반응형

선박이나 항공기의 금속에 충격이 누적돼 발생하는 피로파괴는 육안으로는 확인하는 것이 불가능에 가깝기 때문에 비파괴검사기법이 주로 사용됩니다.

최근 비파괴진단법은 항공기나 선박의 크랙 탐지는 물론 반도체 기판의 결함 탐지 등으로 응용범위가 확대되고 있는데요.

하지만, 현재 비파괴진단 기술은 보다 선명한 화질 개선과 함께 넓은 영역을 빠른 시간에 분석하는 것이 요구되고 있습니다.

이런 비파괴진단 검사의 근본적인 요구사항을 해결하기 위해서는 기존 자연계 물질이 갖지 못하는 고 굴절률 및 고 임피던스를 갖는 음향메타물질을 구현해 음향신호가 감쇠되는 문제를 해결하고, 또 이를 뒷받침할 고성능 음향 송·수신 기술을 개발해야 합니다.

외부 전력 없이도 음향신호 10배 증폭하는 기술

한국기계연구원 나노자연모사연구실 송경준 박사와 허신 박사는 부경대 기계공학과 김제도 교수와 공동으로 전원 없이 음향신호를 최대 10배까지 증폭할 수 있는 기술이 개발해 주목받고 있습니다.

고성능 무전원 신호 증폭이 가능한 음향 증폭 구조물고성능 무전원 신호 증폭이 가능한 음향 증폭 구조물


공동 연구팀이 개발한 기술은 지그재그 형태의 인공구조물을 통해 음파의 경로를 제어함으로써,이 구조물을 통과하는 음향 신호를 증폭하는 것이 핵심인데요.

이를 응용할 경우 초음파, 의료기기, 비파괴검사 등 다양한 분야에서 획기적인 발전이 있을 것으로 전망됩니다.

연구팀은 작은 소리의 파장보다도작은 초소형 인공구조물을 지그재그 형상으로 설계하고, 외부 음파 신호가 이 구조물을 통해 센서에 전달되도록 했는데요.

이 경우 구조물을 통과하는 음파의 진행 경로가 증가돼 기존 공기나 물 등 신호를 전달하는 자연계 매질이 갖지 못하는 고 굴절률(Refractive Index)과 고 임피던스(Impedance)의 특성이 나타나는 것을 확인했습니다.

음향 증폭 구조물 실험 장치음향 증폭 구조물 실험 장치

고 굴절률과 고 임피던스를 동시에 구현하면 음파의 진행속도를 줄여 소리를 작은 공간에 집중시킬 수 있기 때문에 음압(Sound Pressure Level) 증폭이 가능해지 것에 주목한 연구팀은 별도의 전원 없이 인공구조물만 활용해 음압을 증가시켜 기존의 음향 시스템의 송·수신 감도를 10배 향상시키고, 기존에 감지가 불가능하였던 미세한 신호까지 감지하는 데 성공했습니다.

또 인공구조물의 형상을 변화시키는 방법으로 신호의 증폭률과 공진주파수도 자유자재로 조절할 수 있게 됐고요.

인공구조물이 신호 파장의 1/10인 구조물을 기반으로 제작되기 때문에 초음파 등 파장이 극히 짧은 송수신 시스템에는 기기장치의 초소형화도 가능해졌습니다.

이번 연구는 송수신 신호 파장의 1/10인 구조물을 기반으로 제작돼 기존 음향기술인 헬름홀츠 공명기가 가졌던 크기의 한계를 소리의 파장보다 작은 구조물로 구현한 것에 큰 의미가 있고요.

이는 향후 초음파, 의료기기, 비파괴검사를 비롯해 플랜트 안전진단 분야, 수중통신 분야 등에도 폭 넓게 활용될 것으로 기대됩니다.

이번 연구결과는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Reports)’  2014년 12월 11일 게재됐습니다.
   ※ 논문명 : Sound Pressure Level Gain in an Acoustic Metamaterial Cavity. 

 용 어 설 명

임피던스(Impedance)
음파전달 매질의 고유한 물성으로 매질 내의 속도와 음압 사이의 비율

헬름홀츠 공명기(Helmholtz Resonator)
공명현상을 이용해 복잡한 음(音) 가운데서 특정한 음을 증폭시키는 장치

 

연 구  개 요

Sound Pressure Level Gain in an Acoustic Metamaterial Cavity
Kyungjun Song, Kiwon Kim, Shin Hur,Jun-Hyuk Kwak, Jihyun Park, Jong Rak Yoon & Jedo Kim


1. 연구배경

비파괴 검사를 적용한 IT 및 정밀 기계 생산 분야에서 초음파 이미징 기술은 결함 탐지에 이용된다.

