반응형

우리나라 광산업은 일본에서 기술을 이전 받은 쌍안경 등을 단순 생산하면서 시작하였다.

하지만 불과 30년 만에 디지털카메라, 휴대폰 렌즈 등을 대량 생산할 수 있는 첨단산업으로 비약적인 발전을 하였다.

IMF 외환위기를 거치면서 우리나라 광산업은 대기업에서 중소전문기업으로 재편되었다.
 
이들 전문기업들은 기술력을 바탕으로 경쟁력을 갖추고 있으며, 그 중심에 KRISS(한국표준과학연구원) 우주광학센터가 있다.

KRISS는 지난 20년 동안 정부출연연구기관 중 유일하게 초정밀 광학계 제작과 평가연구실을 운영하고 있다.

광학굴절률, 초점거리, 형상 등의 광학시험 서비스와 교정 시스템을 제공하고 새로운 광계측기기들을 개발함으로써 국내 초정밀 광산업의 중심역할을 하고 있는 것이다.

렌즈나 거울 같이 빛을 다루는 광학부품이나 카메라와 같이 상을 맺는 광학계는 전통 광산업뿐만 아니라 정보통신산업, 반도체산업, 방위 우주산업 등 첨단산업에서 핵심 기술로 사용되고 있다.

직경 2 m급 광학거울을 가공하는 모습

KRISS 우주광학센터가 개발한 직경 2m급 광학거울로 만들어진 천체망원경으로 하늘을 쳐다볼 경우, 너무 높아 미사일이 도달하기도 어려운 높이에 있는 인공위성의 모양까지 식별할 수 있다.

직경 1m급 망원경으로 인공위성의 유무만 확인이 가능한 것에 비하면 놀라운 기술적 진보이다.

하지만 그동안 관련 산업의 기술은 극히 소수 국가의 전유물이었다.

대형 비구면 거울은 우주용 망원경 및 지상용 천체망원경에 필수적인 부품이며, 특히 우주용 망원경 부품은 군사용으로 사용할 수 있다.
이러한 이유로 선진국에서는 해당 부품에 대한 수출이 엄격히 통제되고 있다.

KRISS 우주광학센터는 직경 1 m급에 이어 2 m급 광학거울을 제조하는 기술을 확보함으로써 천체관측용 대형 망원경과 위성에 사용되는 카메라에 필요한 국내 수요를 충족할 수 있게 되었다.

앞으로 KRISS는 축적된 기술을 바탕으로 거대마젤란망원경(GMT : Giant Magellan Telescope) 사업에 이를 활용할 계획이다.

G
MT사업은 허블망원경보다 해상도가 10배나 향상된 직경 25 m급의 대형 망원경을 2018년 칠레의 라스캄파나스에 설치하는 미국 주도의 국제협력 사업이다.
 
KRISS는 한국천문연구원과 함께 직경 1.1 m 비축비구면 광학거울 7개를 제작해 이 사업에 참여할 예정이다.

GMT사업 참여는 우리나라의 대형 광학계 제조기술을 전 세계에 알리는 놓칠 수 없는 기회가 될 것으로 기대된다.

<조성재 KRISS 산업측정표준본부장>

반응형
반응형

“과학기술이 지향해야 할 정말 중요한 포인트, 그것은 따뜻한 과학입니다.”
강대임 박사(한국표준과학연구원(KRISS) 휴먼인지환경사업본부장)는 지난 2009년 국책 과제인 '신경모방소자 및 인지시스템 융합연구단 사업'을 시작하면서 그동안 갖고 있었던 그의 생각에 큰 변화를 맞는다.

바로 ‘따뜻한 과학’이다.

“이전까지는 과학기술을 비즈니스라고 생각했었습니다. 그러나 인지시스템 융합연구단을 맡으면서 과학이 세상을 얼마나 따뜻하게 할 수 있고, 또 필요로 하는 사람들이 많다는 사실을 깨달았지요.”

제1회 TEDxDaedeokValley에서 따뜻한 과학을 주제로 강연하고 있는 강대임 박사.

이 사업은 청각자애인과 시각장애인들을 위한 감각센서를 개발하고, 이를 디스플레이나 마이크로폰 등을 통해 사용자에게 전달함으로서 이들이 눈과 귀가 되는 첨단 보조장치를 개발하는 것이다.

이를 통해 궁극적으로는 지능로봇에 사용되는 소자 및 인지시스템 개발로도 이어지게 된다.

연구 수행에 앞서 수요자 설문조사에 나섰던 강 본부장은 많은 장애인들의 사연과 불편한 점을 접하면서 이전과 다른 과학관을 갖게 됐다.

그는 이 연구를 통해 과학과 사회 시스템의 융합에 대해 새로운 안목을 찾게 된것이다.

