블로그 이미지
과학이야기
최신 과학기술 동향

calendar

            1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31          

Notice

Recent Comment

Archive

2012. 10. 30. 16:01 대덕밸리과학소식/KAIST

무반사구조(antireflective structures)는 빛의 효율을 향상시키기 위한 대표적인 방법입니다.

그러나 이 구조는 평판에만 국한되기 때문에 LED 렌즈와 같은 곡면에 적용하기에는 많은 어려움이 있었습니다.

KAIST 바이오및뇌공학과 정기훈 교수팀은  3차원 미세몰딩 공정으로 이를 극복하고 스스로 빛을 내는 반딧불이를 모방한 생체모사(자연모사) 공학을 이용해 고효율 LED 원천기술을 개발했습니다.

일반 렌즈(좌)와 고효율 LED 렌즈(우) 사진. 연구팀은 3차원 미세몰딩 기술을 이용해 고효율 LED 렌즈를 제작.

(A) 고효율 LED 렌즈의 제작 과정. (step Ⅰ) 나노입자와 식각공정을 이용하여 나노구조 형성. (step Ⅱ) PDMS 막에 나노구조 전사. (step Ⅲ) PDMS 막에 음압을 가하여 곡률 형성. (step Ⅳ) 자외선 경화 고분자를 부은 후 경화. (step Ⅴ) 완성된 고효율 LED 렌즈. (B) 고효율 LED 렌즈의 전자현미경 사진. (C) 곡면 위에 잘 정렬되어 형성되어 있는 나노구조.

이는 반딧불이 발광기관 외피에 있는 생물 발광기관 나노구조를 세계 최초로 모사한 기술이라는 점에서 의의가 큽니다.

연구팀은 기존에 렌즈의 반사를 방지하기 위해 값비싼 반사방지 코팅을 추가로 처리하던 기술과 달리, 렌즈 제작 시 생체모사 나노구조를 주형에서 한 번에 만들어 보다 저렴하게 LED를 제작할 수 있게 했습니다.

또 무반사효과(antireflection)를 위해 모방한 나노구조를 최적화해서 발광효율을 기존 반사방지 코팅에 상응한 수준으로 만들었습니다

이는 앞으로 스마트폰, TV, 자동차, 의료기기, 실내외 조명 등에 널리 적용될 전망입니다.

(A) 반딧불이 사진. (B) 반디불이의 전자현미경 사진 (N)은 비발광기관, (L)은 발광기관. (C) 비발광기관의 미세패턴, 무작위한 패턴을 형성. (D) 발광기관의 나노구조, 잘 정렬된 나노구조를 형성. (E, F) 반딧불이의 발광기관과 고효율 LED 패키징이 대응되는 구조를 형성하고 있음. 본 연구팀은 반딧불이 발광기관 외피층에 형성된 나노구조층을 LED 렌즈 위에 형성시켜 발광효율을 증가시킴. (E) 반딧불이 발광기관의 모식도. 나노구조의 크기는 약 주기가 250 nm, 너비가 150 nm, 높이가 110 nm 정도임. (F) 고효율 LED 패키징의 모식도.

연구팀은 실리콘 산화막 위에 나노입자를 단일 층으로 형성하고 식각공정을 통해 나노구조를 형성했습니다.

이어 나노구조를 PDMS(polydimethylsiloxane) 막에 전사시키고, 이 막에 음압을 가해 곡률을 형성한 다음, 자외선경화 고분자를 부어 굳혀 반딧불이와 유사한 구조의 렌즈를 만들어 내는 데 성공했습니다.

이번 기술은 세계 최초로 무반사구조가 형성된 반구형 고효율 LED 렌즈를 개발한 것으로, 이 렌즈는 기존에 사용되는 무반사코팅(antireflection coating)과 같은 효과를 보이고 있습니다.

앞으로 생체모사 기술을 활용한 고효율 LED 렌즈 기술을 통해 기존의 값비싼 무반사코팅을 대신해 저렴하면서도 효율을 극대화할 수 있을 전망입니다.

이번 연구는 정기훈 교수와 제1저자인 김재준 박사과정생이 주도했고, 연구 결과는 미국 국립과학원회보지(PNAS) 10월 29일자 온라인 판에 게재됐습니다.

