반응형

기존 나노물질 합성과 패터닝 공정은 높은 온도에서 폭발성 혹은 독성이 있는 위험한 기체를 사용해 성장시키고, 복잡한 정렬방법을 이용해 특정 위치에 조립해야 하는 번거로운 과정이 필요했습니다.

따라서 다단계의 공정과 고비용, 비환경적인 특성 때문에 나노소자의 대량생산과 상용화에 큰 걸림돌이 되었습니다.

또한 기존 공정은 약 1000℃의 높은 온도와 부식성이 강한 화학약품을 사용하기 때문에 플라스틱과 같은 저렴하면서도 유연한 기판을 이용하는데 제약이 있었습니다.

새로운 개념의 저온 디지털 나노물질 패터닝 공정기술이 개발되어, 나노물질의 선택적인 합성과 패터닝 공정의 획기적인 단축으로 나노소자 상용화에 한걸음 다가서게 되었습니다.

■ KAIST 고승환 교수팀은 한 번의 공정으로 원하는 위치에 나노물질을 직접 성장시키는 새로운 저온 디지털 공정기술을 개발했습니다.

고 교수팀은 잉크젯 공정을 이용하여 종이에 프린트하듯이 나노물질의 씨앗층(seed layer) 패턴을 기판위에 만들고, 100 이하의 저온 용액환경에서 나노와이어를 성장시키는 선택적인 저온 성장법을 개발했습니다.

이 방법을 이용하면 복잡한 후속 공정 없이도 넓은 면적의 플라스틱 기판에 한 번의 공정으로 나노물질 합성과 패터닝을 동시에 수행할 수 있는 신개념 공정을 실시할 수 있습니다.

디지털 나노물질 직접 합성 및 패터닝 공정을 이용하여 구현된 나노와이어 패터닝의 SEM 이미지

플라스틱 기판위에 구현된 나노물질 마이크로 패터닝 구조체

고 교수팀이 개발한 디지털 나노물질 직접 패터닝 기술을 이용하면 나노소자 개발기간을 단축할 수 있을 뿐만 아니라 롤투롤(roll-to-roll) 공정으로 쉽게 확장할 수 있는 장점이 있습니다.

원하는 위치에 직접 나노물질을 합성하고 패터닝하는 디지털 나노물질 직접 패터닝기술은 공정의 유연성이 매우 커서 기존에 나노소자 개발에 필요한 공정시간을 1/10 이하로 대폭 단축할 수 있습니다.

또한 이 기술은 저온공정이기 때문에 플라스틱과 같은 저렴하면서도 유연한 기판에 구현할 수 있고, 차세대 대량생산공정으로 주목 받고 있는 롤투롤 공정에도 적용할 수 있어, 나노소자의 대량생산과 상용화에 가능성을 연 획기적인 기술로 평가받고 있습니다.

이번 연구에는 KAIST 고승환 교수와 여준협, 홍석준 박사과정생, 그리고 그리고로폴로스 UC Berkeley대 교수와 호츠 미 Duke대 교수가 참여했습니다.

이번 연구결과는 물리화학분야의 권위 있는 학술지인 '랭뮤어(Langmuir)'지에 3월 14일자 표지논문으로 게재되었습니다. 
(논문명 : Digital Selective Growth of ZnO Nanowire Arrays from Inkjet-Printed Nanoparticle Seeds on a Flexible Substrate)

고승환 카이스트 교수(왼쪽), 여준엽 연구원(두 번째) 및 홍석준 연구원(세 번째)이 나노구조체의 상태를 점검하고 있다.


 용  어  설  명

패터닝(patterning) :
되풀이되는 모양이나 원하는 형태를 본뜨는 작업

씨앗층 (seed layer) :
나노와이어를 성장시키기 위해서는 나노물질 촉매가 필요하며 보통 금속이나 산화금속의 나노입자를 촉매로 이용한다.
나노와이어는 나노입자로부터 길이방향으로 방향성의 가지며 성장하게 되며 기판에 씨앗층이 없는 부분에서는 나노와이어가 자라지 않게 된다.

열수화학반응 (hydrothermal reaction) :
나노물질을 만드는 화학적 반응방법의 하나로 타깃물질이 이온상태로 물에 용해되어 있는 전구체 용액을 가열하여 특정 온도조건이 되면 나노물질들이 성장하기 시작하는 나노물질 구조체 합성방법.

랭뮤어(Langmuir)지 :
미국화학회가 출판하는 표면, 계면, 재료화학분야의 권위 있는 학술지로, 2010년 인용지수가 4.269이다.

 

<연 구 개 요>

Digital Selective Growth of ZnO Nanowire Arrays from Inkjet-Printed Nanoparticle Seeds on a Flexible Substrate S.H. Ko et al. (Langmuir - 2012. 3.14. 출판)

최근 나노선 (nanowire), 나노튜브 (nanotube), 나노입자 (nanoparticle) 등의 나노구조물을 이용한 다양한 기능성 소자의 개발이 활발하게 이루어지고 있다.

이는 기존의 스케일에서 볼 수 없었던 새로운 전기적, 광학적, 기계적, 화학적 성질을 나노스케일에서 발견할 수 있고, 이를 이용해 성능이 뛰어난 소자를 제작할 수 있기 때문이다.

하지만 기존의 공정들은 진공, 고온상태에서 촉매와 유해한 기체화합물 전구체를 기본적으로 필요로 하기 때문에 고비용의 전구체와 진공장비의 필요성 때문에 합성에 필요한 비용이 굉장히 크고, 나노구조물을 합성하는 기판의 선택에 있어서 높은 온도에 견디지 못하는 플라스틱과 같은 물질을 이용하지 못하며, 환경 비친화적인 단점을 가지고 있다.

뿐만 아니라 전자 소자와 나노구조물 간의 기계/전기적 접합 성질 면에서 신뢰성이 뛰어나지 못하고, 정렬된 나노구조물의 정확한 방향성 및 균일성 등에 있어서 성능이 좋지 못하다. 따라서 실제 소자로의 응용 시 여러 가지 문제점들을 안고 있다. 

본 연구팀은 이러한 기존의 단점을 극복하기 위하여 디지털 직접 나노물질 성장법을 개발하였다.

잉크젯 장비를 이용하여 종이에 프린트하듯이 나노물질의 씨앗층(seed layer) 패턴을 기판위에 형성시키고 100 이하의 저온에서 열수 화학반응 (hydrothermal reaction)을 이용하여 씨앗층에만 나노와이어를 선택적으로 성장시켜서 기존의 광식각 (photolithography)공정과 유전영동 (dielectrophoresis), 미세유체 흐름 (microfluidics), 미세접촉 인쇄기법 (micro contact printing) 등을 이용하지 않고 단일 공정으로 성장시키는 선택적 저온 성장법을 개발하였다.

따라서 고가의 후속 공정들이 없이도 대면적 플라스틱 기판에 나노물질을 단일공정을 통해 나노물질 합성과 패터닝을 동시에 수행할 수 있는 신개념의 공정을 개발할 수 있었고 전자소자와 나노구조물 간의 기계/전기적 접합 신뢰성 및 나노구조체 방향성 및 균일성을 극대화 시킬 수 있었다.

이와 더불어 원하는 위치에 직접 나노물질을 합성하고 패터닝하는 디지털 나노물질 직접 패터닝 기술은 공정변경이 굉장히 용이하여 초기 나노소자 개발에 걸리는 공정개발시간을 대폭 단축시킬 수 있으며,  저온공정 특성상 플라스틱 기판에 구현이 가능하며 현재 차세대 대량생산공정으로 가장 주목을 받고 있는 롤투롤(roll-to-roll)공정으로 적용이 용이하여 현재 나노소자의 가장 큰 걸림돌이었던 대량생산과 상용화의가능성을 제시한 획기적인 기술로 고성능 나노소자의 상용화에 필요한 핵심 기술이 될 것으로 기대된다. 


<고승환 교수>

1. 인적사항                          

 ○ 성 명 : 고승환(38세)                             
 ○ 소 속 : 카이스트 기계항공공학부

2. 학력사항
  1993.3 - 2000.2  연세대학교 기계공학과 학사   
  2000.3 - 2002.2 서울대학교 기계항공공학부 석사  
  2002.9 - 2006.12 UC Berkeley 기계공학과 박사 
    
3. 경력사항 
  2006.12 - 2009.4   UC Berkeley 박사후연구원
  2008.8 - 2009.5    Laurence Berkeley National Lab 연구원
  2009.5 - 2011.8    카이스트 기계항공공학부 조교수
  2011.9 ? 현재    카이스트 기계항공공학부 부교수

4. 주요성과 
1. S.H. Ko, D. Lee, N. Hotz, J. Yeo, S. Hong, K.H. Nam, C.P. Grigoropoulos, "Digital selective growth of ZnO nanowire arrays from inkjet printed nanoparticle seed on a flexible substrate", Langmuir, 28,4787-4792, 2012.
2. Y. Son, J. Yeo, H. Moon, T.W. Lim, K.H. Nam, C.P. Grigoropoulos, S. Yoo, D.-Y. Yang and S.H. Ko, "Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles", Advanced Materials, 23, 3176-3181, 2011.
3. S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, "Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-sensitized Solar Cell", Nano Letters, 11(2), 666-671, 2011.
4. I. Park, S.H. Ko, H. Pan, C.P. Grigoropoulos, A.P. Pisano, J.M.J. Frechet, E. Lee, and J. Jeong, "Nanoscale Patterning and Electronics on Flexible Substrate by Direct Nanoimprinting of Metallic Nanoparticles", Advanced Materials 20, 489-496, 2008.
5. S.H. Ko, I. Park, H. Pan, C.P. Grigoropoulos, A.P. Pisano, C.K. Luscombe, and J.M.J. Frechet, "Direct Nanoimprinting of Metal Nanoparticles for Nanoscale Electronics Fabrication", Nano Letters 7(7), 1869-1877, 2007


 

반응형
반응형

MK48 어뢰 테스트




이 그림은 미국 MK48 어뢰 실사격 테스트 장면입니다.

