금속유기골격구조체는 분자단위에서 같은 물질들이 일정한 규칙과 간격을 가지고 배열돼 생성되는 것이기 때문에, 1g 당 축구장과 같은 크기의 표면적을 가지고 있으며, 고용량의 물질 저장 능력과 빠른 물질 이동특성을 갖고 있습니다.
이는 많은 양의 물질을 내부에 저장할 수 있기 때문에 최근 다양한 종류의 차세대 저장체 연구에 필수 장비로 사용되고 있습니다.
그러나 현재까지 금속유기골격구조체는 7.0Å(100억 분의 1m) 크기의 아주 작은 단분자만을 사용했기 때문에 커다란 크기의 고분자 및 단백질의 저장에는 활용될 수 없었고, 단지 고용량 가스 저장체로서의 가능성만 입증된 상태였습니다.
또한 구조가 내부에서 서로 엇갈려 있어 큰 크기의 단백질을 저장하는 것은 사실상 불가능했습니다.
■ KAIST EEWS대학원 오마르 야기(Omar M. Yaghi)교수팀은 커다란 크기의 기공을 갖는 금속유기골격구조체를 개발해 여러 종류의 단백질을 고용량으로 저장할 수 있는 원천기술을 확보했습니다.
이번에 개발된 기술은 다양한 종류와 크기의 단백질을 저장 할 수 있어 ▲고용량 고집적의 신약 개발 ▲특정 바이러스 분리 물질 개발 ▲인체 내에서 악성 반응을 일으키는 특정 단백질의 선택적 제거 ▲특정 부위에서 작용하는 신약 수용체 개발 ▲희귀 고분자 단백질 영구 보존 등 다양한 분야에 폭넓게 활용될 수 있습니다.
이와 함께 줄기세포를 포한한 모든 인체의 세포까지 선택적으로 분리하고 영구히 저장할 수 있어 난치병 치료나 생명연장을 위한 의학기반 기술 발전에도 큰 도움이 될 전망입니다.
야기(Yaghi) 교수팀은 커다란 크기의 분자들을 이용해 금속유기골격구조체를 만들고, 단백질처럼 아주 큰 물질을 구조체 내부에 일정하게 배열시켜 효율적으로 저장하는 방법을 고안해 세계 최초로 규칙적 분자구조체 내부에 비타민과 미오그로빈(Myoglobin) 같은 단백질을 고용량으로 저장하는데 성공했습니다.
또 5nm 이상의 크기를 가지는 분자체를 이용한 금속유기골격구조체를 개발하고, 금속유기골격구조체의 주기적인 기공을 처음으로 투과전자현미경을 이용해 관찰했습니다.
다른 길이의 분자를 사용하여 합성된 금속유기골격구조체를 보여주는 모식도. IRMOF-74-I 에서 IRMOF-74-XII 로 점점 연결된 벤젠 (benzene)숫자가 늘어나 기공의 크기가 원자단위에서 늘어가고 있다.
이번 연구는 그동안 불가능했던 큰 크기의 단백질 및 고분자들을 규칙적 배열을 가지는 다공성 물질을 개발해 고용량으로 저장하는 원천기술로, 고용량으로 집적된 단백질 약을 원하는 곳에 투여함과 동시에 제거해야 할 분자들을 선택적으로 흡수함으로써 난치병이나 희귀병 치료에 획기적인 역할을 할 수 있을 것으로 기대받고 있습니다.
이번 연구는 오마르 야기(Omar M. Yaghi) 교수와 오사무 테라사키(Osamu Terasaki) 교수가 공동으로 수행했습니다.
이번 연구결과는 '사이언스(Science)' 5월호(25일자)에 게재되었습니다.
크기에 따라서 다른 단백질이 저장 되는 것을 보여주는 그래프
각 그래프에서 그래프가 아래쪽으로 내려갈수록 단백질이 많이 저장되었음을 나타내는 것이며, 검은색 그래프는 금속유기골격구조체에 각각의 크기가 다른 단백질이 삽입되었을때의 변화를 나타내는 것이며 빨간색은 대조군이다.
