판 : 위성에서 사용하는 전력을 생산하는 장치로 위성체가 발사체로 분리된 후 전개됨

□ 주요 규격 및 제원

운용궤도

685 km 태양동기궤도

질량

980 kg (발사시, 72.5 kg 추진제질량 포함)

전력량

1,300 w

위성크기

발사시 : 2.0m x 3.5 m (직경×높이)
궤도상 : 2.0 m x 3.5m x 6.25 m (직경×높이×폭)

탑재체

흑백(PAN) : 0.7m 해상도
칼라(MS) : 2.8m 해상도
영상 저장용량 : 512 Gbit

수명

발사이후 4년 (임무수명)

자세제어

3축 안정화 방식*

* 3축 안정화 : 위성체의 자세를 제어하는 방법으로 여러 종류의 안테나 및 태양전지판을 0 또는 알맞은 회전율을 갖도록 하여 위성체 X-Y-Z축의 균형을 조절하여 자세를 제어를 하는 방식

 

□ 위성본체의 구성 및 기능

○ 위성본체는 기능에 따라 구조계, 열제어계, 전력계, 자세제어계, 추진계, 원격측정 명령계 등의 서브시스템으로 구성됨
 

1) 구조계

- 인공위성의 뼈대가 되는 부분으로, 위성몸체와 태양 전지판, 안테나의 구조물, 탑재체와 각종 센서류를 장착하기 위한 보조 패널과 지지대, 안테나 전개장치와 태양 전지판 전개장치 등의 설계와 제작이 포함

<태양전지판 장착 작업>

2) 열제어계
- 영하 100도와 영상 150도를 오가는 혹독한 우주환경에서 인공위성의 각 장치들이 원활히 작동할 수 있도록 적당한 온도 범위를 유지시켜 줄 단열재, 히터, 온도 센서 등으로 구성
<방열판>

3) 전력계
- 위성에서 사용하는 전력의 안정적인 공급을 담당하는 부분으로, 태양전지판과 충전용 배터리, 전력제어 및 분배기로 구성

4) 자세제어계
- 위성체가 지구주위를 회전하면서 일정한 방향으로 지구를 향하도록 자이로스코프, 태양센서, 별추적기, 반작용 휠, 추력기 등의 장치를 이용하여 자세를 제어하는 장치
- 아리랑 3호는 자세지향 정밀도*는 0.02도 이하로서 매우 정밀한 제어능력을 가짐

<자이로스코프>


* 명령자세와 실제자세의 차이(아리랑 2호 자세지향 정밀도 0.025도)

* 자이로스코프 : 회전시 구조물에 가해지는 진동을 측정하여 회전속도를 측정하는 각속도 센서

* 태양센서 : 감지된 태양광에 따라 생성된 아날로그 전류로 자세 측정 센서

* 별추적기 : 광학계에 획득된 별영상의 상대위치를 이용한 자세 측정 센서

* 반작용 휠 : 회전체의 반작용 원리를 이용한 자세제어용 구동기

* 추력기 : 추진제를 사용하여 토크를 발생시키는 자세제어용 구동기

5) 추진계

- 우주공간에서 위성의 궤도조정과 자세제어를 위해 사용되는 추진제 탱크, 4쌍(8개)의 소형 추력기 등이 포함
- 추진제로는 하이드라진(Hydrazine)이라는 화합물이 사용됨
<추진제 탱크>


6)
원격측정 명령계

- 위성을 관제하는 지상국과의 무선통신을 담당하는 서브시스템으로, 무선 송수신 장치, 송수신 안테나, 무선 분배기 등으로 구성

 

7) 비행소프트웨어계

- 인공위성의 두뇌에 해당하는 탑재컴퓨터에 이식되어, 위성 내부에서 일어나는 대부분의 동작을 관장하는 서브시스템 

 

□ 탑재체 : AEISS (Advanced Earth Imaging System)

영상을 촬영하는 ‘전자광학카메라’와 촬영된 영상을 저장 및 압축하여 지구로 전송하는 ‘자료전송시스템’으로 분류

- 구성요소 : 구성품을 지지하는 고안정성 경통 구조체(HSTS: High Stability Telescope Structure), 지상의 영상을 반사시켜 주는 광학 반사경(Optical Mirrors), 반사경에서 들어온 빛을 전기신호로 변환하는 검출기(Detector)와 이를 포함하는 초점면 조립체(FPA: Focal Plane Assembly)