KAIST가 국내에서 처음으로 선박 수중폭발 연구를 본격화합니다.

KAIST 해양시스템공학전공 신영식 교수팀이 국내 최초로 모형 선박을 이용해 폭약의 수중폭발로 인한 충격이 선박에 미치는 영향을 분석하기 위한 실험을 실시했습니다.

연구팀은 가로 1m, 세로 2m크기의 알루미늄 모형 선박을 만들어 속도, 가속도, 압력 측정 센서를 부착하고, 선박과 폭약의 수평, 수직 거리에 따른 수중 폭발 응답 데이터를 기록했습니다.

연구팀은 이번 실험을 통해 컴퓨터 시뮬레이션만으로는 얻을 수 없었던 실제 실험 데이터를 얻어냈습니다.
 
이 데이터는 컴퓨터 시뮬레이션의 결과와 비교해 계산 값의 검증에 사용될 계획입니다.

KAIST는 이번 실험을 계기로 향후 수중폭발 관련 시뮬레이션 기법을 점차 고도화시켜 수중충격에 대한 보다 정확한 예측이 가능케 할 예정입니다.

아울러 수중폭발 현상에 대한 이해를 높여, 선박의 탑재장비의 생존성 확보를 위한 연구와, 내충격성 향상을 위한 설계의 검토 및 변경의 기초자료로 활용할 예정입니다.

연구팀은 이번 결과를 바탕으로 근접 수중폭발로 선박의 침몰을 유발할 수 있는 휘핑현상을 재현하는 실험을 계획 중입니다.

이 연구가 완료되면 휘핑현상에 대한 보다 정확한 이해를 통해 선박의 디자인을 검토 보완해 함정과 승조원의 생존능력을 확보하는 데 크게 기여할 수 있을 것으로 예상됩니다.

미국, 러시아 등 군사강국에서는 실제 함선을 이용한 수중 폭발실험이 활성화돼 있어 함정의 내충격성 강화 및 탑재장비의 생존성여부에 관한 자료로 폭넓게 활용되고 있지만 군사기밀로 다뤄져 공개되지 않고 있습니다.

신 교수는 미 해군대학원에서 약 30년 동안 교수로 재직하면서 수중폭발, 탑재 전자 장비의 충격 내구성 검증, 충격 및 진동문제해결 등의 연구를 진행해 성과를 인정받아았습니다.
 

각종 센서를 부착해 만든 알루미늄 모형 배를 물 위에 띄운 모습



실험에 사용한 모형 선박의 3D 모델과 수중폭발 컴퓨터시뮬레이션

 

신영식 교수가 모형 선박을 가리키면서 연구진들에게 설명하고 있다

<신영식 초빙교수>

1. 인적사항
 ○ 소 속 : 카이스트 해양시스템공학전공

2. 학력
  1965: Seoul National University (학사: 토목공학과)   
  1966: University of Minnesota (석사: 구조공학과)  
  1971: Case Western Reserve University (박사: 기계공학전공)  
 
3. 경력사항
  1972 - 1974: Bechtel Corporation, San Francisco
  1974 - 1979: Argonne National Laboratories, Components
              Technology Division 
  1979 - 1981: General Electric Company, Nuclear Power Systems
              Engineering, San Jose, California 
  1981 - 2009: Naval Postgraduate School, Monterey, CA, USA   
  2009 - 현재: 초빙교수, KAIST 해양시스템공학전공
 
4. 전문 분야 정보

신영식 초빙교수는 수중폭발충격 관련 전 분야에 관하여 세계적인 전문가이다.

미해군대학원에서 약 30년 동안 기계공학 및 항공공학과 교수로 재직하였으며, 수중폭발, 탑재 전자 장비의 충격 내구성 검증, 함선 소음문제, 충격 및 진동문제, 탑재 장비 상태 모니터링, 유한 요소 기법 등의수많은 연구 성과를 인정받아 최고의 영예직인 특훈교수에도 임명되었다(2005).

현재 신영식 초빙교수는 KAIST 해양시스템공학전공에서 A-1 형태 모바일 하버의 내항성문제, 수중폭발과 수중 폭발이 해양구조물에 미치는 영향과 가스버블의 움직임과 휘핑문제, 고압상태에서 스파크로 생성한 버블의 움직임, 수중 폭발이 다선체 고속선에 미치는 영향, 수중폭발시험 등에 국내에서 수행하기 어려운 연구들을 하고 있다.

미국 기계공학학회에서 부여하는 ASME PVP Service Award for Chairman of Fluid-Structure Interaction Technical Committee를 수상하였으며, 같은 해 동일 학회의 fellow 멤버가 되었다(1992). 미해군대학원에서 뛰어난 연구 성과를 인정받아 인증서를 수여하였고(1993), Distinguished professorship을 받았다(2005). Shock and Vibration 심포지엄에서 함선 충격 모델링 및 시뮬레이션 주제로 강연자 상을 수상하였다(2003).

반응형
반응형

현재 개발되고 있는 투명디스플레이는 출력되는 영상이 선명하지 않아 미세한 구별이 어렵기 때문에 실질적으로 상용화하기가 어려운 면이 있습니다.

왜냐하면 빛을 내는 형광체의 발광세기가 충분히 높지 않기 때문입니다.

또 형광체 재료로 사용되는 희토류 금속의 가격이 폭등하고 있는 것도 상용화를 위한 걸림돌로 지적되고 있습니다.

표면 플라즈몬은 금속박막 또는 나노입자 표면에서 일어나는 표면 자유전자들의 집단적인 진동현상입니다.

발광체 주변에서 표면 플라즈몬 공명 특성이 나타날 경우 발광체의 발광 재결합 속도가 증가해 발광체의 발광 특성이 향상될 수 있는 연구결과가 나왔습니다.


'나노 표면 플라즈몬' 이 발생하는 경우 전기적 필드가 집중되는 모습



■ KAIST 전기및전자공학과 이성민 박사과정 학생과 최경철 교수가 나노 표면 플라즈몬 현상을 이용해 투명 디스플레이의 효율을 획기적으로 향상시킬 수 있는 원천기술을 개발했습니다.

이번 기술은 스마트 쇼윈도우나 스마트 미러, 투명 단말기, 투명 핸드폰 등 보다 선명한 투명디스플레이 개발에 활용될 수 있습니다.

KAIST 연구팀은 불투명하고 빛을 반사하는 특성을 가진 금속을 나노입자 수준으로 아주 작게 만들면 빛이 금속입자를 통과해 투명하게 보이고, 금속입자들은 공명현상을 일으켜 발광세기를 증가시키는 '표면 플라즈몬' 현상이 발생하는 것에 주목했습니다.

이 현상을 이용해 연구팀은 나노크기의 은(Ag)을 희토류 금속이온이 첨가된 투명 형광물질로부터 수십 나노미터 이내에 위치하게 해 투명 형광물질의 발광세기를 최대 63.7% 향상시켰습니다.

‘나노 플라즈몬 공명’을 유도하기 위한 은 나노 입자의 형상



'나노 표면 플라즈몬‘ 이용한 투명 디스플레이


또 이 원리를 이용하면 전기·광학적 효율도 11%나 향상돼 저전력 투명디스플레이 소자를 구현할 수 있다는 점도 밝혀냈습니다.

이 기술은 최 교수팀이 지난 2009년 나노 표면 플라즈몬을 이용해 OLED의 밝기를 증가시킨 것에 대한 후속 연구 성과로, 나노 표면 플라즈몬의 차세대 디스플레이에 대한 활용 가능성을 높였다는 점에서 획기적인 연구 성과로 꼽히고 있습니다.


특히 나노 표면 플라즈몬 기술을 이용해 소자의 투명도를 유지하면서 발광체의 광 특성을 향상시켜 투명한 LCD, PDP, LED 등 미래 투명디스플레이 소자에 확대적용이 가능합니다.

이번 연구결과는 나노기술 분야 세계적 권위지 '스몰(Small)' 온라인 판 3월호에 게재됐습니다.


 

 용  어  해  설

투명 디스플레이 :
빛을 내는 형광물질과 광자발광, 전계발광, 음극선 발광 원리를 이용하여 구성된 디스플레이로서 투명 재료 기술을 접목하여 발광하지 않는 상태에서는 투명하다가, 발광을 하는 경우 이미지 및 동영상을 구현할 수 있는 형태의 차세대 디스플레이 소자.
 
나노 플라즈몬 현상 :
나노 크기로 형성된 금속 나노 입자에 특정 광원이 입사되었을 때, 광원의 파장에 따라 금속 나노입자의 표면에 위치한 전자가 공진적으로 진공하는 유사입자를 지칭한다.
금속 나노 입자의 재질, 모양 및 주변의 굴절률에 따라 공진하는 파장이 결정되므로 특정 색상을 띠게 되고, 유도된 표면 플라즈몬은 금속 나노 입자주위로 한정되는 특징이 있다. 

진공 열증착법 :
10-4 Torr 이하 높은 진공상태에서 증착하고자 하는 물질에 열을 가하여 기화시킨 후, 기체상태의 물질이 목표 기판에 도달하여 박막으로 증착시키는 방법. 

광효율 :
소비되는 전기량(전력) 대비 빛의 밝기가 어는 정도 인지는 알려주는 물리적인 양.

희토류 금속 :
첨단 산업에서 많이 사용되는 원소로서 란타넘 계열의 금속 원소 및 스칸듐과 이트륨을 합쳐 총 17종의 금속원소를 지칭하는데, 디스플레이 산업에서는 가시광선 영역의 빛을 발광하는 형광체를 제조하는 데 사용된다.
최근 디스플레이 산업의 원자재 가격 상승 문제와 관련하여 희토류 금속의 가격이 상승에 대한 관심이 증가하고 있다.