부분적인 과학기술이 개발되더라도 이것이 사람들에게 적용되기 위해서는 사회 인프라가 조성돼야 하는데, 이것은 국가 차원의 일이지만 동시에 다른 사회구성원들의 관심이 절대적으로 중요하다는 것을 그는 깨달았다.

때문에 그는 ‘따뜻한 과학’은 장애인 등 수요자 뿐만 아니라 우리 사회 전체가 따뜻해질 때 비로소 그 완성을 볼 수 있다고 생각한다.

강 본부장은  “나아가 따뜻한 과학기술의 대상을 수요자는 물론 넓은 의미에서 과학기술을 실행하는 사람들의 마음까지도 따뜻해지게 하는 것을 고민 중”이라고 말했다.

“이번 연구 내용이 필요한 사람들에게 보급되기 위해서는 과학기술자들의 역할도 중요하겠지만 정부·사회와의 충분한 교감이 있어야 합니다.”

◆KRISS 발전과 함께 한 연구 인생

그의 과학자 인생은 1982년 KRISS에 입사하면서 시작됐다.


강 본부장은 입사 3년 후 그동안 개발한 ‘힘 센서’ 평가를 위해 일본에 두 달간 머무르면서 적지 않은 충격을 받았다.

당시 우리나라에는 변변한 평가 장치가 없던 시절, 그가 일본에서 본 시설들은 실로 어마어마했고 분야의 다양성도 놀라웠다.

강 본부장은 당시를 회상했다.

“그 때 큰 충격을 받고 생각을 많이 했다. 어떻게 일본 만큼 갈 수 있을지…, 세계 최고가 되자고 다짐했죠.”

기술도 부족했고, 연구 예산도 적었던 당시였지만, 강 본부장이 있던 힘 연구실은 각종 표준 연구기를 하나하나 자체 개발하기 시작했다.

그러던 중 큰 기회가 생겼다.

당시 국내 굴지의 건설사에서 측정용량 3000t 규모의 초대형 교량 포트 받침의 성능 시험기를 개발해달라는 부탁이 들어왔기 때문이다.

이 때 연구팀은 그 건설사에 시험기의 성능을 테스트할 표준기가 없어 일본까지 다녀와야 하는 현실을 알리며 이를 같이 개발해야 할 필요성을 역설했고, 결국 이에 대한 연구 지원까지 얻어냈다.

이렇게해서 연구팀은 국내 최초로 10MN(메가뉴튼) 급 표준기를 개발했다.

그 크기가 3층 건물 높이에 해당하는 초 대형 기기였다.

최초의 표준기 개발을 수행한 연구팀은 곧바로 측정기의 콤팩트화라는 새로운 도전장을 냈다.

이 도전은 곧 한발 한발 나아가는 연구팀에게 성과로 돌아왔다.

“1990년 대 중반을 넘어서면서 일본 내에서도 한국이 일본을 넘어섰다는 얘기가 나왔습니다."
“한 번은 독일 표준연구소 관계자가 KRISS를 방문했다가 우리가 만든 소형 표준기의 정확도에 깜짝 놀라기도 했지요.”

1990년 대 후반에는 표준연구 분야 선진국이었던 일본에서 오히려 기술을 보고 배우기 위해 우리나라를 찾게 되면서 새로운 위상을 정립할 수 있었다.

이즈음 강 본부장은 KRISS의 힘 연구 분야를 세계 최고인 미국과 독일과 함께 트로이카 체제로 만들기로 마음먹었다.

특히 나라별로 산업체계가 다르고 요구하는 측정 용량도 다른 현실에서 특화된 분야의 일등 전략이 규모화의 부족을 극복할 수 있는 길이라고 강 본부장은 생각했다.

이를 통해 국제 사회에서 KRISS의 위상은 더욱 높아졌고, 강 본부장은 지난 2009년부터 국제측정연합(IMEKO) 의장직에 선임되는 영예까지 안았다.

강 본부장은 “현대 과학은 표준과 응용, 기초연구와 산업연구가 적절한 조화를 이루워야 한다”고 말한다.

특히 강 본부장은 “따뜻한 과학기술이 왜 필요한지를 국민들에게 알려 연구자나 정부 뿐만 아니라 국민들도 따뜻한 과학기술에 관심을 갖도록 하는데 작은 역할을 하고 싶다”고 뜻을 내비쳤다.
                                                                                                    <이재형 기자>

장애인들을 위한 과학, 이어헬퍼, 아이헬퍼

휴먼인지환경사업본부는 소자 및 인지시스템 융합연구단(KRISS), 의료인지 융합연구단(ETRI), 실내공기청정 융합연구단(KIST) 등 세 가지 파트로 나뉘어 연구를 수행 중이다.