 

위성영상 활용 분야

지구관측위성 영상은 환경, 기상, 해양, 지질, 지도제작, 임업, 수자원, 농업 등 다양한 분야에서 이루어지고 있음

2006년 7월에 발사되어 현재까지 운용되고 있는 아리랑 2호(해상도 1m)의 영상은 주로 국내 공공기관 중심으로 수요

- 국토·해양모니터링, 토지피복분류, 작물재배 면적 및 생산량 추정 등에 다양하게 활용됨

위성기반 재해재난대응 국제기구인 인터내셔널 차터에 가입(’11.7 정식가입)하여 재해재난으로 인한 피해저감 및 국가위상제고에 기여

 

아리랑 3호 영상 활용

아리랑 3호 발사에 따라 위성영상의 양적증가와 질적향상이 이루어져 그간 문제점으로 지적되어왔던 영상 공급부족의 문제가 다소 해소

- 아리랑 2호를 중심으로 이루어졌던 다양한 분야들에 대해 보다 정밀하고 효율적인 위성정보의 활용이 기대

  < 해상도별 위성영상 비교 >

서브미터급

1m급(아리랑2호 영상)

* 여의도 지역을 촬영한 위성사진으로, 좌측이 아리랑 3호급 해상도의 타 위성영상임

향후 전천후 지구관측이 가능한 아리랑 5호(영상레이더)가 발사되면, 레이더영상과 광학영상의 융ㆍ복합으로 위성활용분야가 확대 될 것

※ 광학영상은 육안해석 등에 있어 매우 효과적인 정보를 제공하며, 레이더 영상은 마이크로파 영역의 전자기파를 이용하므로 비나 구름 등의 기상 조건, 주야 조건에 관계없이 지표면에 대한 자료를 효과적으로 획득

광학 영상

레이더 영상


광학 영상

레이더 영상

○ 인터내셔널 차터 활동이 강화되어 국가위상제고에 크게 기여

반응형
반응형
한국항공우주연구원이 개최하는 '2012 인간동력항공기 시범경진대회'에 참가할 10개 팀이 선정됐습니다.

선정된 팀은 ▲다빈치팀 ▲서울대팀 ▲세종대팀 ▲인하공전 모도리팀 ▲인하대팀 ▲울산대팀 ▲충남대팀 ▲카이스트팀 ▲항공대 구조시스템팀 ▲항공대 활공회팀(이상 가나다 순) 입니다.

참가팀들은 중간평가와 예비 비행시험 등을 거쳐 오는 10월 전남 고흥 항우연 항공센터에서 열리는 최종 경진대회에 참가하게 됩니다.

한국항공우주연구원은 이들 팀에게 기체 제작에 필요한 주요 기자재 및 일정 경비를 단계적으로 지원합니다.

또 이번 평가에서 선정되지 못한 팀이 오는 4월 20일까지 기체제작 계획서 등을 다시 제출할 경우, 재심사를 통해 추가 참가자 선정 여부를 검토할 계획입니다.

'2012 인간동력항공기 시범경진대회'는 국내에서 처음 열리는 대회로, 기계적인 동력을 사용하지 않고 사람의 힘만으로 비행할 수 있는 가벼우면서 공기역학적으로도 우수한 항공기를 개발하는 능력을 겨루게 됩니다.

항우연은 이번 시범경진대회에 이어 내년부터는 본 대회를 개최할 예정입니다.

반응형
반응형

다목적실용위성(아리랑위성) 3호 개요

운용궤도

685 km 태양동기궤도

질량

980 kg (발사시, 72.5 kg 추진제질량 포함)

전력량

1,300 w

위성크기

발사시 : 2.0m x 3.5 m (직경×높이)
궤도상 : 2.0 m x 3.5m x 6.25 m (직경×높이×폭)

탑재체

흑백(PAN) : 0.7m 급 해상도
칼라(MS) : 2.8m 급 해상도
영상 저장용량 : 512 Gbit

수명

발사이후 4년 (임무수명)

자세제어

3축 안정화 방식


대한민국의 다목적실용위성 시리즈 가운데 아리랑 3호가 발사 준비 단계에 들어갔습니다.