<최경철 교수>

 

성    명 : 최 경철 ( 崔  景  喆)
생년월일 : 1964년  2월  11일
근 무 지 : 대전시 유성구 구성동 한국과학기술원(KAIST)
          전기 및 전자 공학과

1982. 3 - 1986. 2 : 서울대학교 전기공학과 / 공학사
1986. 3 - 1988. 2 : 서울대학교 전기공학과 / 공학석사
1988. 3 - 1993. 8 : 서울대학교 전기공학과/ 공학박사

<주요경력>
1993. 9 - 1995. 4 : 고등기술연구원 / 선임연구원
1995. 5 - 1998. 5 : Spectron & HPD / 책임연구원
1998. 6 - 1999. 10 : 현대전자 디스플레이 선행연구소/ 책임연구원
2000. 3 - 2005. 1 : 세종대학교 전자공학과/ 부교수
                  ITRC 정보 디스플레이 연구 센터장
2005. 2 - 2009. 8 :  KAIST 전기및전자공학과 / 부교수
2009. 9 - 현재 : KAIST 전기및전자공학과 / 정교수
2011. 2 - 현재 : KAIST 전기및전자공학과 / 산학담당 부학과장
2011. 5 - 현재 : KAIST 석좌교수
2007. 8 - 현재 :  차세대 플렉시블 디스플레이 융합 센터장

<디스플레이 분야 활동 내역>
2005. 9 - 2010.12 : Associate Editor, IEEE/OSA Journal of Display Technology
2007. 8 - 현재 :  차세대 플렉시블 디스플레이 융합 센터장
2008. 1- 현재 : 한국 정보디스플레이 학회 국제협력이사/사업이사/학술이사
2000. 8 - 2005.7 : ITRC 정보 디스플레이 연구 센터장
2001. 7- 현재: Program committee member, International Meeting on Information Display
2010. 1 - 현재 : Program committee member, Society for Information 
2006. 12 : Outstanding poster award, International Display Workshop 2006
2007.  4 : 산업자원부 장관상

<이성민 연구원> 

성    명 : 이 성민 ( 李 星 旻)
생년월일 : 1981년  8월  8일
근 무 지 : 대전시 유성구 구성동 한국과학기술원(KAIST)
          전기 및 전자 공학과

<학    력>
2000. 3 - 2007. 2 : 한양대 전기전자 컴퓨터 공학부 / 공학사
2007. 3 - 2009. 2 : KAIST 전기 및 전자 공학과 / 공학석사
2009. 3 - 현재   : KAIST 전기 및 전자 공학과 / 공학박사


<주요경력>
2008. 2 - 현재 : 차세대 플렉시블 디스플레이 융합 센터 / 연구원

<연구업적>
나노 표면 플라즈몬 관련 SCI 저널 6편 출판(1편 출판예정)


반응형
반응형

KAIST 원자력 및 양자공학과 장순흥 교수(현 한국원자력학회 회장)는 최근 일본 후쿠시마 원전사고 조사위 국제자문위원으로 임명되어 후쿠시마 사고 현장을 방문조사하고 왔습니다.
아래는 장순흥 교수가 작성한 후쿠시마 원전 조사 평가서입니다.


장순흥 국제자문위원과 다카하시 제1발전소장





        후쿠시마 사고의 종합적인 평가 및 향후 원전 안전성 향상 방안


 

Part I. 후쿠시마 사고의 종합적인 평가

 

1. 서론

 일본 후쿠시마 원전사고 조사위 국제 자문단은 후쿠시마 사고 조사위원회의 결과에 대해 독립적으로 자문 및 검토하는 기능을 수행하고 있다. 국제자문위는 리처드 메저브(Richard A. Meserve) 카네기연구소장(전 미국 원자력규제위원회 위원장), 앙드레 클라우드 라코스테(Andre-Claude Lacoste) 프랑스 원자력안전규제당국 의장, 라스 에릭 홈(Lars-Erik Holm) 스웨덴 보건복지청 사무총장 (전 국제방사선방호위원회 위원장), 차 궈한(Chai, Guohan) 중국 환경부 수석 엔지니어와 장순흥 교수 (현 한국원자력학회 회장)으로, 세계적인 원자력 전문가 5인으로 구성되어 있다.

 

2. 보고서 내용

 이번 국제 자문회의가 열리기 전인, 2011 12월에 일본 정부의 사고 조사 위원회는 중간 조사 보고서를 발표하였다. 이 보고서의 주요 결론은 다음의 세 가지였다.

 첫째, 쓰나미와 중대사고에 대한 예방 및 수단이 적절하지 않았다. 2006년에 쓰나미에 관한 개정이 완료되었는데, 쓰나미에 대한 대책은 포함되었지만, 그 대책은 특정한 방법 및 수단들의 실질적인 수행을 이끌지는 못하였다. 이는 규제 기관과 운영기관의 소통이 원활하지 않았음을 보인다. 중대사고의 대처에 대해서는 설계 기준을 초과하는 쓰나미에 대한 위험이 고려되지 않았기 때문에, 동시에 모든 전원이 상실 되는 사고에 대한 대비가 매뉴얼에 없었고, 그에 대한 직원들의 교육 또한 수행되지 않았다.

둘째, 전반적인 비상 방재 대책이 허술하였다. 이에 대하여 가장 처음에 나타난 문제는 사고 초기의 방사선 검출 측정의 문제였다. 또한, 검출 수치의 이용에도 정부와 대중 사이에서 상당한 혼란이 초래되었다. 그리고 후쿠시마 원전의 사고로부터 알 수 있는 방사선원으로부터 방사선의 확산에 대한 시뮬레이션이 SPEEDI라는 시뮬레이션 프로그램으로 가능하였다. 하지만, 지진으로 인하여 정보전달이 이루어지지 않음으로 인해서, SPEEDI 프로그램은 기본적인 정보들을 받을 수가 없었다. 그로 인하여, 주민들의 대피는 SPEEDI 프로그램의 정보를 통해서가 아닌, 공기 중 확산 방향의 예견을 통하여 이루어졌다. 주민 대피에 대한 의사 결정 과정에서 또한 혼란 점이 있었다.  비상 방재 대책 매뉴얼에는 내부사건뿐만 아니라 외부 사건에 대한 상세한 지침과 매뉴얼이 필요하다.

 셋째, 사고 시 후쿠시마 제1 원자력발전소의 각 호기에서 발생한 사고의 추이와 대처에 관한 문제들이다. 후쿠시마 제1 원자력발전소 1,2,3호기는 가동 중에 있었고, 4,5,6호기는 계획정지로 가동 정지 상태이었다. 1호기의 경우에는 쓰나미가 발전소를 덮치자마자 모든 전기가 사용 불가능해 졌었다. 비등 경수로에는 안전한 잔열제거를 위하여 격리응축기(Isolation Condenser, IC)라는 피동안전계통이 있다. 그런데, 이 격리응축기 계통의 작동을 위해서 열려야 할 격리 밸브가 닫혀 있었다. 이러한 이유는 주요 밸브에 대한 개폐 상황을 운전원이 제대로 파악하지 못함으로써, 올바른 운전원의 조치 및 관련된 지침이 없었던 것으로 파악된다. 이러한 상황은 현장 및 사고 본부에서 격리 응축기의 기능에 대한 이해가 충분하지 않았다고 보인다. 사고 현장에서의 격리 응축기 작동에 대한 잘못된 판단으로 대체 냉각수의 주입과 감압이 보증되지 않은 채로 지연되었고, 결과적으로, 노심 냉각이 냉각수 순환 및 주입의 모든 관점에서 실패하게 되었다.

 3호기의 경우에는 고압냉각수주입(High Pressure Coolant Injection, HPCI)이라는 계통이 운전 터빈의 작동 범위 하에서 저 유량의 냉각수를 가압용기로 주입하고 있었다. 그런데, 교체된 운전원이 주입되는 냉각수의 유량이 적은 것을 걱정하여, 고 유량의 냉각수 주입을 위하여 대체 냉각수 주입계통의 작동이 필요함으로 잘 못 판단하였다. 가압용기의 압력 수치와 대체 냉각수 주입 계통의 확실한 수행에 대한 보증이 없었음에도 불구하고, 3 13일 새벽 3시경에 고압냉각수주입 계통의 작동을 정지시켰다. 이러한 악화된 상황은 긴급 대책 센터의 책임자들에게 매우 늦게 전달되었다. 게다가 파악된 바로는 대체 냉각수 주입 계통의 준비가 이루어져있지 않음에도 불구하고, 운전원의 조치가 이루어졌다. 운전원이 상황 및 계통 파악을 정확하게 하지 못한 것이 사고를 더욱 악화 시킨 주요 원인이다.

 

3. 자문위원 평가

 조사 위원회의 보고 및 현장 조사를 통하여, 국제 자문위원들은 아래와 같은 내용으로 문제점을 제기하였다.

 메저브 소장과 라코스테 의장은 사고 시에 규제기관과 운영기관 그리고 정부의 역할론에 대하여 문제점을 지적하였다. 일반적으로 발전소의 운영 시뿐만 아니라, 사고 시에도 원자력 발전소에 대한 규제와 운영은 명백히 구분되어야 한다. 후쿠시마 원전 사고 시에는 비상대책반이 규제기관과 운영기관 합동으로 비상 대책 센터를 구성하였다. 또한, 비상 대책 센터의 센터장은 총리가 맡게 됨으로 인하여, 명령 라인의 복잡성이 증대되고, 갖추어져 있던 안전 문화가 깨졌다. 한 예로, 노심용융사고가 진행되고 있었음에도 불구하고, 과냉각에 의한 재임계 방지를 위하여 냉각수 주입을 하지 않아야 한다는 주장에 대하여 상당히 많은 논란들이 이루어진 것을 알 수 있다. 발전소의 사고 시에는 정부의 불필요한 개입이 명령 라인 및 사태의 파악이 복잡해지고, 지연될 가능성이 매우 크다. 특히, 메저브 소장은 현 상황에서 일본 정부와 사업자에 대한 사회적 신뢰가 결여되어 있기 때문에 이를 회복하기 위해서는 투명성의 확보가 필요하다는 점을 지적하였다. 이에 대한 의사 결정을 위해서는 근거를 명확하게 밝히지 않으면 안 된다고 강조하였다.