한국표준과학연구원(KRISS) 강대임 박사는 이를 총괄하는 휴먼인지환경사업본부장을 맡고 있으면서 동시에 소자 및 인지시스템 융합연구단장직을 겸하고 있다.

소자 및 인지시스템 융합연구단은 생명체를 모사한 센서와 인간의 인지·감정 시스템 개발을 통한 복합형 감각 도우미 기술을 개발한다.

이를 통해 시각·청각·촉간 센서의 복합 처리로 청각장애인의 귀가 되어주는 이어헬퍼(Ear helper)와 시각장애인을 위한 아이헬퍼(Eye helper)를 상용화하고, 나아가 미래 로봇에 적용될 감각센서 개발 기술을 확보하는 것이 목표다.

이어헬퍼는 특수 안경에 탑재된 청각 센서인 초소형 미세전자기계(MEMS)가 소리를 감지해 이를 그래픽 디스플레이를 통해 위치와 크기 등으로 전달해준다.

아이헬퍼는 GPS 신호와 적외선, 초음파 등을 활용해 얻은 시각 정보를 음성 및 촉각으로 변환해 시각장애인에게 전해줌으로써 길 안내는 물론 상대방의 표정까지 느낄 수 있도록 정밀한 전달장치를 개발하는 것이 목표다.

연구단은 이 같은 감각도우미에 활용되는 소자의 핵심 원천기술을 개발하고 있다.

특히 청각도우미 안경과 시각도우미 지팡이에 감정인식 알고리즘을 장착해 상대방의 감정인식에 도움을 줄 수 있도록 인지-감성 통합 모델을 개발 중이며, 다중감각 정보처리와 인지기능 향상을 통한 휴먼인터페이스 시스템 성능 향상에 대한 기초 연구도 진행 중이다.

강 본부장은 “복합 감각을 이용한 감각도우미는 국내외에서 최초로 시도되는 기술”이라며 “단지 기술개발에만 몰입하지 않고 어떻게 성과를 만들어 낼 것인지에 대해서도 노력할 것”이라고 밝혔다.

                                                                                                                                <이재형 기자>



강대임 박사 TEDxDaedeokValley 강연 동영상 보기
http://www.youtube.com/watch?v=FhUaKyyYSQE

TEDxDaedeokValley 강연자료

조금은 특별한 나의 따뜻한 과학기술 이야기
(2011/05/07 강대임)

슬라이드 1: 안녕하세요. 강대임 연구원입니다. 테드 강연 발표자들과 테드을 주관하시는 분들과의 사전 만남이 있었습니다. 주관하시는 분들이 발표자들에 요청한 것은 세상을 깜짝 놀랄게 할 만한 강연, 청중들이 영원히 잊을 수 없는 그런 강연을 해 달라는 것이었습니다. 아마 오늘 발표하시는 연사분들이 여러분들을 깜짝 놀라게 할 내용들을 주로 들려 주실 것입니다. 여러분들이 오늘 너무 많이 놀라서 쇼크를 받을까봐, 저는 평범한 내용이지만 그러나 조금은 특별한 저의 따뜻한 과학기술에 대해서 말씀드리고자 합니다.

슬라이드 2 : 여러분 과학기술하면 어떤 것이 생각나십니까 ? 고등학교 과학실험실에서 접했던 비커와 장비들, 아니면 20세기 최고의 과학자 아인슈타인 , 발명왕 에디슨

Science는 라틴어 Scire(싸이어리)에서 유래된 단어로 “어떤 사물을 안다”라는 뜻입니다. 무엇을 안다. 여기에서 “안다”라는 것은 무슨 의미일까요 ? 나와 여러분들이 알고 있는 A라는 사람이 있다고 합시다. 내가 A에 대해 알고 있는 내용과 여러분이 알고 있는 내용이 같을까요 ? 다를까요 ? 질문을 던짐. 예. 같을 수도 있고 다를 수도 있겠죠. 여기에서 안다는 의미는 과학을 뜻하지 않습니다. 즉 과학이란 검증 가능한 방법으로 얻어진 자연체계에 대한 지식을 말합니다. 따라서 과학은 반복적인 실험을 통해서 보편성을 확보해야 합니다. 즉 반복성이 있어야 한다는 뜻이죠. 그러다 보니 과학하면 많은 사람들에게 딱딱한 것이란 이이미지를 주는 것입니다. 오늘의 제 주제와 정 반대 의미죠 ?