이 그래프에서 확인 할 수 있는 바와 같이 각각의 조절된 다른 크기를 가지는 금속유기골격구조체는 크기가 다른 단백질 분자들을 선택적으로 흡수 할 수 있었다.
이것은 큰 크기의 고분자가 원자단위에서 조절된 기공을 가지는 금속유기골격구조체에 저장됨을 보여주는 첫 번째 사례이다.
각각 다른 기공크기를 가지고 합성된 금속유기골격구조체에 다양한 크기의 단백질 및 고분자가 저장 될 수 있음을 역동적으로 나타내는 모식도
<보 충 자 료>
지금까지 일정한 방향으로 배열된 큰 기공크기의 금속유기구조체를 만드는 것은 구조의 불안정성과 물질 내부에서 서로 얽히는(interpenetrating) 문제로 인하여 불가능 하다고 여겨져 왔다. 또한 기존의 메조포어를 가지는 물질 (mesoporous silica, porous carbon 등) 같은 경우 원자크기의 영역에서 그 기공의 크기와 구성을 조절하는 것은 불가능 하였다. 그러나 금속유기골격구조체의 경우 화학반응에 의해 모든 결합이나 문자들의 길이가 조절되기 때문에 원자단위의 영역에서 구조를 조정하는 것이 가능 하였다. 이 논문에서는 벤젠(benzene)링의 개수에 따라 길이가 달라지는 (linker)를 사용하여 1개의 벤젠에서부터 최대 12개의 벤젠을 가지는 링커를 합성하고, 그 링커들을 사용하여 금속유기골격구조체를 만듦으로서 10의 마이너스 10승 m 단위에서의 기공 크기 조절이 가능하였다. 또한 기공의 크기가 조절된 유기골격구조체를 사용하여 vitamin-B12(27 Å), MOP-18(34 Å), myoglobin(35-44 Å), green fluorescent protein(45 v)의 크기가 다른 물질을 선택적으로 저장 할 수 있음을 ultraviolet-visible (UV-Vis) spectrophotometry를 이용하여 확인 할 수 있었다. |
용 어 설 명
금속유기골격구조체 :
금속과 유기물질을 사용하여 일정하게 배열된 구조를 가지는 골격체
단백질 :
아미노산이 펩타이드 결합을 하여 생긴 여러 개의 아미노산으로 이루어진 고분자 화합물.
다공성 물질 :
물질의 내부나 표면에 작은 구멍이 많이 있는 성질.
표면적 :
물질을 구성하고 있는 원자가 공간 내에서 규칙적으로 배열되어 생성된 겉넓이
메조포어 :
20~500Å 크기를 가지는 미세기공
투과전자현미경 :
고진공 하에서 아주 얇은 시편을 전자 빔을 이용해 원자 단위로 확대하여 볼 수 있는 장비
<Omar M. Yaghi 교수>
1. 인적사항 ○ 소 속 : KAIST 공과대학 EEWS대학원 ○ 연락처 : yaghi@kaist.ac.kr
5. 출판 |
<Osamu Terasaki 교수> 1. 인적사항○ 소 속 : KAIST 공과대학 EEWS대학원 ○ 연락처 : 042-350-1711, 2. 학 력 ○ Tohoku University 학사 1965 ○ Tohoku University 석사 1967 ○ Tohoku University 박사 1982 3. 경력사항 5. 출판 |
'과학산책 > KAIST' 카테고리의 다른 글
걸어가는 신경세포(동영상), 나노과학으로 들여다본 세포의 신비 (2) | 2012.06.10 |
---|---|
맞춤형 단백질 신약 원천 기술 (0) | 2012.06.09 |
빛도 송수신하는 완전결정 은나노 안테나 (0) | 2012.05.04 |
집에서 암 진단하는 바이오칩, 반도체 공정으로 대량 생산 가능 (0) | 2012.05.04 |
나비 날개구조 모방한 고화질 저전력 디스플레이 (0) | 2012.05.01 |