 장순흥 교수는 다음의 세 가지에 대하여 문제점을 제기하였다. 첫째, 중대사고가 1호기의 경우에는 쓰나미로 인한 침수로부터 수 시간 후에, 2, 3호기의 경우에는 이틀 혹은 삼 일 후에 중대사고가 발생했음에도 불구하고, 일본 정부가 노심용융을 인정한 것은 5 10일이다. 이는 자국민들에게 불안감을 주는 것뿐만 아니라, 세계의 여러 나라에게 대외관계적으로 일본 정부에 대한 불신을 야기하는 것이다. 둘째, 1호기와 3호기에 대해서 사고의 경위와 주요 기술적인 원인에 대한 파악이 이루어진 것에 비해서, 아직까지 2호기에 대한 원인 분석 및 경과가 이루어지지 않은 것은 큰 문제이다. 셋째, 일본 정부가 지난해 12월 냉온정지를 선언한 것에 대해 원자로 내부에 어떤 문제가 일어났는지에 대하여 발표하지 않아 많은 사람들이 불안해 하고 있다. 이는 시뮬레이션 혹은 하드웨어적인 방법을 강구해서라도 현재의 실태 파악에 노력을 기울어야 한다.

 스웨덴의 라스 에릭 홈 사무총장도 사고 관리 및 안전 문화 측면에서 큰 문제가 있다고 지적하며, 정보 공개의 중요성을 강조하였다. 모든 정보는 공개되어야 하고, 적절한 정보가 공개되지 않아, 일부 후쿠시마 주변의 주민들이 잘못된 방향으로 대피한 것은 정말로 있어서는 안될 불행한 일이라고 비판하였다.

 

 

4. 선량률과 필자의 2호기 분석


후쿠시마 제1발전소 1, 2, 3, 4호기의 주요 계통 / (출처: Dr. Matthias Braun, 2012)

 

필자는 실제로 휴대용 방사선 측정기를 휴대하면서 방사선 선량률을 측정해보았다. 서울의 방사선 선량률은 약 0.2 µSv/hr 로 검출되고 있다. 그런데 이번 방문에서 놀라웠던 점은 일본 동경에서의 방사선 선량률은 약 0.15 µSv/hr 로 서울의 방사선 선량률보다 더 낮게 검출 되고 있었다. 한국의 방사선 선량률은 라돈 등의 이유로 조금 높은 편이다. 더욱 놀라웠던 점은 후쿠시마 사고현장의 30km 지점까지의 선량률 또한 크게 높아지지 않았다. 후쿠시마 원자력 발전소 반경 20km 이내 지역은 접근 제한구역으로 설정되어, 현재 후쿠시마 사고의 작업자들의 숙소와 회의실로 구성된 J-village 20km 지점에 있다. 20km 지점의 외부에서 약간 높게 나왔을 뿐, J-village의 건물 내부에서 또한, 상당히 낮게 검출되고 있었다.

 후쿠시마 원자력 발전소에 도착하여, 많은 주요 부분 및 건물들을 관찰할 수 있었다. 내진 설계가 되어 있는 발전소 상황실, 공동 핵연료 저장실, 1,2,3호기의 입구, 건식 캐스크 실, 비상전원실 등이다. 발전소 입구에서의 선량률은 약 10~20 µSv/hr 를 나타내고 있었고, 특히, 2호기 근처에서는 300~400 µSv/hr 의 높은 수치를 나타내었다.

 전반적으로 주요 방사성 동위원소 중에 하나인 세슘의 원자력 발전소 배출 및 누출양은 사고 직후의 8 x 1014 Bq/hour 에서 현재 6 x 107 Bq/hour 로 천만 분의 1로 떨어진 상태이다.

 

 사고의 경과 및 방사선 선량률과 관련하여, 후쿠시마 사고 보고서에 기술 되어 있지 않은 2호기에 대하여 필자는 다음과 같이 분석 및 평가한다.

 3 15일과 16일 사이에 2호기의 격납용기 내 압력이 약 7.3기압에서 1.5기압으로 갑자기 떨어졌으며, 그 기간 동안, 방사선량은 약 10 µSv/hr 에서 1000에서 10000 µSv/hr까지 증가하였다. 이는 2호기의 격납용기가 파손되면서 상당히 많은 양의 방사성 물질이 대기 중으로 배출되었음을 의미한다.

 2호기에서의 선량률이 높아진 이유는 3호기의 사고경위와 비교를 통하여 해석될 수 있다. 3호기의 경우에는 계통의 파손 또는 환기가 Wet Well (Condensation Chamber) 을 통하여 이루어졌다. 그에 따라, 가압용기로부터의 방사성 물질들은 대부분 물을 통하여 배출 되거나 물에 잔존하였다. 그런 반면에, 2호기의 경우에는 가압용기의 바로 바깥 쪽인 Dry Well에서 파손이 일어난 것으로 판단된다. 따라서, 방사성 물질의 액체 침투가 이루어지지 않고, 기체형태로 대기에 확산된 것으로 보이며, 이로부터 2호기의 방사선량이 큰 값을 나타내고 있는 것으로 판단된다. 이처럼 사고 시에 방사성 물질의 여과 및 냉각수를 통한 배출과 감압은 원자력 발전소 격납건물 밖으로의 방사선량에 상당한 영향을 미친다. 앞으로 이와 관련된 계통들이 현재 가동 중인 발전소 및 미래형 원전에 강화되어야 한다.

 
 
 

Part II. 향후 원전 안전성 향상을 위한 5대 방안

 

 후쿠시마 원자력 발전소 사고는 환경에 피해가 아주 큰 사고였지만, 사망자가 하나도 없었던 사고이다. 또한, 방사선 누출량이 체르노빌 사고의 20% 수준으로, 심각한 인명피해가 야기되지 않을 것으로 판단된다. 따라서, 후쿠시마 사고의 가장 큰 피해점은 11만 명이라는 다수의 주민들을 이주시킴으로 인하여 생기는 문제였다. 삶의 터전을 잃어버린 이주민들은 정상적인 생활이 불가능해짐으로 인하여, 굉장히 큰 피해를 보았다.

 일본은 전반적으로 중, 대 규모의 원자력 관련 사고들을 많이 겪으면서, 안전 의식에 대한 고취는 이루어지고 있는 반면에, 원전 운전원의 피드백 및 실제적인 조치들은 충분히 이루어지지 않은 것이 주요 요점이라 판단된다.

 

 후쿠시마 사고의 교훈을 바탕으로, 앞으로 원자력 안전 증진을 위한 5대 방향은 아래와 같다.
 

1. 하드웨어 개선후쿠시마 사고가 일어난 직후, 한국의 원자력 규제기관은 50여 가지의 추가적인 설계 개선 방안을 발표하였다. 후쿠시마 사고를 통해, 우리가 얻은 교훈의 핵심은 중대사고가 일어나지 않도록 하는 설계개선이 필요하다는 것이다. 이에 더 나아가 설사 중대사고가 일어난다고 하더라도, 방사능 물질이 격납용기 밖으로 나가지 않도록 설계 개선할 수 있다. 예를 들어 중대사고 시, 여과식 격납용기배기 시스템(filtered containment venting system)을 설치하여 방사선의 격납건물 외부로의 누출을 막을 수 있고, 후쿠시마 사고에서와 같이 전원이 상실되는 상황에서, 안전 계통이 작동하지 않아 사고가 일어나는 것을 원천적으로 막을 수 있도록, 전원이 없이도 작동하는 피동형 안전계통이 향후 새로운 개선 방안에 핵심 이슈이다. 이러한 안전성 강화를 통하여 사고가 혹 발생하더라도, 비상 대피가 필요 없는 안전한 원전 개념을 달성할 수 있다.
 

2. 소프트웨어 강화이는 매뉴얼 및 절차서의 강화에 있다. 상상 가능한 모든 사고를 고려하고, 이에 대비할 수 있는 매뉴얼과 절차서를 개발 하는 것이 현시점에서 반드시 필요하다. 여기서 모든 사고는 그 요인이 원자력 발전소 밖에 있는 외부 사건과 원자력 발전소 내에 있는 내부 사건인 경우를 모두 포함하는 것이다.


3.
원자력 인력 강화완벽에 가까운 사고 대비 매뉴얼이 있다고 하더라도, 고려되지 않은 상황이 실제 발생할 가능성이 있으므로, 이에 대해 순발력 있게 대처할 수 있는 원자력 안전 전반의 기본기를 갖춘 발전소 인력들이 필요하다. 이를 위해서 충분한 안전 교육과 반복적인 훈련이 지속적으로 이루어져야 하고, 고급 인력의 확충을 위해, 산학연이 함께 협력해나가고, 특히 원자력 안전 연구에 대한 투자, 고급 인력 양성에 대한 투자가 적극적으로 이뤄져야 할 시점인 것이다.


4.
안전문화 관리안전 문화란원자력 발전소에 있어서 안전 문제가 무엇보다 최우선의 관심사임을 스스로 다짐하는 조직과 개인의 자세와 품성이 결집된 것이라고 정의할 수 있다. 이는 안전을 최우선 과제로 두는 것이다. 또한, 원자력에서 안전은 곧 경제이다. 안전을 잃었을 때에 발생하는 막대한 경제 손실은 후쿠시마 사고에서도 잘 나타났다.