 

정기훈 교수

김재준 박사과정생


posted by 글쓴이 과학이야기

댓글을 달아 주세요

2012. 5. 4. 11:01 대덕밸리과학소식/KAIST

첨단기술이 집약된 '바이오칩'은 혈액 몇 방울로 집에서도 암을 포함한 모든 질환을 진단할 수 있는 기반이 됩니다.

나노플라즈모닉스는 금속나노구조표면에 빛을 집광시켜 특정파장의 세기를 크게 향상 시킬 수 있는 나노광학 분야로, 최근 DNA, 단백질, 항체 또는 세포 등을 감지하는 위한 바이오칩 개발에 필수적인 기술입니다.

그러나 사람 머리카락의 1/1000의 크기를 갖는 금속나노구조를 넓은 면적의 유리기판에 균일하게 제작하는 것이 어려워 바이오칩 상용화에 걸림돌이 되어왔습니다.

KAIST 바이오및뇌공학과 정기훈 교수와 오영재 박사과정생(제1저자)은 3차원 나노플라즈모닉스 구조를 이용해 검출가능 한계를 수십 배 이상 향상시킨 초고감도 바이오칩 양산기술 개발에 성공했습니다.

유리기판에 넓은 면적으로 제작된 나노플라즈모닉 기판

정 교수팀은 유리기판 위에 은나노 필름을 입히고 열을 가해 은나노섬을 만들었습니다.

그리고 반도체에 적용되는 식각공정을 이용해 3차원 금속나노구조를 유리기판에 균일하게 형성하고 나서 은나노 입자를 증착시켰습니다.

나노플라즈모닉 기판의 전자현미경 사진(단면도) 및 전자기장 시뮬레이션. 전자현미경 사진은 3차원적인 금속나노구조가 형성된 것을 보여주고 있으며 이를 통해 나노미터 수준의 갭(gap)을 가진 구조를 설계해 국소 전자기장 극대화를 통해 라만분광 신호 증가를 유도하였음. 시뮬레이션은 나노갭에서 강화된 전자기장을 나타냄.

초고감도 나노플라즈모닉 기판의 대면적(직경4인치) 나노공정 순서도.a) 은나노섬을 증착해 식각과정의 마스크로 사용. b) 식각과정을 통한 유리 나노필라어레이(glass nanopillar arrays) 형성c) 증착을 통한 다수의 나노갭을 가지는 나노플라즈모닉 구조 형성.

이 구조는 나노플라즈모닉 현상을 유발하는 다수의 나노갭을 갖고 있어 입사되는 빛의 세기를 수십배 향상시킬 수 있습니다.

또한 상용화중인 반도체 증착공정을 그대로 사용 가능하기 때문에 즉시 양산기술에 적용할 수 있습니다.

정 교수팀은 유리기판위에 표면강화라만분광기술을 접목해 별도의 형광물질 없이 나노몰 수준의 DNA 염기 4종류를 1초 안에 구분했습니다.

이번에 개발된 기술은 향후 실시간 초고감도 DNA 분석은 물론, 신약개발용 약물 스크리닝 등 다양한 질환의 조기진단기술에 크게 기여할 수 있을 것으로 기대받고 있습니다.

이번 연구결과는 재료 및 나노분야 세계적 학술지인 '어드밴드스 머터리얼스(Advanced Materials)' 5월호(2일자) 표지논문으로 선정됐습니다.

좌측 : 정기훈 교수, 우측 : 오영재 박사과정(제1저자)


 용  어  설  명


라만 분광 (Raman Spectroscopy)
빛(광자)이 입자에 의해 산란될 때 발생하는 비탄성 산란 현상. 이 과정에서 빛의 에너지가 변화하며 생체분자(biomolecules) 또한 산란과정에서 고유의 라만산란(에너지 변화)을 나타내므로 이를 분광학적으로 분석하여 분자 검출 및 분석에 응용이 가능. 

나노플라즈모닉스 
금속나노구조는 빛이 입사될 때 표면의 자유전자가 광자(photons)에 반응하여 진동하고, 입사되는 빛 중 특정파장의 세기를 크게 향상 시킬 수 있다.
이러한 물리적 현상은 다루는 나노광학분야를 나노플라즈모닉스라고 불리우며, 금속나노구조를 이용한 국부적으로 강화된 빛의 세기를 이용한 다양한  응용분야가 최근 활발히 개발 중이다.