한국항공우주연구원의 아리랑 3호는 685㎞ 상공에서 탑재된 고해상도 광학카메라를 이용해 정밀 지상관측 임무를 수행하는 국내 최초의 서브미터급 지구관측위성입니다.

아리랑 3호는 현재 운영 중인 아리랑 2호에 비해 기동성이 대폭 향상돼 능동적으로 원하는 지역의 영상을 확보할 수 있으며, 올해 러시아에서 발사될 예정인 영상레이더 위성 아리랑 5호와 상호 보완적으로 사용돼 전천후 지상 관측의 한 축을 담당하게 된다.

아리랑3호 개발사업은 교육과학기술부와 지식경제부가 공동으로  2004년부터 제작했으며, 한국항공우주연구원과 한국항공우주산업, 대한항공, 한화, 두원중공업 등이 참여했습니다.

아리랑 3호는 3월 16일부터 다네가시마 발사장에서 위성체 상태점검, 연료주입, 발사체와 결합 등 본격적인 발사준비 작업에 착수, 오는 5월 18일 경 미쓰비시가 제작한 발사체에 실려 궤도에 올려집니다.


이번 미쓰비시 발사체에는 일본 JAXA의 지구환경변동관측위성 1기와 소형위성 2기가 함께 탑제됩니다.

미쓰비시라...


<아리랑 위성 시리즈 라인업 보기 http://daedeokvalley.tistory.com/51>

반응형
반응형

한국천문연구원과 한국항공우주연구원의 지배구조 개편에 대한
한국우주과학회의 입장 


연구원의 독립성이 결여된 정부 출연연구원지배구조 개편안은 이제 발전기에 접어든 대한민국의 천문·우주과학 분야를 나락으로 추락시킬 있기 때문에 한국우주과학회는 이의 철회, 또는 재고를 강력히 촉구한다. 

지난 수십 년간 우주과학의 변방이었던 우리나라에서 국가 우주과학·기술의 중추적인 역할을 담당하며, 우주강국으로 가는 수많은 연구 및 주요임무를 수행하던 한국천문연구원과 한국항공우주연구원을 효율화와 융합화란 불분명한 기준으로 포장하여 각각 기초과학연구원과 국가개발원으로 통폐합하려는 개편안을 정부는 충분한 논의와 연구현장의 의견청취 없이 밀어 붙이려고 하고 있다.

우리 민족은 고대부터 우수한 천문관측기록을 자랑스러운 과학유산으로 우리에게 남겼다. 세종대왕 당시 세계적으로 최첨단기술에 속하는 천문관측기기들이 개발된 것으로부터 알 수 있듯이, 우리 선조들은 천문·우주과학에 대한 꾸준한 관심과 열정을 갖고 있었으나, 일제의 말살정책에 그 맥이 끊기고 말았다. 그럼에도 불구하고 우리나라 최초의 근대적 이공계 박사는 천문학으로 학위를 했을 만큼 천문·우주과학은 근대 국내 과학기술계에서도 가장 뿌리가 깊다.

1974년에 설립된 국립천문대가 모태인 한국천문연구원은 천문·우주과학의 국가천문 대표기관으로서의 역할을 수행하여 왔다. 또한, 1989년에 설립된 한국항공우주연구원은 실용적인 우주의 이용 및 우주공학, 우주탐사에 기여해 왔다. 이렇게 출연연구기관인 한국천문연구원, 한국항공우주연구원, 그리고 여러 대학의 관련 학과는 우리나라의 천문·우주과학의 큰 기둥으로서 그 역할을 해 왔고, 앞으로도 이 세 축을 바탕으로 우리나라 천문·우주과학 분야가 세계적인 수준으로 발돋움할 것이다. 이러한 기초를 바탕으로 국가제정 천문법과 우주개발진흥법은 천문·우주과학의 중요성을 국가에서도 인식하고 우리나라가 우주강국으로 가고자 하는 의지의 표현인 것이다.

한국우주과학회는 천문·우주과학 관련 전문인력의 학문·기술적 관심사의 최첨단에 서있으며, 우리나라 천문·우주과학의 발전을 위해 천문·우주과학 관련 대학, 연구기관이 세계적인 수준으로 도약하기 위한 동반자 역할을 하고 있다.