5.
정책, 제도, 기준의 보완거시적인 정책 확립의 필요에 의해서 우리나라에서는 후쿠시마 사고 후, 원자력안전위원회가 출범했다. 제도 및 기준의 측면에서는, 후쿠시마 사고를 통해 얻은 교훈들을 반영할 사안 들이 있다. 실제 일본 정부는 국제방사선방호위원회(ICRP)가 긴급 상황에서 외부인 소개 기준으로 권고한 20-100mSv의 범위에서 20mSv의 낮은 기준을 적용함으로써, 11만 명의 주민을 대피시켰다. 하지만 초기에 소개에 응하지 않고 머물러 있다가 늦게 대피를 한 사람 중 신체 건강에 이상이 생긴 경우는 아직까지 없었다. 또한, 100mSv 피폭 역시, 인체 영향을 정확히 규명하기 힘든 보수적인 권고이기 때문에, 후쿠시마 사고에서도 옥내 대피 권고만으로 충분했을 것으로 판단한다. 오히려 대거 주민 대피에 따른 재산적, 심리적 피해가 컸기 때문에 보다 실질적인 기준으로 완화 개선시킬 필요가 있다. 또한, 환경 피해의 핵심은 방사능 물질이 격납건물 외부로 유출되었다는 데에 있다. 사고 시, 격납건물 밖으로의 방사능 누출을 줄이기 위하여, 관련 규정의 방출 수치를 줄일 필요가 있다.

 결론적으로, 첫째, 격납건물 밖으로의 방사선 누출을 줄이기 위하여 관련 계통 및 규정을 강화해야 하고, 둘째, 주민의 비상 대피 관련 규정은 완화할 필요가 있음으로 평가된다.

 



반응형
반응형

촉매금속 위에서 합성된 대면적 그래핀은 디스플레이, 태양전지 등에 다각적으로 활용될 수 있어, 이에 대한 연구가 전 세계적으로 활발히 진행되고 있습니다.

그러나 이 대면적 그래핀을 실제 전자기기에 응용하기 위해서는 단원자 층인 그래핀을 촉매금속으로부터 손상 없이 떼 내는 것이 무엇보다도 중요합니다.

지금까지는 화학약품을 이용해 금속을 녹여 제거함으로써 그래핀을 촉매금속으로부터 분리했습니다.

그러나 이 방법은 금속을 재활용할 수 없을 뿐만 아니라 생산단가도 높아 경쟁력이 없고, 특히 금속을 녹이는 과정에서 많은 양의 폐기물이 발생하여 환경문제를 일으킬 수 있습니다.

또 공정 단계도 매우 복잡해 그래핀의 양산화에 큰 장벽으로 작용했습니다.

□ KAIST 김택수, 조병진 교수팀은 금속위에서 합성된 그래핀의 접합에너지를 정밀측정한 후 이를 이용하면 그래핀을 금속으로부터 쉽게 분리할 수 있다는 사실을 밝혀냈습니다.

이번 연구는 그동안 어떠한 연구팀도 정확히 측정할 수 없었던 그래핀과 촉매금속간의 접합에너지를 처음으로 정밀히 측정하는데 성공한 것입니다.

금속 재활용이 가능한 친환경, 저가 기반의 그래핀 양산 기술과 이를 이용하여 제작된 그래핀 전계 효과 트랜지스터


이를 이용해 촉매금속을 기존처럼 일회용으로 사용하는 것이 아니라, 무한대로 재활용할 수 있게 돼 친환경적이면서도 저렴한 고품질 대면적 그래핀 생산의 원천기술을 마련했습니다.
    
또한 이 방법을 사용해 기계적으로 분리된 그래핀을 다른 기판에 전사하지 않고 곧바로 그 위에 전자소자를 제작하는데 성공해 기존의 복잡한 그래핀 생산단계를 획기적으로 줄였습니다.

특히 그래핀을 떼어낸 후에도 그 금속기판을 수차례 재활용하여 그래핀을 반복적으로 합성해 처음과 같은 양질의 그래핀을 합성할 수 있어 친환경, 저비용 그래핀 양산기술에 새로운 길을 열었습니다.
 
이번 연구결과를 통해 매우 간단한 단일 공정만으로 그래핀을 금속으로부터 손쉽게 떼 내어 그래핀 응용소자를 제작할 수 있게 됐습니다.

연구결과는 나노과학 분야의 권위 있는 학술지인 'Nano Letters'지 온라인 속보(2월 29일자)로 게재되었다. 
(논문명 : Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process)  



(왼쪽부터) 신우철 박사과정생, 윤태식 석사과정생, 김택수 교수, 조병진 교수.

 용  어  설  명

그래핀 분리기술 :
금속위에서 성장된 대면적의 그래핀을 활용하기 위해 원하는 기판위에 그래핀을 전사시키는 기술.
기존에는 화학 약품을 이용한 식각 공정으로 금속을 제거하여 그래핀을 분리하였으나, 식각 공정 중에 그래핀의 손상과 환경오염, 높은 제작비용 등의 문제로 인해 그래핀 상용화에 큰 걸림돌이 되어왔다.

접합에너지 :
이종 고체간의 상호작용으로 인하여 서로 점착하려는 경향을 나타내는 값으로서 금속위에서 성장된 원자 한층 수준의 얇은 그래핀을 금속으로부터 분리해 내기 위해서는 접합에너지에 대한 규명이 필수다. 

 

<연 구 개 요>

그래핀은 우수한 전기적, 기계적 특성으로 인해 다양한 분야의 핵심 소재로서 각광 받고 있다. 현재까지 고품질의 대면적 그래핀은  촉매 금속위에서 Chemical Vapor Deposition (CVD) 방법을 통해 성장되어 왔다. 
금속위에서 성장된 그래핀을 전자 응용소자 제작에 이용하기 위해서는 금속으로부터 그래핀을 분리해내는 그래핀 분리 과정이 필수적인데, 현재까지는 화학적 식각 방법을 통해 금속을 제거하는 금속 식각 공정이 이용되었다.
그러나 이러한 과정은 그래핀에 손상을 줄 수 있고 대면적의 금속 식각으로 인한 상당한 양의 폐기 물량을 유발할 뿐만 아니라, 금속 기판을 일회성으로 밖에 이용할 수 없어 그래핀 상용화에 커다란 장벽으로 작용해왔다.

본 연구진은 세계 최초로 금속위에서 성장된 그래핀이 금속과 이루는 접합에너지를(0.75±0.07 J/m2) 실험적으로 정확하게 밝혀내었다. 그림 1. 은 Double Cantilever Beam (DCB) testing을 이용한 그래핀과 구리 사이의 접합에너지 측정을 보여준다.  이것은 그래핀을 금속으로부터 기계적으로 분리해내는데 가장 중요한 정보라고 할 수 있는 접합에너지의 구체적인 값을 규명하였다는 면에서 상당한 의미를 가진다고 할 수 있다.

그림 1. DCB fracture mechanics testing을 이용한 그래핀과 구리 금속 사이의 접합에너지 측정. Loading/crack-growth/unloading cycle을 반복해서 수행하면서 crack length (a) 및 접합에너지를 추출하였다.       


그림 2. (a) 촉매 금속 기판의 재활용이 가능한 친환경, 저가 비용의 그래핀 양산 기술의 모식도
        (b) 하나의 금속 기판에서 반복적으로 그래핀을 성장 및 분리시킨 후 측정한 라만 결과.
            고품질의 그래핀을 하나의 금속 기판위에서 반복적으로 성장시킬 수 있다.

그래핀이 금속과 이루는 접합에너지는 그래핀 분리 기술의 핵심적인 정보를 지니고 있음에도 불구하고, 원자 한 층으로 이루어진 그래핀을 대면적의 금속으로부터 정확하게 박리해 내기가 매우 어려워 지금까지 어떠한 연구진에 의해서도 규명되지 못하고 있었다. 
또한 본 연구진은 규명한 접합에너지를 이용하여 하나의 금속 기판을 무한대로 재활용하여 그래핀을 양산할 수 있는 친환경, 저가 비용의 그래핀 분리 기술을 개발하였다.
그림 2. a 는 하나의 구리 기판에서의 그래핀의 성장과 분리가 반복적으로 가능하다는 것을 보여주며, 그림 2. b 는 반복 성장된 그래핀의 라만 결과로서 하나의 금속기판 위에서도 고품질의 그래핀을 계속해서 무한대로 양산할 수 있다는 것을 보여준다.
본 연구에서 개발한 그래핀 분리 기술을 이용할 경우 기존의 기술 대비 생산 비용을 상당히 낮출 수 있을 뿐만 아니라 간단한 기계적 박리 기술로 쉽게 그래핀을 얻어 낼 수 있으므로 현재의 복잡한 그래핀 양산 과정을 오직 하나의 단일 단계만으로 단축시킬 수 있을 것으로 기대된다.
실제로 본 연구진은 이러한 기계적 박리 기반의 그래핀 분리기술을 이용하여 양산시킨 그래핀을 소자의 채널물질로 이용하여 전계 효과 트랜지스터를 유연기판위에 제작하는데 성공하였다.
그림 3. (a) 은 본 연구에서의 개발된 그래핀 분리기술을 이용하여 제작된 그래핀 전계 효과 트랜지스터(Field Effect Transistor, FET) 의 사진 및 모식도를 보여준다.  그림 3. (b),  (c), (d) 는 제작된 그래핀 FET 소자의 전류-전압 특성과 Bending Stability를 나타낸다.  본 연구진은 기계적 박리를 통해 그래핀을 원하는 기판에 전사시켜 응용소자의 제작이 가능하다는 것을 밝혀내었으며 이것은 본 연구에서 개발한 그래핀 분리기술이 그래핀 응용 소자 제작에 바로 이용가능하다는 것을 보여주는 결과로서 그래핀 상용화 크게 앞당길 것으로 기대한다.

그림 3. (a) 기계적 박리를 통해 단일 공정만으로 분리된 그래핀을 이용한 전계효과 트랜지스터의 모식도 및 사진.
       (b) 제작된 그래핀 전계 효과 트랜지스터의 Output 특성. (c 유연성 기판에 전사되어 제작된 그래핀 전계 효과 트랜지스터의 Transfer 특성 및 Bending Stability.
       (d) 그래핀 전계 효과 트랜지스터의 bending 조건에 따른 이동도 변화. 이동도 특성 변화는 10 %로서 매우 안정된 소자의 구동이 가능함을 알 수 있다. 


