반응형

□ 소리 없는 도둑이라 불리는 골다공증의 가장 큰 원인은 노화입니다.

폐경 후 여성에서 성호르몬인 에스트로겐의 급격한 상실에 의해 유발되는 것이 가장 큰 비율을 차지하고, 남성도 나이가 많아짐에 따라 많이 발생하고 있습니다.

또한 많은 질환에서 사용되고 있는 스테로이드의 부작용으로도 발생하며, 류마티스성 관절염 환자에서도 발생되고 있습니다.

우리나라에서 골다공증은 심각한 질환으로 인식되지 않고 있지만, 미국은 골다공증으로 인한 고관절골절에 기인한 사망율이 유방암 사망률과 같은 2.8%로 보고되는 등 심각한 질환으로 구분됩니다.

미국에서 만 50세 이상의 성인 중 55%가 골 소실이 일어나고 여성의 40%, 남성의 13%가 골다공증 관련 골절을 겪으면서 연간 150만 명의 골절환자가 발생하고, 이로 인한 보건비용이 300억 달러 이상인 것으로 보고되고 있습니다.

□ 골 형성은 촉진하고 골 흡수는 억제하는 새로운 기전의 "타즈" 단백질을 조절하는 골다공증 치료제 후보물질 KR-35454이 세계 최초로 개발됐습니다.

한국화학연구원 배명애 박사(신약플랫폼기술팀장)은 타즈 단백질에 대한 기전 규명과 골형성 효과를 볼 수 있는 다양한 동물모델에서 골다공증 활성 효과를 검증했습니다.

"타즈"는 성체줄기세포로부터 지방세포 분화를 억제하면서 골세포 분화를 촉진하는 조절단백질로, 이화여대 황은숙 약대교수와 고려대 홍정호 교수가 지난 2005년 사이언스지에 이 메커니즘을 논문으로 발표한 바 있습니다.

배명애 박사팀은 이 논문에 주목해, 타즈 조절제가 골다공증 치료에 효과가 있을 것으로 보고 타즈를 조절하는 물질 개발을 시작했습니다.

골다공증 치료제 개발의 어려운 점은 골 형성 촉진효과의 부족과 환자의 복용 순응도의 문제(경구투여시 위장관 자극문제, 주사 등의 투여방법의 문제) 등 부작용 때문입니다.

난소적출 동물모델과 골절 동물모델에서 뛰어난 골재생 회복효과를 확인


이번에 개발된 골다공증 치료제 후보물질의 경우 이러한 문제를 모두 극복할 수 있는 것으로 기대되고 있습니다.

현재 사용되는 약들은 치료제라기보다는 골다공증의 현상 유지나 부분적인 골 손실 회복 기능에 그치고 있습니다.

이번에 개발된 골다공증 치료제 후보  물질은 혁신신약으로 골다공증의 궁극적인 치료라 할 수 있는 소실된 뼈를 정상화시키는데 효과가 있을 것으로 보고 있습니다.

또 새로운 골격의 저분자 합성화합물로 개발하여 생산비를 낮추어 상업성도 높아졌습니다.

한국화학연구원은 이번에 개발한 기술을 신풍제약에게 기술이전하고, 앞으로 전임상, 임상시험 등 상품화를 위한 개발을 거쳐 2018년까지 치료제를 출시할 예정입니다.

세계 최초 타겟인 TAZ 조절를 통한 골다공증 치료제 후보물질

반응형
반응형

산업화와 개발의 여파로 발전소, 화학공정, 자동차 등에서 각종 오염물질의 배출이 증가하고 있는 가운데 산성가스인 일산화질소/이산화질소, 온실가스인 아산화질소가 포함된 질소산화물이 지구 환경을 위협하는 물질로 대두되고 있습니다.

일산화질소/이산화질소(NOx)는 산성비와 스모그의 주원인으로 기관지 계통에 악영향을 주고 동식물의 성장을 방해하며 건물을 부식시킵니다.

6대 온실가스 중 하나인 아산화질소는 이산화탄소의 310배에 달하는 온실효과를 지니고 있으며, 앞으로 환경 파괴의 최대 주범이 될 것이라는 예측도 나오고 있습니다.

질소산화물인 일산화질소/이산화질소(NOx)와 아산화질소(N2O)를 저감하기 위한 국내외 기술 경쟁이 치열한데요.