슬라이드 3: 그러면 과학은 왜 연구하는 것일까요 ? 첫 번째는 호기심 때문일 것입니다. 여기 20세기 대표적 발견들이 있습니다. X레이, 비행기, 페니실린, 이중나선 등이죠. 예를 들어 엑스레이는 독일의 물리학자 뢴트겐이 우연히 발견했습니다. 렌트겐은 음극관을 이용한 실험중 눈에 보이지 않는 특성광선이 물질을 투과하는 성질은 발견했고 미지의 광원이란 의미로 엑스레이란 이름을 명명했습니다. 두 번째는 우리의 삶을 편리하게 해 주기 위해서 일 것입니다. 20세기 최고 발명품중의 하나로 평가받는 나일론은 1938년 미국 듀폰사가 개발한 것입니다. 나일론은 거미줄보다 가늘고 철선보다 강한 최초의 합성수지입니다. 나일론으로 만든 첫 번째 상품인 여성용 스타킹이었는데 1940년 출시 첫해 6400만 켤레가 팔렸다고 합니다. 컴퓨터, 인터넷, 요즘 돌풍을 일으키고 있는 스마트폰도 다 비슷하죠. 우리의 삶을 바꾸어 놓고 있습니다. 

슬라이드4 : 21세기 들어와서 과학기술을 하는 이유로 단순한 호기심 연구에 그치지 않고 첨단산업과의 접목을 통해서 고부가가치를 만들어 내고 있습니다. 요즘 아이폰과 아이패드로 잘 나가는 애플을 한번 봅시다. 2010년 애플의 총 매출은 763억달러이고 이익이 116억달러입니다. 우리나라의 국가 연구개발 투자액이 137억불임을 감안하면 대단한 성과입니다. 글로벌 기업뿐만 아니라 대부분 기업들이 기업의 생존을 위해서 과학기술에 매달리고 있습니다.

슬라이드 5 : 그러면 과학기술을 하는 이유가 이게 전부일까요 ? 

슬라이드 6 : 1999년 헝가리 부다페스트에서 열린 유네스코 ‘세계과학회의’가 채택한 선언문을 주목할 필요가 있습니다. 선언문에서 과학과 공학의 중요한 목표중 하나로 “사회안의, 사회를 위한 과학기술(Science in society and science for society)"입니다. 내용중 일부를 직접 읽어 보겠습니다. ”과학연구의 실행과 그 결과로부터 나온 지식의 이용은 항상 인류의 빈곤의 감소를 포함하는 복지를 목표로 해야 한다. 이 선언문에서 저는 복지에 방점을 찍었습니다. 따라서 미래의 과학기술은 복지를 지향하는 따뜻한 과학기술이어야 할 것이다. 

슬라이드 7 : 그러면 따뜻한 과학기술이 무엇이냐 ? 사전적 정의는 아니지만 따뜻한 과학기술이란 수익성이 없다는 이유로 과학기술이 개발, 적용되지 않는 일종의 과학기술 사각지대를 메우기 위해 노력하는 것이라고 말할 수 있지 않을까요 ?  

슬라이드 8 : 따뜻한 과학기술에는 Low tech을 활용하여 소외계층의 소득증대나 삶의 질을 높이는 일입니다. 예로서 베스트가르드사가 개발한 휴대용 정수기입니다. 단 돈 2달러에 매일 2리터씩 물을 일년간 정수할 수 있습니다. 전 세계적으로 오염된 물로 인하여 매일 6천명씩 사망하고 있습니다. 또한 장애우나 노약자 등 소외계층의 불편을 줄이고 생활을 도와주는 quality of life tech 이 있으며, 소외계층과 지역에 과학기술 강연을 제공하여 과학기술 정보를 공유하는 것도 넓은 의미의 따뜻한 과학기술이 아닐까 생각합니다.  

슬라이드 9 : 나는 누구인가 ? 

슬라이드 10 : 저는 1982년부터 한국표준과학연구원에서 힘의 측정표준을 연구해 왔습니다. 우리나라 힘의 기준이 되는 힘표준기 개발연구와 여러 가지 힘을 측정하는 힘측정센서 개발도 하였으며 특히 손의 촉감을 감지하는 기능을 가진 촉각소자 개발을 하였습니다. 딱딱한 과학기술을 오랫동안 해왔습니다.  

슬라이드 11. 촉각소자를 개발한 경험으로 저는 2년 전부터 신경모방소자 및 인지 시스템 연구단 단장을 맡아 타 연구소와 대학들의 연구원들과 융합연구를 시작했습니다. 연구단은 시각, 촉각, 청각 소자와 인지/감성시스템 개발과 함께 이것들을 융합하여 청각장애우용 도우미와 시각장애우용 도우미를 개발하고 있습니다. 

슬라이드 12 : 여러분 ! 글러브란 영화 보셨나요 ?  

슬라이드 13 : 청각장애우들이 가장 듣고 싶어하는 소리가 무엇일까요 ? 저희가 설문조사한 결과에 의하면 자동차 경적소리 등 위험상황을 알고 싶어 합니다. 소리가 안 들리기 때문에 어떤 상황이 위험한 상황인지 일상적인 상황인지가 잘 구분하지 못하기 때문입니다. 그 다음으로 애를 키우는 엄마의 경우 애의 울음소리를 듣고 싶어 하구요. 파도소리, 새소리 등 자연음도 듣고 싶어 합니다.  