<조병진 교수>

1. 인적사항        
 ○ 소 속 : 카이스트 전기 및 전자공학과   
 
2. 학력
  1981 - 1985    고려대학교 전기공학과 졸업
  1985 - 1987    카이스트 전기 및 전자공학과 석사 졸업
  1987 - 1991    카이스트 전기 및 전자공학과 박사 졸업
 
3. 경력사항
2007 - 현재   카이스트, 전기 및 전자공학과 교수
1997 - 2007    싱가포르 국립대학교, 전기 및 컴퓨터 공학과 교수
1993 - 1997   하이닉스 반도체, 메모리 연구소 책임연구원
1991 - 1993    벨기에 IMEC 연구원
<김택수 교수>

1. 인적사항    
 ○ 소 속 : 카이스트 기계공학과                
 
2. 학력
  2001    연세대학교 기계공학과 학사 졸업
  2006    스탠포드 대학교 기계공학과 석사 졸업
  2010    스탠포드 대학교 기계공학과 박사 졸업
 
3. 경력사항
2010.12 ~ 현재      카이스트, 기계공학과 조교수
2010.1 ~ 2011.11 스탠포드 대학교 재료공학과 박사 후 과정(Postdoctoral Scholar)
 

반응형
반응형

<서남표 KAIST 총장 신년사>

친애하는 KAIST 가족 여러분,

새해 복 많이 받으시고, 댁내 행복이 가득한 한 해가 되시길 기원합니다.

다사다난했던 2011년 우리의 발자취는 KAIST 역사에 오래도록 기억될 것입니다.
1971년 설립 당시 그 누구도 상상하지 못했을 만큼 크게 성장한 우리는 KAIST 설립 40주년을 맞은 2011년 매우 뜻 깊은 한 해를 보냈습니다.
한편, 지난 봄 미래가 촉망되던 네 명의 소중한 학생들과 한 분의 저명한 교수님을 우리 곁에서 떠나보내면서 큰 슬픔을 경험했습니다.
이를 통해 우리는 주변을 다시금 돌아보게 되었고, 교육과 연구는 물론 학교운영 전반에 대해 깊이 성찰하고 KAIST의 높은 이상을 달성하기 위한 새로운 마음가짐을 갖게 되었습니다.

KAIST는 그동안 눈부신 발전을 거듭하며 국내외적으로 인정받는 최고의 연구중심대학으로 발돋움하였습니다.
지난 해, 교수님들께서는 다양한 분야에서 많은 상을 수상하였고, 여러 연구 과제를 수주하였으며, 또 세계적인 저널에 뛰어난 논문을 게재하였습니다.
우리 교수님들의 빛나는 업적들은 별첨#1을 통해 상세히 보실 수 있습니다.
학생들은  'ICISTS-KAIST 2011: Digital Metamorphosis'를 주최하며, 그 어느 해보다 큰 국내외적인 호응 속에서 대규모 국제컨퍼런스를 성공적으로 치러내며 뛰어난 능력을 인정받았습니다.
연구 분야에서는 2년이라는 짧은 시간동안 복잡한 공학시스템인 온라인전기차(OLEV)와 모바일하버(MH)를 설계하고 원천기술 개발에 성공하며, 세계적인 기관과 언론들로부터 큰 주목과 찬사를 받았습니다.
학교 기반시설도 성장을 거듭하여 7동의 새로운 건물이 완공되고, 현재 3동의 건물이 신축되고 있는 등 세계적인 경쟁력을 갖춘 최첨단 캠퍼스의 위용을 드러내고 있습니다.
학교는 내실있는 성장을 거듭하여 지난 5년간 교원의 수는 50%, 연구비는 150% 그리고 연간 예산총액은 100% 증가하였고, 총 자산은 1조원을 넘었습니다.
이렇듯 KAIST가 눈부신 성장을 거듭할 수 있었던 것은 학교의 모든 구성원들이 각자의 분야에서 헌신해 주었기 때문입니다.
학교의 발전을 위해 최선을 다해 주시는 전 가족 여러분께 진심으로 감사드립니다.

앞서 말씀드린 우리 교수님들께서 일구어낸 뛰어난 성과들은 연구환경의 선진화가 필요한 이 시점에서 매우 괄목할 만한 것입니다.
교수님들께서 학자이자 교육자이며, 연구자로서 큰 꿈을 이루기 위해 연구와 교육에 더욱 집중할 수 있는 환경을 조성하기 위해 학교는 교수님들께서 필요로 하는 연구 장비 및 시설 인프라 지원을 적극적으로 확대해 나갈 것입니다.
또한, 교수님들께서 연구시설 관리와 행정업무에 쓰는 시간과 부담을 현격히 줄일 수 있도록 연구 및 행정지원 전문인력을 늘리는 것은 물론 교수님들의 복지를 향상할 수 있는 재원을 마련하기 위해 최선을 다하겠습니다.

2012년은 교육과 연구 분야에서 우리 모두에게 새롭고 도전적인 한 해가 될 것입니다.

전 세계의 교육 분야는 지금 세계 일류대학들이 주도하는 교육개혁 속에서 매우 빠른 속도로 변화하고 있습니다.
일례로, 최근 MIT는 웹을 통해 개방형 교육콘텐츠(Open Course Ware)를 제공하고, 학교가 정하는 절차를 완수한 경우 일정한 자격을 인증해 주는 프로그램을 도입할 계획을 발표하여 고등교육의 혁명을 예고하였습니다.
이렇듯 세계 교육시장의 거센 변화 속에서, 현실을 빠르게 인식하여 더욱 효율적이고 보다 경쟁력 있는 교수법을 제공하지 못한다면, 앞으로 많은 교육기관들이 도태되고 말 것입니다.
KAIST도 더욱 빨리 움직여야 할 때입니다. 새롭게 도입하고자 하는 신개념의 I-Four 교육 등 Education 3.0 추진에 더욱 힘을 쏟아야 할 것이며, 우리의 교육은 학생 및 그룹 중심 그리고 개인별 최적화된 맞춤형 학습으로 변화해야 할 것입니다.

연구 패러다임도 급변하고 있습니다.
세계화의 바람이 거세게 불고 있는 이때, KAIST의 연구는 그 중심에 서야 할 것입니다.
세계적인 대학들은 최고의 교육과 연구를 수행하기 위해 국적과 성별에 관계없이 최상의 실력을 갖춘 재원을 발굴하여 교원으로 임용하고 있습니다.
뛰어난 인재들을 영년직 교원으로 임용하는 것 외에도, 선도대학들 간 인적교류를 통해 장단기적 협력연구 사업을 진행하는 것이 현재 세계 학계의 큰 흐름입니다.
세계의 일류대학들은 최고의 후학을 양성하고, 인류의 사고와 삶을 보다 높은 차원으로 이끌기 위해 연구에 매진하고 있습니다.
이러한 흐름에 발맞추어 KAIST도 국내는 물론 세계 각국에서 최고의 인재를 유치하기 위해 최선을 다해야만 합니다.
지금까지 우리는 빠른 속도로 눈부신 성장을 거듭하며, 세계적인 대학으로 발돋움했습니다만 이에 만족할 수 없습니다.
지금보다 더욱 강한 교수진을 구축하기 위해서는 더 많은 여성교원과 외국인교원을 임용해야 하고, 세계적인 석학 초청 세미나 등 최고의 인재들과 지혜를 나눌 수 있는 장을 더욱 자주 마련하며, 그들과의 협력관계를 활성화하고 공동연구를 수행하며, 소중한 시간을 보다 효율적으로 사용할 수 있는 최첨단 기술을 개발해야 할 것입니다.

KAIST는 기초연구를 더욱 강화하고, 21세기 인류가 해결해야 할 중요한 과제에 대한 해결책을 제시해야 합니다.
이를 위해 우리는 EEWS(에너지, 환경, 물 그리고 지속가능성)의 과제들을 발굴하여 뛰어난 성과를 거두었습니다.
하지만 그동안의 성과에 만족하지 않고, KAIST는 국가와 인류를 위해 어떤 문제를 앞으로 더 해결해야 하는지 이를 인식하기 위해 더욱 많은 노력을 기울여야 합니다.
우리가 풀어야 할 문제는 우리 정부를 포함해서 선진국들이 예산을 편성할 때 어느 분야에 우선순위를 두는지 분석함으로써 어렵지 않게 알 수 있습니다.
예산편성 시 우선순위는 곧 그 사업의 중요도와 깊은 상관관계가 있기 때문입니다.
현재, 선진국에서는 HED분야(의료(Healthcare), 교육(Education), 국방(Defence))에 국가예산의 상당 부분을 집중하고 있습니다. HED는 EEWS와 함께 KAIST가 반드시 해결해야 할 과제들입니다.
우리가 그동안 KAIST의 역량을 집중하여 EEWS분야에서 큰 성과를 거둔 것처럼 앞으로 기초연구에 더욱 많은 노력을 기울여 HED분야에서도 큰 성과를 거두어야 할 것입니다.
더불어, 정부에서 2013년도 예산에 HED분야가 적극적으로 지원되어 여러 기관이 공동의 노력을 기울여 이 사회가 당면한 문제를 해결할 수 있도록 다 함께 협력해 나갈 수 있도록 노력해야 할 것입니다.