이를 통해 항공기, 선박 등 크랙 탐지에 사용되었고 최근에는 반도체 기판 결함 탐지 등 응용범위가 확대되고 있다.

그러나 현재 비파괴 진단 기술의 문제점은 화질 개선이 필요하고 넓은 영역을 빠른 시간에 분석하는 것이 관건이다.

이러한 비파괴 검사의 근본적인 기술적 문제를 해결하기 위해서 본  연구에서는 기존 자연계 물질이 가지지 못하는 高 굴절률 및 高 임피던스를 가지는 음향메타물질 구현을 통해 음향 신호 감쇠 문제를 해결하고 이를 통해 고성능 음향 송·수신 기술에 대한 연구를 수행하였다.

본 연구는 최근 2014년 3월에 Scientific reports 논문 게재된 음향 메타물질 송신기술 (Emission Enhancement of Sound Emitters using an Acoustic Metamaterial Cavity)의 후속 연구로써, 동일한 구조체를 이용하여 음향 신호를 송신 감도 뿐만 아니라 수신 감도를 10배 이상의 이득을 얻을 수 있는 음향메타물질 원천기술에 대한 연구를 수행하였다.

2. 연구내용

본 연구에서는 알루미늄 재질로 만들어진 지그재그 형상 인공 구조체를 정교하게 설계하여 작동할 수 있는 초소형 음향 증폭 메타물질을 만들었다.

지그재그 형상을 사용한 이유는 음파의 경로를 증가시켜 기존 자연계 물질이 가지지 못하는 高굴절률과 高임피던스를 구현이 가능하기 때문이다.

음향 증폭률과 공진주파수도 메타물질 형상변화를 통해 자유자재로 조절되기 때문에 원하는 주파수에서 작동할 수 있는 음향증폭기가 설계가 가능하다.

예를 들어 실험적으로 메타물질을 이용하여 13dB 이상 음향 신호 증폭을 측정하였고, 이론적으로는 20dB 신호 이득도 가능함을 알 수 있었다.

본 구조체의 지그재그 형상은 高 굴절률을 기반으로 하기 때문에 현재 널리 사용되고 있는 헬름홀츠 공명기(Helmholtz Resonator)보다 매우 작게 설계가 가능하며 이로 인해 디바이스 초소형화가 가능하다.  

(a) 음향메타물질 구조체 (b) 3가지 메타물질 형상이 다른 샘플 (a) 음향메타물질 구조체 (b) 3가지 메타물질 형상이 다른 샘플 (c-d) 음향 증폭률 실험 및 해석 (e-f) 음향 증폭 시뮬레이션(공진주파수)


또한 연구진은 음향 증폭률이 공기에 국한되지 않고 수중에서도 음향 신호의 증폭을 증명하기 위해 수조 내에서 음향파가 발생 및 측정 하였으며 이를 통해 2배 이상의 음향 신호의 증폭을 확인하였다.

이 실험은 수중에서의 수많은 반사파에 의한 간섭현상을 극복하여 어디에서든지 음파를 이용한 수중통신을 가능하게 할 수 있는 핵심 기술이 될 수 있음을 보였다. 

(a-b) 수중실험 개략도 및 실험 (c-d) 음향 증폭률 실험 및 해석(a-b) 수중실험 개략도 및 실험 (c-d) 음향 증폭률 실험 및 해석


3. 기대효과
 

본 연구는 무전원 음향 증폭 디바이스 소형화뿐만 아니라 좋은 신호를 얻을 수 있는 음향 증폭 원천기술로써, 이를 통해 초음파 비파괴검사, 의료 이미징, 에너지 하베스팅(Energy Harvesting), 수중 통신 등의 다양한 응용분야에 크게 활용될 수 있다.

특히 초음파 비파괴 진단의 압전소자의 센싱 및 액츄에이팅 성능 향상을 통해 구체적으로 고속화 진단이 요구되는 항공기 부품 등의 크랙 탐지, 반도체 기판 결함 탐지에 활용 가능하다.

 

1문 1답

이번 성과가 기존과 다른 점은?(기존 기술과 차이 비교)

이번에 개발된 무전원 음향 증폭 메타물질은 기존의 음향 헬름홀츠 공명기보다 훨씬 작은 구조물을 이용하기 때문에 디바이스 초소형화가 가능하고, 10배 이상의 높은 증폭률을 얻을 수 있다.