표면증강라만분광 (Surface-enhanced Raman Spectroscopy)
라만 분광은 일반적으로 신호가 작아 생체분자 검출이 어렵다는 단점이 있다.
이를 나노플라즈모닉스 기술을 이용하여 금속나노구조 근처에서 강화된 빛의 세기를 통해 라만산란 신호를 극대화하여 검출능을 향상시키는 기술을 표면증강라만분광기술이라고 한다.

 

<정기훈 교수>

1. 인적사항
 ○ 소 속 : 카이스트 바이오및뇌공학과
 
2. 학력
  1996: 성균관대학교 (학사: 기계공학 전공)   
  1998: 성균관대학교 (석사: 기계공학 전공)  
  2005: University of California, Berkeley, USA (박사: 기계공학 전공)  
 
3. 경력사항
  2006 - 2010: 카이스트 바이오및뇌공학과 조교수  
  2011 - 현재: 카이스트 바이오및뇌공학과 부교수 

 

posted by 글쓴이 과학이야기

댓글을 달아 주세요

2012. 4. 23. 17:52 대덕밸리과학소식/KAIST

테라헤르츠파(THz)는 100GHz에서 30THz 범위의 주파수를 갖는 전자기파로, 가시광선이나 적외선보다 파장이 길어 X선처럼 투과력이 강할 뿐 아니라 X선보다 에너지가 낮아 인체에 해를 입히지 않습니다.

이러한 특성으로 X-ray처럼 물체의 내부를 투과해 볼 수 있으며, 주파수 내에서 특정 영역을 흡수하기 때문에, X선으로는 탐지하지 못하는 우편물 등에 숨겨진 폭발물이나 마약을 찾아낼 수 있고, 가짜약도 판별해낼 수 있습니다.

또한, 분광정보를 통해 물질의 고유한 성질을 특별한 화학적 처리 없이 분석할 수 있어 인체에 손상이나 고통을 주지 않고도 상피암 등 피부 표면에 발생하는 질병을 효과적으로 즉시 확인할 수 있습니다.

이러한 특성을 이용해 휴대용 투시카메라나 소형 바이오 진단시스템 등 다양한 분야에 응용될 수 있기 때문에 테라헤르츠파는 광학계의 블루오션이라 불립니다.

그러나 출력이 부족해 바이오센서 등 다양한 분야의 상용화에 어려움이 있어 그동안 과학자들이 출력을 증폭시키기 위한 많은 노력들이 이어졌습니다.

KAIST 바이오 및 뇌 공학과 정기훈 교수팀은 광학나노안테나 기술을 접목해 테라헤르츠파의 출력을 기존보다 최대 3배 증폭시키는 데 성공했습니다.

테라헤르츠파는 펨토초(10의 -15승 초) 펄스레이저를 광전도 안테나가 형성된 반도체기판에 쪼여주면 피코초(10의 -12승 초) 펄스 광전류가 흐르면서 발생됩니다.

정 교수팀은 광전도안테나 사이에 금 나노막대로 구성된 광학나노안테나를 추가하고 구조를 최적화했습니다.

나노안테나를갖는THz 발생기 전자현미경사진: 광학나노안테나가 집적된 테라헤르츠 생성소자의 전자현미경 이미지.

NP-PCA 개념도: 광학나노안테나가 집적된 테라헤르츠 생성 소자의 개념도. 테라헤르츠 광전도 안테나 사이의 집적된 광학나노안테나에 의해, 광전류 펄스를 생성하는 펨토초 광펄스의 세기가 기판 표면에서 증가한다. 이를 통해 기존 테라헤르츠 생성소자의 테라헤르츠 출력 파워를 증가 시킬 수 있다.


그 결과 광전도기판에 나노플라즈모닉 공명현상이 발생되면서 광전류 펄스가 집적도가 높아져 출력이 최대 3배까지 증폭됐습니다.

이에 따라 물체의 내부를 더욱 선명하게 볼 수 있을 뿐만 아니라 생검을 하지 않고도 좋은 영상과 함께 성분 분석이 가능해졌습니다.

이번에 개발한 원천기술을 테라헤르츠파 소자 소형화 기술과 결합해 내시경에 응용하면 상피암을 조기에 감지할 수 있고, 향후 바이오센서 시스템을 구축해 상용화도 가능할 전망입니다.