그 간 한국천문연구원과 한국항공우주연구원은 독립연구기관을 유지하며 그 연구개발 능력을 극대화하기 전까지 여러 번의 기관 지배구조 변화를 겪어왔으며, 정권이 바뀔 때마다 연구개발현장의 의지와는 다르게 여러 형태의 변화를 요구 받았다. 그 때마다 연구개발 현장에서는 혼란과 우수 인력의 이직 등과 그에 따른 중요 연구의 단절도 일어났다. 매우 유감스러운 일이다.

현재 어느 선진국도 독립적인 천문·우주과학 전문연구기관을 두지 않은 나라는 없다. 세계적인 거대과학을 위한 여러 천문관측기기 사업, 국제학회, 국제기구 및 위원회에 한국천문연구원은 국가천문연구기관 대표자격으로 참여하고 있고, 한국항공우주연구원 또한 우주개발에 있어서 국가를 대표해서 국제협력을 이끌어 내고 우주기술 개발에 앞장서고 있다. 두 기관이 독립성이나 대표성을 상실하고 일개 부설기관으로 전락한다면, 우리나라에서의 천문·우주과학은 뒷전으로 밀리고 우주강국의 꿈은 사라질 것이다. 한번 무너진 토대는 다시 쌓기 어렵다.

한국우주과학회는 21세기 대한민국의 천문·우주과학의 발전을 위해서 한국천문연구원과 한국항공우주연구원이 독립성이 확보된 기관이어야 함을 다시한번 강력히 천명한다.

 

2012년 2월 9일

한국우주과학회 회장 김천휘

반응형
반응형

인간의 힘만으로 500m를 날아라!


한국항공우주연구원이 오는 10월 개최하는 '2012 인간동력항공기 시범경진대회' 참가팀을 모집합니다.

인간동력항공기 대회는 기계적인 동력을 사용하지 않고 사람의 힘만으로 비행하는 가볍고 공기역학적으로 우수한 항공기를 개발하는 능력을 겨루는 대회입니다.

이번 대회는 항공기 설계 및 제작에 관심 있는 국내 단체 및 동아리, 개인이면 누구나 참가할 수 있습니다.

참가신청서는 한국항공우주연구원 홈페이지(www.kari.re.kr) 배너에서 다운로드 받을 수 있습니다.

접수는 1월 16일(월)까지 이메일(wychoi21@kari.re.kr)로 제출하면 됩니다.

참가신청을 마친 참가팀은 향후 비행체 설계도면 등과 같은 기체제작 계획서를 제출해야 하며, 항우연은 관련 전문가로 구성된 평가위원회를 통해 10개팀 이내의 최종 경진대회 참가팀을 선정하게 됩니다.

최종 참가팀으로 선정되면 기체 제작에 필요한 주요자재 및 일정 경비가 지급되며, 대회 우승팀에게는 1등 1500만원, 2등 1000만원, 3등 500만원의 포상이 수여됩니다.



 

 

 

반응형
반응형

<김승조 한국항공우주연구원장 신년사>

사랑하는 항공우주연구원 가족 여러분,

2012년, 새로운 한 해가 시작되었습니다.
여러분 모두 희망찬 새해 맞이하시고 가정에 건강과 행운이 함께 하기를 기원합니다.

지난해에는 모든 임직원이 자신의 위치에서 최선을 다해주신 덕분에 대내외적으로 어려운 상황 속에서도 크고 작은 성과들을 거둘 수 있었습니다.
 
스마트무인기 개발이 10년의 연구 끝에 결실을 맺음으로써 우리나라가 세계에서 두 번째로 틸트로터 항공기 기술을 확보하게 되었고,  천리안위성이 4월부터 본격 서비스를 시작해 기상, 해양, 통신 등 다양한 분야에서 국민의 안전하고 편안한 생활을 지원하고 있습니다.

이러한 성과들과 더불어 지난해 우리 연구원에는 여러 가지 변화가 있었습니다.
그 중에서도 국책 사업 수행과 더불어 핵심기술 개발 강화를위해 임무수행형 연구소 체제로 조직을 개편한 것은 중요한 변화 중 하나라고 할 수 있습니다.