슬라이드 14 : 저희 연구팀에서는 소리의 전달을 안경에 장착된 마이크로폰으로 소리를 감지하여 안경에 위험상황을 표시하여 주는 장치를 개발하고 있습니다.  

슬라이드 15 : 그러면 청각장우들에게 소리의 감성을 어떻게 전달할 수 있을까요 ? 우리가 내는 소리는 음향학적으로 주파수 분석을 통하여 loudness(소리의 강도), Sharpness(날카로움), fluctuation, 순음성, 거침성 등의 물리량으로 표시할 수 있습니다. 예를 들어 아기 웃음의 소리의 경우, loudness 31, sharpness 3.2, fluctuation 4 등으로 표시할 수 있습니다. 아기 웃음소리, 울음소리, 파도소리 등 여러 가지 소리를 사람들에게 들려 주고 그 소리가 기쁜 소리인지, 슬픈소리인지, 분노를 느끼게 하는 소리인지에 대해 주관적 평가를 합니다. 이것을 소리감성모델이라고 합니다. 소리를 청각장애우에게 직접 전달할 수가 없기 때문에 우리는 촉감을 통하여 소리의 감성을 전달하고자 합니다. 즉 위와 같은 표면 자극기에 표면의 거친 정도, 떨어주는 주파수, 누르는 압력, 따뜻함의 정도를 조절하여 청각장애우들이 소리의 감성을 느끼게 하는 것입니다. 예를 들어 솜털같은 표면을 따뜻하게 한 후 적당한 힘과 주파수로 떨어주면 우리는 기분이 좋아집니다. 이것을 구현하는 것입니다. 

슬라이드 16. 본 연구팀에서 개발하는 청각도우미 동영상을 잠깐 시청하겠습니다. 

슬라이드 17. 다음은 시각장애우용 도우미에 대해 말씀드리겠습니다. 시각장애인들이 가장 원하는 것은 버스나 지하철을 타고 원하는 장소를 찾아 가는 것입니다. 더 나아가 상대방을 인식하고 그 사람이 누구인지, 그 사람의 감정 상태는 어떤지를 알 수 있다면 금상첨화겠죠. 여러분! 자동차의 위치를 알려 주는 GPS기반 위치정보 시스템을 많이 사용하고 있으시죠 ? GPS는 실외환경에서 사용할 수 있으나 실내나 지하에 가면 먹통이 됩니다. 그래서 우리는 초음파와 IR 송수신기를 이용하여 실내에서 원하는 위치를 찾아 갈 수 있도록 하고 있습니다. 여기 그림에서 보이는 것이 시각 도우미용 하드웨어인데 필요한 여러 가지 소자와 프로세스를 통합하여 스마트폰과 같은 단말기 형태로 만들어 질 것입니다.  

슬라이드 18. 실내에서 장애물을 인지하거나 화장실, 출구번호 등을 찾기 위해서 안경에 있는 카메라로 영상을 인식하여 여러 가지 프로세스를 거쳐 이 정보를 음성과 바로 전에 보여 드렸던 하드웨어의 촉각제시 장치를 이용하여 알려 주게 됩니다. 또한 카메라로 상대방 얼굴을 인식하여 누구인지 알려 주는 기능을 갖고 있습니다.  

슬라이드 19. 상대방의 감정인식을 하는 프로세스에 대해 말씀드리겠습니다. 카메라를 이용하여 상대방의 얼굴표준을 인식하고 피부온도 등 생리신호를 감지하여 상대방의 감정 상태를 인식하게 됩니다. 이 감정을 시각장애우에게 청각이나 촉각으로 전달하는 것이죠. 

슬라이드 20. 우리 팀이 개발중인 시각도우미 동영상을 보시겠습니다. 어떻습니까 ? 여러분들이 시각장애인이라면 이 장치를 사시겠습니까 ?  