이번 연구는 바이오및뇌공학과 박상길 박사과정, 진경환 박사과정, 예종철 교수, 이민우 박사과정, 물리학과 안재욱 교수 등이 공동으로 수행했고, 연구결과는 나노분야 세계적 학술지 'ACS Nano' 3월호(27일자)에 게재됐습니다.

한편 2011년 총 8370만 달러의 시장규모를 기록한 테라헤르츠파 디바이스 시장은 오는 2016년에는 1만 2700만 달러 규모로 성장할 것으로 예측되며, 이후 시장의 다양화로 2021년까지 연평균 35%의 성장률을, 2021년에는 5만 7000만 달러의 시장규모를 형성할 것으로 예상되고 있습니다.

나노안테나를갖는THz 발생기모식도 : 광학나노안테나에 의한 증가되는 테라헤르츠 파 출력의 가상도.


 

 용  어  설  명


테라헤르츠 파(Terahertz wave) :
100 GHz~30 THz의 주파수를 가지는 전자기파. 기가=109(십억), 테라=1012(일조)

광자공학 (Photonics) :
빛의 생성, 방출, 전송, 변조, 신호처리, 스위칭, 증폭, 탐지 및 감지를 포함하는 학문으로 입자(particle)로도 파(wave)로도 설명 할 수 없는 빛의 이중성을 광자로 표현한다.

유전물질 (dielectric material) :
전기장안에서 편극이 되지만 전기가 통하지 않는 절연체인 물질.
플라스틱, 섬유, 목재, 종이 등 생활속의 대부분의 물질이 이에 속한다.

나노플라즈모닉 현상 :
금속나노패턴은 빛이 입사될때 표면의 자유전자가 광자(photons)에 반응하여 진동하고, 입사되는 빛 중 공명파장에 해당하는 특정파장의 전기장세기를 크게 향상 시킬 수 있다.
이러한 물리적 현상은 다루는 나노광학분야를 나노플라즈모닉스라고 불리우며 다양한 응용분야가 최근 활발히 개발 중이다.

광학나노안테나 : 
광학나노안테나는 사람의 머리카락 지름보다 500분의 1보다 작은 금 나노막대안테나로 이루어져 있으며, 입사광에 의해 금 나노막대안테나 표면에서 전자들의 집단적 운동, 즉 나노플라즈모닉 현상에 의해 나노막대안테나 주변의 빛의 세기를 국소적으로 최대 100배 이상 집광이 가능하다.


 

 

□ 그림설명
그림1.나노안테나를갖는THz 발생기모식도 : 광학나노안테나에 의한 증가되는 테라헤르츠 파 출력의 가상도.

 

그림2. 나노안테나를갖는THz 발생기 전자현미경사진: 광학나노안테나가 집적된 테라헤르츠 생성소자의 전자현미경 이미지.


그림3. NP-PCA 개념도: 광학나노안테나가 집적된 테라헤르츠 생성 소자의 개념도. 테라헤르츠 광전도 안테나 사이의 집적된 광학나노안테나에 의해, 광전류 펄스를 생성하는 펨토초 광펄스의 세기가 기판 표면에서 증가한다. 이를 통해 기존 테라헤르츠 생성소자의 테라헤르츠 출력 파워를 증가 시킬 수 있다.

 

posted by 글쓴이 과학이야기

댓글을 달아 주세요

2011. 1. 28. 06:30 대덕밸리과학소식/KAIST

소분자 생화합물은 분자량이 작은 생체내 분자들로, 다양한 세포의 세포막을 드나들며 세포간의 신호전달 등에 큰 역할을 담당합니다.

최근에는 제약업계에서  소분자 생화합물을 이용한 신약 개발 관련 연구 개발에 큰 관심을 기울이고 있습니다.

그러나 이러한 소분자 생화합물은 대부분 특정 항원-항체 화학 결합반응을 유도하기 힘들어 기존에 많이 사용되는 형광이나 전기화학적인 방법으로 극소량을 분석하는데 어려움이 많았습니다.

정기훈 교수

KAIST 바이오및뇌공학과 정기훈 교수 연구팀이 소분자 생화합물(small molecules) 검출을 위한 획기적인 고감도 나노광학측정기술을 개발했습니다.