이러한 변화는 쇄신과 혁신에 대한 요구가 반영된 것이라고 생각합니다. 
혁신은 능동적인 개념입니다.
외부의 힘이나 간섭에 의한 변화가 아닌 우리 스스로 능동적이고 창조적으로 변화를 만들어내는 것입니다.

지난해가 새로운 도약을 위한 도움닫기의 시기였다면 2012년은 창조적 혁신을 통해 본격적으로 도약하는 해가 될 것입니다. 

올 한해 우리에게 주어진 과제가 많습니다.

우선 올해 안에 예정된 네 차례의 발사를 모두 성공적으로 이루는 것이 가장 큰 현안입니다.

무엇보다도 금년에는 나로호 3차 발사에 모든 역량을 결집해 대한민국의 우주개발에 대한 의지를 전 세계에 보여주고 독자적인 우주개발로 나아가는 도약의 전환점을 마련할 것입니다. 실패 재발방지 개선?보완 조치와 완벽한 기술적 검증을 수행하여 모든 준비과정에 만전을 기하겠습니다.

또한 지난해 러시아 사정으로 발사가 지연된 아리랑위성 5호를 상반기 중에 발사할 예정입니다.
발사 시기가 결정되면 곧바로 러시아로 이송해 성공적인 발사가 이루어질 수 있도록 만반의 준비를 하겠습니다. 

아리랑 3호의 발사도 상반기 중에 이루어질 예정입니다.
영상레이더를 탑재하는 아리랑 5호와 해상도 0.7미터급의 아리랑 3호가 성공적으로 발사되면 우리나라는 고해상도 광학영상과 레이더영상을 동시에 얻을 수 있는 세계에서 몇 안 되는 나라가 될 것입니다. 

현재 운용 중인 아리랑위성 2호, 천리안위성을 안정적으로 운용할 뿐만 아니라, 새로이 발사될 아리랑 위성 5호, 3호의 초기운용 및 정상운영에 만전을 기할 것입니다.
더불어 아리랑 2호, 3호와 연계한 5호 상용화 판매대행업체를 선정하는 등 위성영상 수출산업화에도 힘쓰겠습니다.

하반기에 예정된 과학기술위성 3호의 발사도 차질 없이 이루어질 수 있도록 최종조립과 환경시험 등에 만전을 기할 것입니다.

항공 분야에서는 스마트무인기사업과 한국형기동헬기 수리온 사업이 올해 종료됩니다.
성공적으로 사업이 종료될 수 있도록 끝까지 잘 마무리하고,사업 종료 이후에도 국내 산업체로의 관련 기술 이전과 해외 선진 항공업체와의 기술협력 등을 통해 빠른 시간 내 실용화 단계에 들어설 수 있도록 지원해나갈 것입니다.

또한 차세대 중형 민항기 기술을 개발하기 위한 국제공동개발사업에 착수하고, 수리온 개발 사업에서 얻은 기술과 경험이 산업적인 효과로 이어질 수 있도록 민수헬기 사업도 준비할 것입니다. 
사랑하는 항공우주연구원 가족 여러분,
올해도 하늘과 우주를 향한 세계 각국의 경쟁은 치열할 것으로 예상되고 있습니다.
특히 중국과 일본 등 우리 주변 국가들은 지난해에 이어 도전적인 우주개발을 계속해 나갈 것입니다.
우리도 이처럼 치열한 경쟁 속에서 뒤처지지 않고 자주적인 항공우주개발을 수행해나가기 위해서는 핵심기술력 확보에 더욱 박차를 가해야 합니다.

위성 분야에서는 아리랑위성 5호의 임무를 이어받을 영상레이더위성인 아리랑위성 6호 개발 착수, 천리안 위성 후속인 정지궤도복합위성의 본격 국산화 개발을 수행할 것입니다. 

위성 핵심기술 개발사업을 통해 확보된 기술은 기업체에 이전해 산업적인 효과를 도모하고, 표준위성모델 개발을 통해 수년 내에 우리의 첨단위성을 해외에 수출할 수 있도록 경쟁력을 키워나가겠습니다.
위성 잠재 고객 및 우주 협력기업들에게 우리가 개발하고 있는 위성 및 위성영상에 대한 이해를 돕고자, 소형위성/광학위성/레이더위성/정지궤도위성 등 항우연에서 개발 가능한 위성들의 종류와 사양 그리고 성능을 규격화하고 또한 설계/제작/시험에 이르는 전 과정에 소요되는 항우연 보유 대형장비들에 대한 정보를 DB화하여 우주산업화의 기초 자산으로 하도록 할 예정입니다.