학교는 학생들의 목소리에 더욱 귀를 기울이고, 학생들의 삶의 질을 향상하기 위해 노력할 것입니다.
대학원총학생회에서 희망하는 바와 같이, 연구 환경의 선진화를 위해 노력하겠습니다.
대학원생들의 생활 및 연구 환경을 세계 일류대학 수준으로 향상시키기 위해 새로운 TA/RA제도 등 대학원생 지원프로그램을 적극적으로 마련하겠습니다.
그리고 연구지원 전문인력을 채용하는 등 새로운 지원방안을 강구하여 우리 대학원생들이 연구에 더욱 집중할 수 있는 환경을 만들기 위해 최선을 다하겠습니다.
그동안 우리 학부생들은 즐겁게 공부하고, 친구들과의 깊은 우정을 쌓으며, 미래 지도자가 되기 위한 비전을 키워갈 수 있는 새로운 문화공간의 필요성을 얘기해왔습니다.
학교는 학생들의 의견을 적극 수용하여 첨단 학술정보문화관 신축을 위한 재원을 마련하기 위해 노력하고 있습니다.
또한, 신임 총학생회장단의 제안을 받아들여 본 캠퍼스 내를 순환하며, ICC캠퍼스를 잇는 OLEV 버스시스템을 도입하여 학생들의 편의를 향상시킬 예정입니다.
학교가 성장하면서 학생들의 수가 증가함에 따라 자연스럽게 학생들의 요구도 다양해지고 있습니다.
학교는 학생들에게 더욱 가까이 다가가 보다 효과적으로 학생들의 요구를 충족시키기 위해서 이영훈 학생지원본부장과 조애리 학생생활처장의 리더십 아래 학생처를 학생지원본부로 승격 및 재조직하였습니다.
학교는 교육의 질이 보다 향상되길 바라는 모든 학생들의 염원을 이루기 위해 KAIST Education 3.0 추진단을 설립하였습니다.
본 추진단은 조동호 ICC부총장과 이태억 단장의 책임 하에 I-Four 교육시스템 개발 등 교육패러다임의 변화를 통한 양질의 교육을 제공하기 위해 그 활동범위를 지속적으로 확대해 나갈 것입니다.

학교가 건강하고 생동감 넘치게 운영되며 발전을 지속하기 위해서는 학교를 구성하는 3대 축인 교수 학생 직원 모두가 뛰어난 능력을 갖고 있어야 합니다.
앞서 언급한 바와 같이 KAIST에는 최고의 교수진과 학생들이 있습니다.
여기에 더하여 그 어느 기관보다 뛰어난 직원들이 있습니다.
그동안 KAIST가 거둔 화려한 성공은 학교의 행정을 담당하며 불철주야 헌신해 준 직원들의 노력이 뒷받침 되었기에 가능하였습니다.
우리의 행정조직은 기획 예산 홍보 인사 총무 재무 구매 교무 시설관리 안전 산학협력을 비롯해 학교 운영에 반드시 필요한 기본예산 확보 등 학교운영 전반에 걸쳐 많은 시간이 소요되는 크고 작은 모든 일들에서 중추적인 역할을 수행하고 있습니다.
맡은바 분야에서 최선을 다해 준 직원 분들이 있었기에 KAIST는 오늘날 전 세계적으로 인정받는 훌륭한 기관으로 성장할 수 있었습니다.
직원 여러분의 노고에 거듭 감사드립니다.

2012년 새해, KAIST는 세계로 웅비할 것입니다.
지금 우리에게는 단결과 협력의 정신이 필요합니다.
구성원 간 단결과 협력을 통해 우리의 야심찬 목표와 계획을 달성하는데 필연적으로 수반되는 난제들을 힘차게 뛰어 넘을 수 있습니다.
기회는 준비된 자의 것입니다.
KAIST는 이미 준비가 되었습니다.
지금 마주하고 있는 난제들을 건설적인 도전과 기회로 삼는다면, 새로운 지식과 배움을 끊임없이 추구하는 장이자, 특별한 재능과 창의성을 갖춘 사람들이 맘껏 능력을 발휘할 수 있는 터전이 되고자 하는 KAIST의 목표를 충분히 달성해 낼 수 있을 것입니다.

지금 이 순간이야말로 우리가 지금까지 일구어낸 성과를 훌쩍 뛰어 넘고, 무한한 상상력의 날개를 펼쳐 우리의 지평을 널리 확장해 나갈 때 입니다.
새해에는 창의적인 사고를 할 수 있도록 서로를 독려하고, 성공을 거둔 동료와 학생들을 상호 격려하고 지원하며, 윤리적이고 옳은 일을 하기 위해 자신을 헌신할 줄 아는 KAIST의 훌륭한 문화를 더욱 공고히 하기 위해 모두가 노력해 주시길 부탁드립니다.

새해 늘 건강하시고, 복 많이 받으시길 기원합니다. 감사합니다.

2012년 1월 2일, 월요일
KAIST 총장 서남표

반응형
반응형

□ 국내 사이버보안 기업들은 까다로운 일본시장 특성상 그동안 진출에 많은 어려움을 겪어왔습니다.
 
그동안은 단순하게 평가받을 수 있는 장비와 설치형 소프트웨어만 일본시장에 진입했고, 진출 후에도 지사 또는 법인형태의 선투자가 상당히 진행된 이후에나 성과를 낼 수 있었습니다.

국내 최대의 보안업체인 안철수연구소의 일본 법인이 지난해 올린 매출액은 30억원 수준에 그칠 정도였습니다.

이 또한 오랜 기간에 걸쳐 인력과 장비를 일본 현지에 모두 갖춰 이룬 결과로, 일본에 진출한 여타 사이버보안 기업들도 마찬가지 상황입니다.

□ KAIST 사이버보안연구센터와 국내 사이버보안 전문  벤처기업 빛스캔(Bitscan)이 일본의 대표 금융솔루션 및 정보보안 기술 전문기업인 '인텔리전트 웨이브(IWI)'와 60억 원 규모의 수출계약을 체결했습니다.

우리나라 기업이 개발한 원격 사이버보안 기술이 까다로운 일본 보안시장에 수출되기는 이번이 처음입니다.

이번에 KAIST 사이버보안연구센터와 빛스캔이 수출하는 사이버보안기술은 국내 IT서비스를 통틀어 최초로 일본 현지에 지사를 만들지 않고서도 국내에서 원격으로 해외에 서비스를 제공하는 사이버 보안 서비스입니다.

이 기술은 진단과정까지 온라인으로 실시간 보여줄 수 있어 IBM과 HP도 상용화 못한 기술입니다.

또 추가적인 비용 투자와 현지화 없이도 서비스가 가능하기 때문에 일본시장에서 그동안 한국의 보안업체들이 10년 이상 벌어들인 순이익을 1년 만에 상회할 수 있을 전망입니다.

빛스캔은 2011년 5월 설립된 사이버 보안 전문 벤처기업으로, 온라인상에서 실시간 진단과 결과가 산출되는 이른바 '웹 취약점 진단 서비스 및 악성코드 유포지 확인 서비스에 대한 원천기술을 보유하고 있습니다.

빛스캔의 원천기술을 높이 평가한 KAIST 사이버보안연구센터는 지난 8월 말 상호업무협력을 체결한 뒤 각종 사이버 보안장비의 운용지원과 함께 정보보호대학원 연구원과 학생들을 파견해 악성코드 탐지 및 비정상 경로의 탐지, 취약성 진단에 대한 이론적 모델링 등에 관한 공동연구를 수행하고 상용화를 위한 기술을 지원했습니다.

이와 함께 일본의 대표적인 금융솔루션 및 정보보안 기술 전문기업인 인텔리전트 웨이브(IWI)사는 물론 IT 부품소재회사인 다이 니폰 프린팅(DNP), 그리고 미쓰비시 그룹과 같은 대기업들이 이례적으로 이 서비스를 재판매키로 결정했습니다.

1. 점검 서비스 신청(일본)
2. 고객확인 및 계약 진행(일본)
3. 점검 도메인 등록(한국,일본)
4. 등록된 도메인에 대한 웹서비스 취약성 실시간 진단(한국,일본)
5. 웹서비스의 취약성 진단  결과 전달(일본, 당일진단 완료, 당일 통보)
6. 고객사에 웹서비스 취약성 발견 부분과 문제해결방안 수록된 보고서전달(일본)
7. 해결 방안을 이용한 웹서비스 취약성 수정(일본내 고객사)
8. 문제 해결 여부를 위한 재진단 실시(일본)
반응형
반응형

최근 그래핀의 우수한 전기적 특성을 활용하여 초고속 반도체, 신개념 로직 반도체 등을 구현하기 위해 전 세계적으로 활발한 연구가 전개되고 있지만, 10~20년 후에나 상용화될 수 있는 기초연구가 대부분입니다.

또한 지금까지 그래핀을 현재 세계 반도체 시장의 핵심 주류인 실리콘 기반 전자소자의 한 부분으로서 적용한 사례는 없었습니다.

현재 국내외 기업에서는 20나노미터 이하 급에서 사용될 것으로 예상되는 전하포획방식의 플래시 메모리 소자를 연구 개발 중입니다.

하지만 이 방식의 플래시 소자는 데이터 보존 특성이 시장의 요구조건(멀티비트 동작 시 섭씨 150도에서 10년 이상 데이터 보존 등)을 아직 충족시키지 못해 현재까지 대량으로 상용화되지 못하고 있습니다.

이런 가운데 KAIST에서 금속 전극을 그래핀으로 대체하면 기존의 플래시 메모리 소자의 성능과 신뢰도가 획기적으로 개선된다는 사실을 규명했습니다.

KAIST 조병진 교수팀은 기존 실리콘 기반의 반도체 소자(전계효과 트랜지스터)에서 금속 게이트 전극을 그래핀 전극으로 대체하면, 미래의 반도체 시장에서 요구하는 성능과 신뢰도를 확보할 수 있다는 사실을 밝혀냈습니다.

기존 실리콘 기반 전하포획방식 플래쉬 메모리 소자에 그래핀 전극이 도입된 모식도

이번 연구성과는 그래핀이 먼 미래의 반도체 소자가 아닌 현재 양산 중인 반도체 소자에도 바로 활용할 수 있는 소재인 점을 증명한 첫 사례입니다.

이 기술은 기존의 반도체 제조 공정에서 크게 바뀌는 부분이 없어서 머지않아 양산에 적용할 수 있습니다.