현재까지는 NOx와 N2O를 별개의 공정으로 각각 분리 적용해 운영되고 있으며. 이마저도  대부분이 해외 기술에 의존하고 있는 상황입니다.


■ 동시저감 촉매 개발이 어려운 이유

하나의 촉매가 두 가지 반응을 동시에 이루기는 쉽지 않기 때문입니다.

먼저 촉매는 제거하고자 하는 각각의 반응물질을 동일한 반응조건에서 활성화 시킬 수 있어야 합니다.

그러나 대부분의 경우 반응물질을 활성화시키기 위해서는 비교적 높은 온도가 필요하며, 반응온도를 낮추고자 할 경우에는 두 가지 반응물질을 동시에 활성화시키기 어려워집니다.

또한 반응물질에는 제거하는 물질만 포함된 것이 아니라 수분, 산소, 이산화황 등 다른 물질들을 포함하므로 이에 대한 영향을 두 가지 반응 모두가 받지 않아야 하기 때문에 두 가지 물질을 동시에 저감시키는 기술을 개발하기가 쉽지 않은 것입니다.

이런 이유로 기존에 설치된 NOx 저감 장치에 N2O 저감 장치를 추가하는 경우가 일반적이었으며 해외기술 의존도 역시 높아, 국내에 적용된 NOx 저감기술의 경우 약 80%, N2O의 경우 100% 해외 기술에 의존하고 있었습니다.  


■  오염물질을 제거하는 현재의 공정

아산화질소(N2O)와 일산화질소/이산화질소(NOx)를 저감하려면 현재까지는 NOx 저감 공정과 별개로 N2O 저감 공정 필요합니다.

우선 암모니아를 환원제로 사용하여 NOx를 먼저 저감한 다음, 500℃ 이상의 높은 온도 또는 탄화수소 환원제 사용 조건에서 N2O를 저감시킵니다.

기존 방법으로 N2O 저감할 경우 일산화탄소가 생성되기 때문에 이를 제거하는 공정이 추가적으로 필요합니다.


■ 한국에너지기술연구원, 세계 최초 동시 저감 기술 개발

한국에너지기술연구원은 산성가스와 온실가스 문제를 동시에 해결할 수 있는 『NOx와 N2O 동시저감 촉매 및 공정』 기술을 2010년 10월 경 세계 최초로 개발했습니다.

이 기술은 산성가스인 일산화질소/이산화질소(NOx)를 95% 이상, 온실가스인 아산화질소(N2O)를 약 90% 저감할 수 있습니다.

하나의 반응기에서 NOx와 N2O를 동시에 처리하는 촉매와 공정기술은 반응온도를 350℃로 낮춰 에너지 사용을 최소화 했고, 기존에 촉매로 사용한 귀금속에 비해 1/4~1/5 가격인 구리, 철, 아연과 같은 금속성분과 다른 금속산화물 또는 제올라이트와 같은 다공성 무기물을 촉매로 사용했습니다.

게다가 쉽게 분해할 수 있도록 반응을 도와주는 환원제는 공급이 용이하고 저렴한 암모니아 한 종류만 사용함으로써 기존 공정대비 초기투자비는 50%, 운전비용은 60~70% 수준으로 떨어뜨려 세계 시장을 선도할 수 있는 높은 경제성을 확보했습니다. 

기존 공정

KIER의 동시저감 공정

▪ NOx 환원제로 암모니아 사용

▪ NOx와 N2O 동시 저감에 암모니아

환원제 사용

▪ N2O 환원제로 탄화수소

혹은 500℃ 이상의 고온 가열

▪ 350 ℃의 상대적으로 낮은 온도에서

NOx와 N2O 동시 저감

▪ DeNOx와 DeN2O용 2개 반응기

▪ DeNOx/DeN2O용 1개 반응기

▪ 탄화수소 환원제 사용

▪ 저렴한 암모니아 환원제 사용

▪ 환원제 사용을 위한 새로운 시설 추가

필요(보관용기, 공급시설, 인프라 등)

▪ 질산 생산 공정의 원료로 공급 용이


이번에 새로 개발된 동시저감 촉매는 NOx를 단독으로 저감하는 기존의 상용화된 촉매와 비교해도 동등한 성능(저감률 95% 이상)을 나타내며, N2O를 단독으로 저감하기 위한 상용 촉매와 비교하여도 대등한 성능 (저감률 90%이상)을 나타내어, 가격 경쟁력도 높은 것으로 평가받고 있다.