어디에 쓸 수 있나?(활용 분야 및 제품)

무전원 음향 증폭이 필요한 고해상도 비파괴 초음파 진단, 고감도 수중통신, 고성능 음향 센서 등에 적용할 수 있다.

실용화를 위한 과제는?

초음파 영역에 적용하기 위해서는 마이크로미터 크기의 메타물질 구조체를 대면적으로 저렴하게 제작 할 수 있는 나노공정 기술과의 융합연구와 시작품 구현 및 성능평가 관련 연구가 필요하다.

실용화 가능 시기는?

현재 실용화 응용 가능성을 실험실 수준에서 규명한 상태이며, 대면적 제조 및 실용화 연구가 수행되면 고해상도 비파괴 초음파 진단 분야에서 향후 응용이 가능할 것으로 기대된다.

산업적, 경제적 파급효과는?

음향 엑츄에이팅/센싱의 원천기술과 밀접하게 연관된 플랜트 안전진단 및 수중 피탐지 구조체 관련 시장 규모는 2025년에 각 142억불, 176억불로 예상되고 있으며, 해당 기술개발 성과를 활용하면 관련 시장의 상당부분을 선점하고 새로운 시장을 창출할 수 있을 것으로 기대된다.

반응형
반응형

무반사구조(antireflective structures)는 빛의 효율을 향상시키기 위한 대표적인 방법입니다.

그러나 이 구조는 평판에만 국한되기 때문에 LED 렌즈와 같은 곡면에 적용하기에는 많은 어려움이 있었습니다.

KAIST 바이오및뇌공학과 정기훈 교수팀은  3차원 미세몰딩 공정으로 이를 극복하고 스스로 빛을 내는 반딧불이를 모방한 생체모사(자연모사) 공학을 이용해 고효율 LED 원천기술을 개발했습니다.

일반 렌즈(좌)와 고효율 LED 렌즈(우) 사진. 연구팀은 3차원 미세몰딩 기술을 이용해 고효율 LED 렌즈를 제작.

(A) 고효율 LED 렌즈의 제작 과정. (step Ⅰ) 나노입자와 식각공정을 이용하여 나노구조 형성. (step Ⅱ) PDMS 막에 나노구조 전사. (step Ⅲ) PDMS 막에 음압을 가하여 곡률 형성. (step Ⅳ) 자외선 경화 고분자를 부은 후 경화. (step Ⅴ) 완성된 고효율 LED 렌즈. (B) 고효율 LED 렌즈의 전자현미경 사진. (C) 곡면 위에 잘 정렬되어 형성되어 있는 나노구조.

이는 반딧불이 발광기관 외피에 있는 생물 발광기관 나노구조를 세계 최초로 모사한 기술이라는 점에서 의의가 큽니다.

연구팀은 기존에 렌즈의 반사를 방지하기 위해 값비싼 반사방지 코팅을 추가로 처리하던 기술과 달리, 렌즈 제작 시 생체모사 나노구조를 주형에서 한 번에 만들어 보다 저렴하게 LED를 제작할 수 있게 했습니다.

또 무반사효과(antireflection)를 위해 모방한 나노구조를 최적화해서 발광효율을 기존 반사방지 코팅에 상응한 수준으로 만들었습니다

이는 앞으로 스마트폰, TV, 자동차, 의료기기, 실내외 조명 등에 널리 적용될 전망입니다.

(A) 반딧불이 사진. (B) 반디불이의 전자현미경 사진 (N)은 비발광기관, (L)은 발광기관. (C) 비발광기관의 미세패턴, 무작위한 패턴을 형성. (D) 발광기관의 나노구조, 잘 정렬된 나노구조를 형성. (E, F) 반딧불이의 발광기관과 고효율 LED 패키징이 대응되는 구조를 형성하고 있음. 본 연구팀은 반딧불이 발광기관 외피층에 형성된 나노구조층을 LED 렌즈 위에 형성시켜 발광효율을 증가시킴. (E) 반딧불이 발광기관의 모식도. 나노구조의 크기는 약 주기가 250 nm, 너비가 150 nm, 높이가 110 nm 정도임. (F) 고효율 LED 패키징의 모식도.

연구팀은 실리콘 산화막 위에 나노입자를 단일 층으로 형성하고 식각공정을 통해 나노구조를 형성했습니다.