슬라이드 21. 이 따뜻한 과학기술 연구를 하면서 느낀 점을 정리하면 첫째, 이런 연구는 돈이 되지 않는다 즉 비즈니스 모델로는 별로다 라는 것입니다. 둘째, 장애우나 노약자들이 이런 장비를 살만큼 경제적 여유가 없다는 것이다. 셋째는 이런 장비들을 운영하기 위해서는 사회적 인프라가 갖추어져야 한다는 것이다. 예를 들어 초음파 인식장치로 화장실을 찾아 가기 위해서는 화장실마다 초음파 송신 장치를 부착해야 합니다. 즉 사회적 인프라 구축비용이 많이 소요된다는 것입니다. 따라서 오늘 강연을 마무리하면서 저는 몇 가지 제안을 하고자 합니다. 첫째, 따뜻한 과학기술이 비즈니스 모델이 될 수 있도록 국가적으로 정책적 지원을 해달라는 것입니다. 둘째, 우리 과학기술자나 기업들이 노블리제 오블리제 정신을 가지고 따뜻한 과학기술을 개발하고 상용화하여 우리 사회의 낮은 곳을 따뜻하게 품어 줄 것을 제안합니다. 마지막으로 이 사업에 대해 여기 계신 여러분의 관심과 응원을 요청합니다. 여러분 ! 따뜻한 과학기술 밀어 주실거죠 ? 감사합니다.







반응형
반응형

전자입찰이나 스포츠 경기에서야 100분의 1초를 다툴 정도로 정확한 시간이 필요하겠지만 우리의 일상생활에서야 정확한 시계가 필요할까?
하지만 시간은 우리 주변에서 매우 중요하게 사용되고 있다.
표준시 보급이 각 산업에 미치는 파장은 막대하다.

이동통신의 경우 시계가 정확하지 않으면 혼선이나 통신장애가 발생하며 원활한 통신을 하기 위해서는 통신망에서 사용되는 시계의 오차가 100만 분의 1초 보다 작아야 한다.
이외에도 교통체계 관리시스템의 시간오차는 1000분의 1초, 위성항법장치(GPS)의 시간오차는 10억분의 1초를 넘으면 안된다.

시간의 표준을 세우기 위해서는 정확한'1초의 측정이 필수적이다.
1초는 세슘(Cs)원자에서 나오는 복사선이 91억 9263만 1770번(고유진동수) 진동할 때 걸리는 시간으로 정의한다.

KRISS-1

현재 우리나라에서 1초를 가장 정확하게 만들어내는 시계는 대한민국 표준시계'KRISS-1'이다.
이 시계는 오차가 30만년 동안 1초 이내로 유지되는 정확한 시계이다.
KRISS(한국표준과학연구원) 는 이 시계로 우리나라 시간의 표준을 만들어 정밀한 표준시간정보가 필요한 방송국, 은행, 통신사 등에 제공하고 있다.

대한민국표준시의 보급 방법은 KRISS 내에 설립되어 있는 단파 방송국(HLA)을 이용한 방식과 인터넷망을 이용해 UTCk 프로그램을 다운로드 받아 표준시를 공급받을 수 있다.
하지만 단파방송의 경우 전리층 반사를 이용하기 때문에 정확도가 높지 않고 기상상태와 실내외 상태에 따라 수신율에 영향을 많이 받는다.

세슘원자광펌핌시계 실험

인터넷망도 통신장애 등의 이유로 안정적인 시간 전달에 어려움이 있다.

이러한 단점을 극복하고 높은 정확도의 표준시 보급을 가능하게 해주는 새로운 방법이 바로 장파방송이다.
장파방송은 수신가능 지역이 넓고 건물 밀집 지역이나 건물 내부에서도 소형의 수신기로 수신이 가능하다.
특히, 한반도 중부에 설치될 경우 북한을 포함한 한반도 전역에서 수신이 가능하다.

장파 표준방송 수신 칩을 가전제품에 내장해 홈오토메이션을 구현하거나 미래 첨단시스템인 유비쿼터스에 응용하는 등 미래 첨단산업에도 활용할 수 있다.
세계적으로도 장파방송의 활용범위가 증가하고 있으며 이미 선진국에서는 장파방송을 활용하는 제품생산과 관련 산업이 발전하고 있다.

이를 위해 KRISS는 새로운 산업 창출과 국가의 신성장 동력 창출을 위해 장파방송국 설립을 계획 하고 있다.

<우삼용 한국표준과학연구원 기반표준본부장>

<관련 글> : 가장 정확한 대한민국 표준시계의 2011.11.11.11:11 
http://daedeokvalley.tistory.com/217

반응형
반응형

<탄소나노튜브 실이란?> 

탄소나노튜브 실은 순수하게 탄소나노튜브로만 이루어져 있고, 반데르발스 힘(Van der Waals Force)에 의하여 탄소나노튜브가 연속적으로 결합해 여러 가닥의 다발로 형성된다.

실리콘 기판 위 탄소나노튜브 성장 시에 탄소나노튜브 밀도를 조절하는 방법으로 기판위에 수직 배양된 탄소나노튜브로부터 직접 탄소나노튜브 다발을 잡아당기면, 탄소나노튜브들 사이에 반데르발스 힘에 의해 실처럼 계속적으로 뽑혀 나온다.

탄소나노튜브 실은 높은 탄성과 철의 100배에 달하는 강도를 가지고 있어서 방탄복에 유용하고 뛰어난 전기 전도도와 열전도 물성 때문에 기능성 복합직물로도 활용이 가능합니다.