항공분야에서는 친환경, 고연비의 중형민항기 및 전기동력 무인기 등의 개발에 필요한 핵심기술을 진일보 시킬 것입니다.

또한 올해는 국가우주위원회의 한국형발사체 개발계획에 대한 승인을 바탕으로 본격적으로 사업을 추진해야하는 시기입니다. 아리랑위성 5호의 발사 지연을 통해 볼 수 있듯이 다른 나라에 의존하지 않고 독자적인 우주개발을 하기 위해서는 무엇보다 위성 발사능력을 하루빨리 확보해야 합니다.
한국형발사체의 개발 완료 목표는 2021년이지만 최대한 계획을 앞당겨 실현할 수 있도록 최선을 다하겠습니다.

그 외에도 소형항공기 KC-100 인증비행시험, 항공우주 융복합기술연구, 위성항법지역보강시스템 연구들을 차질없이 수행할 것입니다.

사랑하는 항공우주연구원 가족 여러분

우리 연구원은 단순히 국가사업을 수행하고 기술개발만을 하는 연구기관이 아니라, 우리나라 항공우주개발의 선진화를 위한 국제협력의 전진기지이자 산재되어 있는 국가 항공우주개발의 역량을 결집시키는 구심점이라고 할 수 있습니다.

이러한 역할을 충실히 수행하기 위해 우리 연구원은 좀 더 개방적이고 진취적인 연구원으로 거듭나야 할 것입니다.

이를 위해 항공우주 선진국들과는 수평적이고 상호 호혜적인 국제협력을 도모하는 한편, 아시아권에서는 빠른 시간에 압축 성장을 이룬 성공모델로서 항공우주개발 리더로서의 위상을 정립해나갈 것입니다.
 
국내에서는 다른 연구기관이나 항공우주산업체들과의 협력을 더욱 활성화함으로써 시너지를 창출하고 국가 항공우주 발전을 이끄는 중심 역할을 해나갈 것입니다.

또한 항공우주문화를 확산시키는 허브로서 항공우주 과학문화를 확산하고 항공우주 대중화에도 앞장설 것입니다.

이러한 노력의 일환으로 올해는 청소년 등을 대상으로 하는 인간동력항공기 등의 경진대회도 개최할 예정입니다.

이처럼 우리에게 주어진 임무들을 달성하기 위해서는 더욱 체계화된 조직, 인력 및 예산 운영이 필요합니다.
연구원 핵심기술개발 계획을 수립·시행하고, 산학연 협력체계, 품질관리 강화, 전주기적 사업관리 절차 정비 등을 통해 연구사업 수행체계를 확립해 나가겠습니다.
또한 연구결과 지식재산화, 개인/부서 평가제도 정비 등을 통한 책임제도를 정립하겠습니다.
노사화합의 기반 아래 우수 연구원의 재충전을 위한 연가와 교육훈련을 연중 확대하는 등 직원 사기를 높이기 위한 복지제도를 늘려나가겠습니다.

전 직원의 화합과 공통 구심점을 강화하기 위해 자유로운 토론과 경험 공유의 장도 정례화하고, 원내 부서 간 시너지 효과가 극대화되도록 하겠습니다.

사랑하는 항공우주연구원 가족 여러분, 2012년 새해는 임진년 용의 해입니다.
그것도 60년 만에 오는 흑룡의 해입니다.
흑룡은 용기와 희망, 그리고 비상을 상징한다고 합니다.
올해 발사될 우리의 위성들과 나로호가 용처럼 힘차게 우주로 비상해 온 국민에게 용기와 희망을 안겨주는 한 해가 되기를 기원합니다.

금년 한해에 수행해야 할 업무들에 짓눌리지 말고 좌우를 돌아보는 여유도 잊지 말아야겠지만, 우리의 계획과 포부가 모두 실현될 수 있도록 항공우주연구원 모든 가족 여러분의 노력과 단합을 당부 드립니다.

새해 복 많이 받으십시오.
감사합니다.

한국항공우주연구원장 김승조

반응형

+ Recent posts