반응형

※ 다음 자료는 한국항공우주연구원이 발간한 '다목적실용위성 아리랑 3호 프레스킷'을 바탕으로 한 것입니다.


아리랑 3호 탑재체 조립/정렬/시험의 긴 여정

<한국항공우주연구원 탑재체광학팀 이응식 선임연구원>

685Km상공에서 0.7m 해상도를 갖는 우주용 전자광학카메라을 우리 손으로 우리 실험실에서 처음으로 직접 개발한다는 희망과 설레임으로 시작한 아리랑 3호 탑재체 개발. 엔지니어로서 가질 수 있는 최대의 보람이자 이런 기회가 주어진 것을 감사하게 생각하며 연구를 진행하였다. 아리랑 2호 탑재체는 해외공동개발이어서 경험 많은 해외업체가 앞장서서 많은 부분을 해결하고 우리는 도와주며 배우는 과정이었지만, 아리랑 3호 카메라 개발은 부분품은 해외업체에서 제작을 하지만 설계부터 조립/정렬/시험까지 우리가 수행하는 방식이었다. 새롭게 구축한 정밀 시험시설에서 처음으로 고해상도 우주용 카메라를 개발하는 과정에 많은 어려움이 있을것이라는 해외 협력업체들의 자문과 우리 스스로 어려움이 예상되는 부분에서 많은 준비를 하였다.

우주용 전자광학카메라 조립/정렬/시험을 간락하게 설명하면, 다섯 개의 반사경을 나노미터 급으로 정렬한 광학모듈과 CCD와 전자보드로 구성된 초점면어셈블리를 정렬한 후 발사 및 우주환경 시험 통과하면 개발을 완료하게 된다. 광학모듈 조립/정렬 및 초점면어셈블리 정렬 과정은 여러 문제들을 해결하였지만 예상보다 순조롭게 진행되어 우리도 하니까 할 수 있다는 섣부른 자신감을 막 가지려는 때에 환경시험이 기다리고 있었다.

발사 진동시험 후 구조적 특성은 변화가 없었지만 초점면어셈블리의 미끄러짐과 광학모듈 내의 변화로 인한 초점이동이 관찰되었다. 초점면어셈블리는 조립/정렬 시의 어려움보다는 영상 품질을 최우선으로 설계하였기 때문에 CCD와 전자보드를 일체형으로 크고 무겁게 만들어 진동 시험에 의해 위치가 변화하였다. 광학모듈은 해외개발자들 사이에서 이야기되는 소위 자리잡기에 의해 광학적으로 제일 예민한 두 번째 반사경의 상대위치가 미세하게 수 마이크론 이동된 현상이 관찰되었다. 많은 원인 분석 및 추가 시험을 통하여 개선안을 마련하여 적용한 후 두 번째 진동시험을 수행하였다. 두 번째 진동 시험에서는 초점면어셈블리의 회전 변형이 발생하고 복사특성 시험 후 다시 회복되는 현상이 관찰되었다. 이는 복사특성 시험 중 초점면어셈블리 주변 온도 상승으로 인한 안정화효과로 이해하고 장착응력 풀림과정을 새로이 적용하여 해결하였다. 이를 적용한 후 두 번의 추가 진동 시험에서는 변형이 발생하지 않았다. 발사 시의 진동을 견뎌내고 우주환경 조건에서 성능이 만족됨을 확인하는 환경시험이 우주개발 프로제트의 제일 어려운 부분이라는 기본을 다시한번 깨닫게 해준 과정이었다.

< 아리랑 3호 탑재체 열진공 시험 준비 >

프랑스의 유명한 전자광학카메라 제작사가 해변에 광학시험실을 만들었다가 파도에 의한 미세한 진동 영향으로 성능측정이 불가능해져 시험실을 다시 건축했다는 이야기도 들은 바 있다. 우리도 실험실 구축 시에 이런 부분에 많은 노력과 세심한 주의를 기울여 수치상으로 표현되는 진동노이즈 레벨이 요구조건에 만족하는 실험실을 구축하였다. 그러나 685Km 상공에서 0.7m의 지상 물체를 구분하며 외곽선을 선명히 촬영해야 되는 아리랑 3호 카메라는 드러나지 않는 미세한 진동노이즈에도 성능 측정을 쉽게 허락하지 않았다. 주변에 사람과 자동차가 하나도 없는 새벽에 측정하는 등 진동원을 줄이기 위한 과학적 노력과 함께 감성과 예술의 시각으로 카메라를 느끼며 정렬과 성능시험을 수행하였다.

아리랑 3호와 비슷한 성능인 프랑스의 Pleiades 위성도 탑재체 개발 시의 여러 기술적 문제로 수년간 지연되어 작년말 발사되었다. 고해상도 우주용 카메라 개발에는 경험 많은 선진 해외업체들도 우리와 비슷한 어려움을 겪는다는 사실에 잠시나마 위안을 삼으며, 탑재체 개발 노하우를 축척하는 힘들지만 보람 있는 여정이었다고 기억한다. 우리 실험실에서 우리 손으로 개발한 아리랑 3호가 촬영한 선명한 영상이 많은 사람들을 활짝 웃게 만들기를 간절히 기원한다.

반응형

+ Recent posts