이어 나노구조를 PDMS(polydimethylsiloxane) 막에 전사시키고, 이 막에 음압을 가해 곡률을 형성한 다음, 자외선경화 고분자를 부어 굳혀 반딧불이와 유사한 구조의 렌즈를 만들어 내는 데 성공했습니다.

이번 기술은 세계 최초로 무반사구조가 형성된 반구형 고효율 LED 렌즈를 개발한 것으로, 이 렌즈는 기존에 사용되는 무반사코팅(antireflection coating)과 같은 효과를 보이고 있습니다.

앞으로 생체모사 기술을 활용한 고효율 LED 렌즈 기술을 통해 기존의 값비싼 무반사코팅을 대신해 저렴하면서도 효율을 극대화할 수 있을 전망입니다.

이번 연구는 정기훈 교수와 제1저자인 김재준 박사과정생이 주도했고, 연구 결과는 미국 국립과학원회보지(PNAS) 10월 29일자 온라인 판에 게재됐습니다.

 

정기훈 교수

김재준 박사과정생


반응형
반응형

이달의 과학기술자상 6월 수상자로 고려대 이상훈 교수가 선정됐습니다.

이상훈 교수는 화학적 성분과 모양의 조절이 가능한 100㎛ 이내의 극세사를 개발하고 의생물학적 활용 가능성을 보여준 공로를 인정받았습니다.

이상훈 교수는 지난 10년 간 자연에서 거미가 거미줄을 생산하는 원리를 모방하여 마이크로 유체 칩(Microfluidics Chip)으로 극세사를 생산하는 연구를 지난 수행해 기존 패러다임을 뛰어 넘는 획기적인 기능성 극세사 생산기술을 개발했습니다.

이상훈 교수는 마이크로 유체 칩과 극세사 생산기술을 응용한 연구결과를 관련 분야에서 세계적으로 권위있는 Nature Materials, Stem Cells, Lab on a Chip, Biomaterials, Analytical Chemistry, Small 등 영향력 있는 SCI(E) 저널에 100여 편의 논문을 게재함으로써 재료 및 바이오 장비분야에서 선도적인 역할을 하고 있습니다.

현재까지 발표한 논문들의 총 피인용 횟수는  1000회 이상 입니다.

이 같은 연구성과로 이 교수는 2001년 한국연구재단 주관 30대 우수 연구성과에 선정됐고, 2010년 보건복지부장관 표창 등을 수상한 바 있습니다.

또 2011 MRS, 2012 ISMM 등 다수의 국제 학회 연사로 초청 강연을 하는 등 국내외 연구자들의 주목을 받고 있습니다.

이 교수는 2010년 의료선진화 위원회 전문위원과 첨단의료 복합단지 의료기기 분야의 팀장을 역임했고, 지난해부터 'Biomedical Engineering Letters (Springer)'의 편집위원장 및 ISMM 대회장을 맡았습니다.

곤충들은 자신의 생존에 필요한 알이나 실 등을 몸에서 쉽게 만들어내며, 이 과정에 최소한으로 에너지를 소모하고 환경에 아무런 해를 끼치지 않습니다.

이러한 기술을 모방한 물건을 생산한다면 현재 인류가 직면하고 있는 많은 환경 및 자원 등의 문제들을 한꺼번에 해결할 수 있는 매우 중요한 사안입니다.

이를 위해서는 곤충의 메커니즘과 유사한 새로운 개념의 생산 기술이 필요합니다.

이 교수는 마이크로 유체 칩을 이용하여 머리카락 굵기보다 3배 가는 극세사의 모양을 다양하게 만들거나, 물질 자체를 바꾸지 않고 마이크로 단위로 재배열함으로써 새로운 재료를 개발할 수 있는 가능성을 제시하였습니다.

이러한 기술들은 간 조직 및 신경재생과 같은 조직공학이나 재생의학 등의 분야에서 그 응용이 무한할 것으로 예상됩니다.

관련 연구 성과는 2011년 11월 네이처의 대표적 자매지인 '네이처 머티리얼즈(Nature Materials)'에 발표되었습니다.