탄소나노튜브는 지난 2002년에 첫 등장했지만, 아직 세계적으로 상용화가 안 된 소재입니다.

남승훈 박사

처럼 고성능 방탄복과 항공우주 분야 등 첨단산업 소재로 사용되는 탄소나노튜브 실을 만드는 기술이 KRISS(한국표준과학연구원) 재료측정표준센터 남승훈 박사 연구팀에 의해 개발됐습니다.


연구팀은 실리콘 기판 위에 길이가 300㎛(마이크로미터)와 12㎚(나노미터) 굵기의 탄소나노튜브를 수직으로 배양시킨 후, 이로부터 여러 가닥의 탄소나노튜브를 다발로 형성시켜 실 모양으로 뽑아내는 방법으로 기존의 제조기법을 크게 개선시켰습니다.

탄소나노튜브 실의 굵기는 1마이크로미터 이하로, 연구팀은 1ⅹ1 ㎠  실리콘 기판 위에 수직 배양된 탄소나노튜브로부터 수십 m 이상 길이의 실을 만들 수 있도록 했습니다.

이번 개발된 기술로 가느다란 탄소나노튜브 실 여러 가닥을 한꺼번에 뽑아낼 수 있으며, 탄소나노튜브 실에 폴리머와 같은 물질을 쉽게 코팅할 수도 있습니다.

이 기술을 이용하면 향후 탄소섬유 방직산업에도 폭넓게 활용될 전망입니다.

금속 표면에 고전압을 가했을 때 전자가 튀어나오는 전계방출현상이 탄소나노튜브 실에서는 보다 낮은 전압에서도 나타나 산업적 활용도 기대됩니다.

이는 휴대용 X-ray 튜브나 전자총 등에 활용 할 수 있으며, 휴대용 초소형 비파괴검사 시스템에도 사용될 수 있습니다.

또 연구팀은 이번 연구를 통해 전자현미경을 이용해 전계방출 시 탄소나노튜브들 사이의 상호 반발에 의한 실 끝부분의 형태 변화를 실시간으로 촬영하는데도 성공했습니다.

이번 기술 개발로 탄소나노튜브를 실 형태 뿐만 아니라 시트 모양으로 균일하게 뽑아낼 수 있게 됨에 따라, 대면적 탄소나노튜브 필름의 대량제조도 예상되고 있습니다.

탄소나노튜브 시트는 유연성이 좋고, 투과율과 전기 전도도가 높아 앞으로 터치스크린 소재인 ITO((Indium Tin Oxide)필름을 대체할 수 있을 전망입니다.

또한 탄소나노튜브 시트 필름 양단에 직류 12V를 가하면 시트 필름 표면의 온도가 상승, 이를 이용한 자동차 유리 김서림 방지용 히터 등에eh 활용 가능합니다.

이번 연구는 국제학술지인 '카본(Carbon)'에 게재됐습니다.

탄소나노튜브 실


진공 속에서 전계방출 시 변화하는 탄소나노튜브 실 끝의 모양 변화


<연구개요> 

Ⅰ. 과제개요

 ○ 사업명 : 나노메카트로닉스기술개발사업(교육과학기술부 21세기 프론티어연구개발사업)

 ○ 과제명 : 나노 패턴손상 및 복합물성 측정기술 개발

 ○ 연구책임자 : 남승훈 박사(한국표준과학연구원)

 ○ 참여자 :  유권상 박사, 이윤희 박사, 백운봉 박사, 김용일 박사, 장훈식 박사, 조용재 박사, 제갈원 박사, 조현모 박사, 정인현 책임연구원, 박종서 선임기술원, 전상구 연구원, 박수영 연구원, 이정표 연구원(이상 한국표준과학연구원)

 ○ 연구기간(3단계) : 2008. 4~2012. 3

 ○ 주요 연구성과 : 국내외 논문 발표 및 게재(121건), 국내외 특허출원 및 등록(33건), 나노구조체 복합물성 측정기술 및 센서 개발 해외특허 출원(PCT/KR2011/000145), 탄소나노튜브 실 제조기술 연구성과 "Carbon Vol. 49" 표지 등재(2011. 1)


 용  어  설  명

 카본(Carbon)지(http://ees.elsevier.com/carbon/)
 : 네덜란드 Elsevier 출판사에서 출간되며, 탄소관련 소재기술의 전반적인 분야를 다루는 전문 학술저널. 2009년  Impact Factor 4.506인 저널로 소재분야의 가장 권위있는 학술 저널중 하나로 인정받고 있다

전계방출(Field emission)
: 금속의 표면에 강전계를 가했을 때 상온에서 생기는 전자 방출 현상.