국내에 이미 적용되어 있는 촉매의 수명이 약 3~5년임을 볼 때, 촉매 교체기에는 기존 공정에 이 기술을 적용해 해외 의존도를 낮추고 환경 규제에 취약한 국내 산업의 문제점을 해결할 기술로 평가받고 있습니다.

또한 이번에 개발된 공정은 2개의 공정을 하나로 통합하는 원천 기술과 에너지사용 최소화, 새로운 촉매의 개발, 단일 환원제 사용을 통해 공정의 효율성과 경제성을 확보했으며 현재 1건의 국내특허 등록, 2건의 국내특허와 1건의 국외특허가 출원된 상태입니다. 

연구책임자인 에너지연구원 문승현 박사는 "그 동안 해외 의존도가 높았던 온실가스 감축 기술을 대체할 새로운 동시저감 기술을 개발했으며 국내 N2O 발생원을 1만 톤으로 가정할 때, 동시저감 촉매와 공정으로 약 3백만 톤의 이산화탄소와 2만 톤의 NOx 저감 효과를 가져 올 것"이라고 밝혔습니다.

실제 N2O 저감효과는 연간 360억~1800억 원의 경제적 가치로 추정되며, 법으로 정해져 있는 NOx 배출 기준을 만족시켜 규제를 받던 산업부문의 활성화와 개발도상국의 신규 CDM(청정개발체제) 사업 추진에 적극 참여함으로써 녹색기술 수출도 기대되고 있습니다.

앞으로 이 기술은 화학공정을 비롯해 전자산업, 유동층 연소, 자동차와 같은 이동수단 등 광범위한 배출가스 공정에 적용될 것으로 예상되고 있으며, 국내외 질산생산 공장과 하수슬러지 소각로 등을 대상으로 적용을 검토되고 있습니다.

이 연구개발 사업은 지식경제부가 주관하고 한국에너지기술평가원이 지원하는 '에너지 자원 기술개발사업의 온실가스처리기술개발사업'으로 수행됐으며, 한국화학연구원과 (주)우석엔지니어링, 그린프라(주) 등이 참여했습니다.

반응형
반응형

창문에 비친 햇빛으로 전기를 만든다면...?

염료감응형 태양전지는 유리와 유리 사이에 칠한 특수한 염료가 마치 식물이 광합성을 하듯 태양광을 전기로 전환시키는 기술입니다.

대덕연구개발특구지원본부 전략 R&D사업의 지원을 받은 염료감응형 태양전지 창호가 건자재로써 사용이 가능토록 개발됐습니다.

창호

이번 개발품은 투명컬러 형태의 유리창 구현이 가능하고 흐린 날에도 발전할 수 있는 등 기존의 실리콘계 태양전지에 비해 BIPV에 적용할 수 있는 가능성이 높은 것으로 평가받고 있습니다.

이번에 개발된 제품은 지식경제부가 대덕특구본부의 전략산업R&D사업을 통해 사업화를 지원해 개발된 것으로 ETRI와 한국화학연구원, 한국에너지기술연구원, 동진쎄미켐, 비즈니스전략연구소 등 6개 기관이 참여한 산학연 연계 협력 형태로 진행됐습니다.

이번 개발에서 화학연구원은 세계 최고 성능의 고순도 염료(N719)의 대량 합성 및 정제기술을 확보했습니다.

염료감응형 태양전지로 만든 자동차용 썬루프

또 에너지기술연구원은 장기 안정성이 확보된 젤형 전해질 기술을 완성했습니다.

또한 동진쎄미켐은 염료감응 태양전지의 수명과 효율과 직결되는 핵심기술인 셀기술에서 11%대의 광전변환효율 수준을 확보했습니다.

건자재 업체 이건창호에 따르면 대덕특구본부 전략산업 R&D사업을 지원받아 최근 생산한 태양전지 창호 시제품이 자체 건자재 시험테스트를 통과해 국내 최초로 염료감응형 태양전지 창호의 건자재 적합성을 확인했는데요.

이건창호는 이와 관련하여 양산 계획 등 시장 진입 시기를 조절하면서 자체적 상용화 계획을 세우고 있습니다.







  용  어  설  명

BIPV(Building Interated Photovoltatics) : 건물일체형 태양광발전(창문형태로 많이 활용)




반응형

+ Recent posts