<이상훈 교수> 

▶소속 : 고려대학교 생체의공학과

● 학    력

▶1979.3 ~ 1983.2 서울대학교 학사 (전기공학)
▶1985.3 ~ 1987.3 서울대학교 제어계측 석사 (의공학)
▶1987.3 ~ 1992.3 서울대학교 제어계측 박사 (의공학)

● 경    력

▶1985 - 1992   서울대학병원 의공학과 연구원
▶1992 - 2006   단국대학교 의과대학 교수
▶1992 - 2006   단국대학병원 의공학과 과장
▶2006 - 2008   고려대학교 의과대학 교수
▶2008 - 현재   고려대학교 보건과학대학 생체의공학과 교수

● 주요업적 : 마이크로 유체 칩 개발 및 생물 및 의학적 응용
□ 생물 및 의학적 응용가능한 마이크로 유체칩 개발에 관한 연구를 지속적으로 진행하여 왔으며, 최근에는 이를 줄기세포의 분화 조절에 관한 연구에도 응용하는 기술을 개발하였다.
□ 특히 마이크로 유체칩을 이용하여 다양한 기능을 갖는 극세사의 제작 및 이를 응용하는 분야에서 세계적인 선도 연구를 수행하여 왔으며, 이들의 의학적 활용 가능성을 보여 줌으로 질병 치료에 새로운 가능성을 제시하는데 기여해왔다.


반응형
반응형

연꽃잎이나 토란잎은 물에 젖지 않고 물방울을 흘려보내면서 표면을 깨끗하게 하는 세정효과를 갖고 있습니다.

매끄러워 보이는 표면이지만 확대해 보면 마이크로미터 크기의 돌기들이 수없이 있고, 더 확대해 보면 이 돌기들 위에도 나노미터 크기의 돌기가 있어 마치 나무처럼 심어져 있기 때문이다.

이 돌기들이 소수성을 유발해 물방울이 머물지 못하게 하고 굴러 떨어지도록 하는 것입니다.

초발수 표면은 물방울을 떨어뜨렸을 때 접촉각이 150 도 이상이라고 합니다.

기존의 초발수 표면 제작은 화학 코팅이나 포토 리소그래피 등으로 제품마다 일일이 직접 코팅해야 하기 때문에 제작 비용이 비싼 데다 기능이 오래 지속되지 못해 상용화가 어려웠습니다.

포토 리소그래피 반도체 제작 공정은 감광성 폴리머 코팅-패턴 마스크를 통한 노광-현상-에칭 등의 공정을 거쳐 미세패턴을 제작하는 것인데, 곡면이나 3차원 형상에는 패턴 제작이 불가능하고 소재의 제약이 따랐습니다.

그런데 한국기계연구원 광응용기계연구실 이제훈 박사팀이 레이저로 물이 묻지 않는 3차원의 초발수 표면을 양산하는 친환경 미세가공 공정 기술을 국내 최초로 개발했습니다.

연꽃의 마이크로 구조를 모사한 금형 표면위에 마이크로 구조물 제작 ( 레이저 미세 가공 이용)


이 기술은 반영구적이며 환경친화적인 공정이어서 최근 전 세계적으로 주목받고 있는 첨단레이저 가공기술 가운데 선두 기술로 평가 받고 있습니다.

초발수 표면은 물방울이 잘 묻지 않은 표면으로 자기 세정효과가 있어 의료와 전자 등 산업 전반에 적용됩니다.

연구팀은 피코초 펄스 레이저를 이용한 미세 가공기술로 사출 성형에 필요한 곡면이나 3차원의 금형 표면에 마이크로 구조체를 직접 제작했습니다.

초발수 금형과 사출성형을 통한 플라스틱 표면의 물방울 접촉각 사진

이를 통해 금속, 폴리머, 유리 등 다양한 소재의 초발수성 표면을 값 싸게 무한히 생산할 수 있게 됐습니다.

또 금형의 패턴을 조절해 거꾸로 초친수성 표면 제작에도 응용될 수 있는 길을 열었습니다.

이 기술은 현재 국내특허가 출원됐으며, 이번 연구결과는 레이저 미세 가공 분야에 권위 있는 저널인 'Japanese Journal of Applied Physics' 에 게재됐습니다.

한편 이번 연구는  지식경제부 산업원천 연구개발사업인 '생태모사 청정표면 가공기술 개발'과 '레이저 미세 가공기술 개발'과 연계해 진행됐습니다.

한국기계연구원 이제훈 박사가 초발수 표면을 찍어낼 수 있는 금형을 레이저 가공 기술을 통해 제작하고 있다.



<관련> 전기방사로 젖지 않는 섬유 만드는 법
http://daedeokvalley.tistory.com/5




반응형
반응형

한국기계연구원(KIMM, 이하 기계연)은 정부출연연구소 가운데 최초로 나노공정장비연구실 등 4개 연구실을 ‘스타연구실’로 선정했습니다.