연구팀은 사람의 머리카락 단면적의 70만 배 보다 작은 나노유체관 내 유동특성을 이용해 나노몰(nM) 수준의 농도를 갖는 극미량의 소분자 생화합물의 농도를 국소적으로 증가시켰습니다.
 
이후 나노플라즈모닉 광학기술과 접목해 측정하는 빛의 세기를 1만 배 이상 향상시켜 별도의 생화학처리를 사용하지 않은 도파민(Dopamine)과 가바(GABA)와 같은 신경전달물질을 1초 이내에 구별하는 데 성공했습니다.

오영재 박사과정

이 결과는 현존 세계 최고수준의 검출 한계를 수백 배 이상 향상시킨 기술로 평가받고 있습니다.

이번 연구결과는 앞으로 소분자 생화합물을 이용한 다양한 글로벌 신약개발은 물론, 알츠하이머병과 같은 퇴행성 신경질환의 조기진단 및 뇌기능 진단기술에 크게 기여할 수 있을 것으로 기대받고 있습니다.

이번 연구는 오영재 박사과정 학생 주도로 진행됐고, 독일에서 발간되는 나노분야 국제저명학술지인 '스몰(Small)'지의 표지논문으로 게재됐습니다.

<나노플라즈모닉-나노유체채널 플랫폼의 개념도>

나노플라즈모닉 거울구조를 나노플루이딕 채널로 결합하여 국소적으로 빛의 세기를 증가하는 'hot spot'과 유체역학적 'stagnation point' 이 공간적으로 동일한 곳에 존재하도록 설계하여 소분자 생화합물의 국소농도 증가로 인한 라만분광 신호 증가를 유도함.

<나노플라즈모닉 기판의 광학적 설계>

a) 실리카(Silica) 나노입자 단일 층 형성 및 금속증착 각도 조절을 통한 나노플라즈모닉 구조 설계. b) 형성된 나노입자 어레이의 광학적 성질 및 이에 따른 SERS 신호의 변화. 입사광(488nm)에 가장 근접한 공진조건을 가지는 기판(75도 증착)에서 가장 강한 라만분광신호가 측정됨. 

                <PDMS를 이용한 나노채널의 형성 및 전자현미경 사진 단면도>


a,b) PDMS를 이용한 나노채널의 형성 및 전자현미경 사진 단면도. 흰색 화살표가 유체가 지나는 나노채널을 의미. c,d) 형광신호 측정을 통해 확인한 나노채널에서의 소분자 국소농도 증가. 강한 형광신호는 나노채널로 인해 더 많은 분자들이 금속나노패턴 근처에 있음을 의미함.

















                               <플라즈모닉 나노채널에서의 라만분광신호증가>


  대표적인 신경전달물질인 dopamine과 GABA의 SERS 신호 증가를 보임.












 용  어  설  명


소분자 생화합물 (Small molecules)
: 분자량이 작은 생체분자들. 일반적으로 분자량이 800Daltons 이하 유기화합물
  
신경전달물질 (Neurotransmitter)
: 신경세포에서 방출, 흡수해 서로 정보를 전달하는 역할을 하는 일련의 소분자 생화합물

라만 분광 (Raman Spectroscopy)
: 빛(광자)이 입자에 의해 산란될 때 발생하는 비탄성 산란 현상. 이 과정에서 빛의 에너지가 변화하며 생체분자(biomolecules) 또한 산란과정에서 고유의 라만산란(에너지 변화)을 나타내므로 이를 분광학적으로 분석하여 분자 검출 및 분석에 응용이 가능

나노플라즈모닉스
: 금속나노패턴은 빛이 입사될때 표면의 자유전자가 광자(photons)에 반응해 진동하고, 입사되는 빛 중 특정파장의 세기를 크게 향상 시킬 수 있다. 이러한 물리적 현상은 다루는 나노광학분야를 나노플라즈모닉스라고 불리우며, 나노바이오분야는 물론 다양한 응용분야가 최근 활발히 개발 중이다.

나노유체
: 나노수준(일반적으로 1~100nm )의 직경을 가지는 유체채널에서의 유체의 성질 및 구동 등에 관한 연구를 나노유체라고 한다. 

 

posted by 글쓴이 과학이야기

댓글을 달아 주세요

prev 1 next