이번 성과는 현재 국내외 기업들이 집중적으로 연구개발하고 있는 전하포획방식의 플래시 메모리 소자에 그래핀 전극을 사용하면 데이터 보존 특성이 바로 시판할 수 있는 성능과 신뢰도로 크게 개선(데이터 10% 손실시간 기준으로 기존 소자에 비해 1만 배 개선)될 뿐만 아니라, 데이터 씀과 지움 간의 전압차이가 70%나 개선되는 등 20나노미터 이하의 플래시 메모리 소자의 상용화에 가장 큰 기술적 장벽을 극복할 수 있음을 실험으로 증명한 것입니다.

이것은 그래핀이 세상에서 존재할 수 있는 가장 얇은 단원자층 물질이고, 신축성과 유연성이 뛰어나, 기존의 금속 전극과는 달리 전극 아래에 위치한 게이트 유전막에 기계적 스트레스를 발생시키지 않기 때문인 것으로 확인됐습니다.

또한 이번 연구를 통해 그래핀이 갖는 큰 일함수도 데이터 보존 특성을 향상시킬 수 있는 또 다른 장점으로 파악됩니다.

이번 연구결과는 나노과학 분야의 권위 있는 학술지인 'Nano Letters'지에 온라인 속보(11월 22일)로 게재되었습니다. 
(논문명 : Graphene Gate Electrode for MOS Structure-based Electronic Devices)

조병진 교수와 함께 이번 연구에 함께 참여한 연구팀 (뒷줄 왼쪽부터) 신우철 학생, 박종경 학생, 송승민 학생

 용  어  설  명

그래핀(Graphene) :
흑연의 표면층을 한 겹만 떼어낸 탄소나노물질로, 높은 전도성과 전하 이동도를 갖고 있어 향후 응용 가능성이 높아 꿈의 신소재로 불린다.

로직(Logic) 반도체 :
기억 기능을 하는 메모리 반도체와 달리 데이터를 연산ㆍ처리하는 반도체다.

플래쉬 메모리(Flash Memory) :
전원이 공급되지 않아도 저장된 정보를 계속 유지하는 컴퓨터 기억 장치의 일종으로 스마트폰, 노트북, 디지털 카메라 등의 전자장치에 폭넓게 사용된다.

전계효과 트랜지스터(field effect transistor) : 
전압(게이트 전압)으로 전류(드레인 전류)를 제어하는 형식의 가장 일반적이고 광범위하게 쓰이고 있는 반도체 소자

일함수(Work function) :
물질 내에 있는 전자 하나를 밖으로 끌어내는데 필요한 최소의 일(에너지)

전하포획 플래시(Charge Trap Flash) 메모리 :
전하를 기존의 도체가 아닌 부도체 물질에   저장하는 방식으로, 새로운 반도체 나노공정을 이용해 개발한 비휘발성 메모리

나노미터(nano meter) :
10억분의 1미터로, 1나노미터는 대략 성인 머리카락 굵기의 10만분의 1

반응형
반응형

유리막대를 둘러싼 유연한 메모리

전자제품에서 메모리는 데이터 저장, 연산, 외부와의 통신 등 모든 기능에 필요한 핵심 부품으로, 플렉시블 전자제품 개발을 위해서는 휘어질 수 있는 메모리 개발이 반드시 필요합니다.

지금까지 몇몇 메모리 성질을 가지는 유연한 물질들이 보고되긴 했지만, 수많은 메모리 셀 간의 간섭현상을 해결하지 못해 사실상 실용화가 불가능했습니다.

이러한 문제점을 해결하기 위해서는 메모리 상태를 직접 제어하는 고성능 스위칭 소자를 집적시켜야 합니다.

그러나 플렉시블 기판에 고성능의 반도체를 구현하지 못했기 때문에 휘어지는 메모리 소자 개발이 어려웠던 것입니다.

TV나 PC 등을 쉽게 휴대하기 위한 노력이 계속되고 있는데, 이를 위해서는 종이처럼 접거나 휘어지거나 말 수 있는 플렉시블 전자부품이 필요합니다.

KAIST 신소재공학과 이건재 교수팀은 플렉시블 전자제품에 적용해 정보를 기록하고 지울 수 있도록 완벽하게 작동하는 '휘어지는 비휘발성 저항메모리'를 세계 최초로 개발했습니다.

이건재 교수팀은 최근 차세대 메모리 물질로 부각 받고 있는 '저항메모리(memristor)'와 '고성능 실리콘 반도체'를 플렉시블 기판위에 집적시켜 '휘어지는 비휘발성 메모리'를 개발에 성공했습니다.

연구팀은 메모리 셀 간의 간섭현상 없이 수많은 메모리 셀을 자유자재로 제어해 쓰기와 지우기, 읽기 등 모든 메모리 기능이 완벽하게 작동되는 유연한 메모리를 구현했습니다.

 이번 연구결과는 나노과학기술(NT) 분야 세계적 권위지인 '나노 레터스(Nano Letters)' 10월호 온라인 판에 게재됐고, 국내외 특허도 출원됐습니다.

구부러지는 기판위에서 작동하는 메모리 소자

 용 어 설 명

멤리스터(memristor) :
메모리(memory)와 저항(resistor)의 합성어.
이 소자는 전류가 흐르는 방향과 양을 기억해 전원이 차단되더라도 이전 정보를 기억해 정보를 복원할 수 있는 비휘발성 특징을 가지고 있다.
이를 사용한 메모리는 현재 사용되는 플래시 메모리보다 정보처리속도가 100배 이상 빠르며, 인간의 뇌기능을 모방한 소자로서도 응용될 수 있다.
현재 HP 및 국내회사에서도 멤리스터를 이용한 저항변화 메모리를 2013년 상용화 목표로 개발 중에 있다.

관련 글 : 휘어지는 기판, 휘어지는 배선<http://daedeokvalley.tistory.com/136>

반응형
반응형

KAIST 생명화학공학과 이상엽 특훈교수가 미국 화학회(American Chemical Society, ACS)에서 2012년부터 발간하는 학술지 '합성생물학(Synthetic Biology)'지의 부편집인으로 선임됐습니다.

합성생물학은 세포나 생물시스템을 DNA수준에서 합성, 조절, 최적화해 새로운 대사회로나 조절회로를 만들고, 이를 이용해 신약을 개발하거나 바이오기반 화학물질을 환경 친화적으로 생산하는 신학문입니다.

최근 우리나라에서도 이 분야의 중요성을 인식해 지난 9월 교육과학기술부의 글로벌프론티어사업단의 하나로 합성생물학을 연구 주제로 하는 '지능형 바이오디자인사업단'이 출범하기도 했습니다.

이상협 특훈교수는 시스템대사공학을 창시하고 이 분야에서 380여편의 논문을 집필한 세계적 석학으로, 최근에는 가상세포 상용화를 주도하는 미국 제노마티카사와 공동으로 '원유로부터 생산되는 부탄다이올을 생물학적으로 생산하는 기술'을 개발했습니다.

또 '2011년 미국 대통령 녹색화학 도전상(2011 Presidential Green Chemistry Challenge Award)'을 수상한 바 있습니다.

<이상엽 특훈교수 소개>

이상엽 교수는 1986년 서울대학교 화학공학과를 졸업하고, 1991년 미국 노스웨스턴대학교 화학공학과에서 석박사를 마쳤다.
KAIST에서 약 17년 동안 대사공학과 시스템생명공학에 관한 연구를 집중적으로 수행해 그간 국내외 학술지논문 387편, 국내외 학술대회에서 1340편의 논문을 발표하였고, 기조연설이나 초청 강연을 357여회 한 바 있으며, Metabolic Engineering (Marcel Dekker 사 발간) 등 다수의 저서가 있다.
 
그간 548건의 특허를 국내외에 등록 혹은 출원하였는데, 미국 엘머 게이든상과 특허청의 세종대왕상을 받는 등 기술의 우수성이 입증된 바 있다.

시스템생물학 기술을 활용하여 다양한 바이오연료 및 바이오화학물질의 생산기술 개발에서 탁월한 연구 업적을 쌓았고, 최근에는 바이오리파이너리를 위한 시스템대사공학연구와 탄소순환형 차세대 바이오매스 생산/전환 기술개발, 합성생물학 원천기술 개발에 매진하고 있다.

이 교수는 그간 제 1회 젊은 과학자상(대통령, 1998), 미국화학회에서 엘머 게이든 (Elmer Gaden)상 (2000), 싸이테이션 클래식 어워드(미국 ISI, 2000), 대한민국 특허기술 대상(2001), 닮고 싶고 되고 싶은 과학기술인(2003), KAIST 연구대상 (2004, 2011), 한국공학한림원 젊은 공학인상(2005), 대사공학 분야 세계 최고 석학에 수여하는 Merck 대사공학상(2008), 미국산업미생물학회 펠로우상 (2010), 포스코청암재단의 청암과학상(2011)등을 수상했다.

2002년부터는 세계경제포럼으로부터 아시아 차세대 리더로 선정되어 활동 중이다.

또 한국인 최초로, Science를 발간하는 미국 AAAS (American Association for the Advancement of Science)의 펠로우로 임명되었으며(2007), 미국미생물학술원 펠로우, 미국산업미생물학회 펠로우, 한국과학기술한림원과 한국공학한림원의 정회원이기도 하다.
KAIST 최고의 영예직인 특훈교수인 이 교수는 미국공학한림원의 외국회원(2010)이기도 하다.

-학력-
  1986: 서울대학교 (학사: 화학공학 전공)   
  1987: Northwestern University (석사: 화학공학 전공)  
  1991: Northwestern University (박사: 화학공학 전공)   
 
-경력사항-
  1994 - 1996: KAIST 화학공학과 조교수  
  1997 - 2002: KAIST 생명화학공학과 부교수 
  2002 - 현재: KAIST 생명화학공학과 교수 
  2004 - 2010: LG 화학 석좌교수
  2007 - 현재: KAIST 특훈교수    
  2008 - 현재: 학장, 생명과학기술대학
  2003 - 현재: 소장, 생물정보연구센터
  2000 - 현재: 소장, 생물공정연구센터
  2006 - 현재: 공동소장, 바이오융합연구소 

반응형

+ Recent posts