 

탄소나노튜브 실의 전계방출 실험 장면

반응형
반응형

KRISS(한국표준과학연구원)이 연구성과인 연구-기술 상품을 효과적으로 보급하기 위해 '표준성과한마당(e-shop)' 홈페이지(http://eshop.kriss.re.kr)를 오픈했습니다.

KRISS 연구성과 확산 쇼핑몰인 표준성과한마당 홈페이지는 KRISS의 연구-기술 상품을 고객이 한 자리에서 쉽고 편하게 확인하고, 이를 사고팔 수 있도록 꾸며졌습니다.

여기에서는 KRISS가 제공하는 교정, 시험, 인증표준물질(CRM) 등 고객이 원하는 최신 연구-기술 상품을 플래시 방식으로 보고 고를 수 있습니다.

대표상품을 클릭할 경우 바로 해당 서비스로 이동하여 손쉽게 원하는 서비스를 이용할 수 있으며, 이력내용 및 진행 상황 조회도 가능합니다.

이 밖에도 KRISS에서 제공하고 있는 정밀측정교육 서비스, 기술이전 및 기술자문, 국가참조표준정보(SRD) 등도 이용할 수 있습니다.

반응형
반응형

교육과학기술부와 한국연구재단은 2010년 ‘올해의 여성과학기술자상’에 한국표준과학연구원 신용현(49세) 책임연구원과 세종대 김성은(43세) 교수, 경희대학교 김지영(61) 교수 등 3명을 선정했습니다.

신용현 표준연 책임연구원

김성은 세종대 교수

김지영 경희대 교수



표준연 신 책임연구원은 진공기술 분야 국내 일인자로, 지난 25년 간 진공연구에 매진해 국내 진공연구 수준을 세계적 최고로 끌어 올렸고, 특히 반도체 제조와 나노기술, 우주항공 산업에 두루 활용되는 진공과 미세 누출 측정을 위한 표준 기술을 개발했습니다.


또 이에 대한 기술데이터를 산학연에 보급해 국내 생산 기술력 향상과 장비 부품 국산화에 크게 기여했습니다.

세종대 김 교수는 세계 최초로 우리 은하와 이웃하는 마젤란 은하 전체의 원자가스 분포를 고해상도로 관측하고, 성간물질의 특성과 별 생성 연구에 크게 이바지해 우리나라 과학기술의 위상을 높였습니다.

경희대 김 교수는 차세대 인재 교육과 우리나라 여성과학기술인의 위상을 제고하는데 중추적인 역할을 담당한 점을 인정받았습니다.


반응형
반응형

나노물질에 대한 안전성과 성능 향상기술, 나노바이오 융합을 통한 의료이미징 기술 등 나노 및 나노바이오 측정기술 개발 현황을 소개하고 국제적 이슈를 공유할 수 있는 자리가 마련됐습니다.

KRISS(한국표준과학연구원)은 23일부터 이틀간 대덕 본원에서 ‘나노 및 나노바이오 소재 특성평가’를 주제로 하는 제24차 국제과학기술센터(ISTC) 한국 워크숍을 개최했습니다.

이번 ISTC 한국 워크숍은 러시아와 구 소련권 국가의 과학기술을 국내에 소개하고, 지역 산업계와 연구기관 등과 파트너십을 구축해 과학기술을 이전하는 것을 목적으로 합니다.

ISTC는 구 소련의 대량살상무기와 이곳에 종사하던 과학자들이 관련기술의 제3세계 유출을 방지하기 위해 미, 일, 러, EU 등의 출연으로 1992년 설립된 국제기구이며, 우리나라는 지난 1998년 가입했습니다.

이번 워크숍에서는 러시아 과학기술자 10명과 KRISS 연구원 4명 등 총 14명의 나노기술 분야 전문가가 나노 및 나노바이오 소재 분야의 측정 평가 기술에 대해 주제발표와 전문가 모임을 가졌습니다.

주요 프로그램으로는 러시아 국립과학표준센터 가르릴렌코 발레리 박사의 '나노기술에서의 측정과 표준', 러시아 기술 규제 및 도량 연방 기관 코르니브 드미트리 박사의 '나노미터 영역의 SI 단위 소급성', 러시아 연방정부 과학연구소 타우빈 미카일 박사의 '나노물질 구조연구', 러시아 바이러스 및 바이오 테크놀로지 정부연구센터 다닐렌코 엘레나 박사의 '나노물질과 안전성' 등에 대한 주제발표가 진행됏습니다.

또 우리나라에서는 호서대 유일재 교수의 '나노물질의 위험성 평가', KRISS 이태걸 박사의 '바이오메디컬 응용과 나노 안전성을 위한 무표지 나노물질 질량 이미징' 등을 발표했습니다.

반응형

+ Recent posts