스타연구실은 세계적인 수준의 연구소(World Class Institute, WCI)로 발돋움하기 위해 우수한 성과를 창출하는 연구실을 선정하는 것으로, 연구실 단위의 성과급 개념을 도입해 자체 보유하고 있는 재원을 활용해 연구비로 지원해 주는 제도입니다.

이에 따라 이번에 최우수 스타연구실로 선정된 나노공정장비연구실에는 1억 5000만 원이 지급되고, 우수 스타연구실에 선정된 프린팅공정·자연모사 연구실과 신재생청정시스템연구실에는 각각 1억 1000만 원, ‘장려 스타연구실’로 선정된 자기부상연구실에는 8000만 원의 직접연구비가 지원됩니다.

또 스타연구실은 일반사업 선정 심의 때 가산점이 부여되고, 신규 인력 채용 때도 우선권을 갖게 됩니다.

각 연구실에는 ‘스타연구실’ 푯말도 부착해 자긍심을 갖고 연구할 수 있도록 했습니다. 

스타연구실은 1년 단위로 평가 선정됩니다.

한국기계연구원은 이번 평가에서 총 15개 연구실 가운데 연구원의 정체성과 중장기 발전전략에 부합하고, 세계적인 연구 성과를 창출할 수 있는 역량과 성장 가능성이 있는지 등을 지표화했습니다.

 이번 선정에는 내·외부 평가위원 5명이 참여해 각 연구실의 전략, 인력과 장비 등의 인프라, 학술대회 유치 등의 대외활동 실적, 리더십 등을 점수화해 50% 반영했고, 특허와 SCI 게재 실적 등의 연구역량, 기술료 수입 등의 연구 활용도, 국제 MOU 체결건수 등의 개방성 지표 등을 별도로 집계하고 표준화해 50%를 반영했습니다.

반응형
반응형
단 한 번의 공정으로 물과 기름이 전혀 묻지 않게 해 액정이나 섬유, 유리, 페인트 등을 가공할 수 있는 기술을 한국기계연구원이 국내 최초로 개발했습니다.

이번에 개발된 기술은 지문이 묻지 않는 휴대전화나 비에 젖지 않는 옷, 기름이 침투하지 못하는 기능성 의류 등 다양한 신소재 상품 제작에 응용될 수 있어 관련 산업계의 큰 주목을 받을 것으로 기대받고 있습니다.

또 이 기술을 자유자재로 조절할 수 있는 기법도 함께 개발돼 향후 디스플레이 관련 전자산업계나 공업계, 기능성 섬유업계 등에 상당히 큰 영향을 미칠 전망입니다.

물과 기름을 싫어하는 나노섬유의 표면, 섬융의 굵기와 섬유간에 생긴 기공을 조절하면 물과 기름에 대한 저항성을 조절할 수 있다


이번 연구는 기계연구원 임현의 박사팀이 성공시켰는데요.연구의 핵심은  후처리 공정 없이 단 한 번의 전기 방사 공정만으로 물과 기름에 모두 젖지 않는 나노섬유 표면을 개발한 것이라고 합니다.

또 임 박사팀은 나노섬유의 직경과 분포를 조절해 물이나 기름에 젖지 않는 정도를 자유롭게 조절할 수 있는 기법도 함께 개발했는데요.
 
지금까지는 물이나 기름에 젖지 않는 효과를 내기 위해 복잡한 후처리 과정을 거쳐야만 했다고 합니다.

그런데 임 박사팀은 테플론 계열의 고분자 물질을 전기 방사공정만 사용해 물과 기름에 전혀 젖지 않는 표면을 만들어 내는 데 성공한 것입니다.

연구책임자인 임현의 박사는 이번 연구가 신비로운 기능의 표면을 가진 자연에서 영감을 얻었다고 합니다.

자연을 닮은 재료를 응용하면 미래에 한 발 다가설 수 있는 고효율적이며 친환경적인 무궁무진한 신소재를 만들어낼 수 있다고 하는데요.

물을 싫어하는 투명유리, 표면에 나노구조물을 형성해 투명함을 유지하면서 불소화합물을 코팅해 물을 싫어한다. 콜로이달 리소그래피를 이용해 유리를 선택적으로 깍가 나노구조물을 형성한다


임 박사팀은 이미 연꽃잎의 표면과 나방 눈의 구조 등을 모방해 비에 젖지 않는 유리와 눈부심이 없는 유리를 개발하고 이 기술의 사업화를 검토 중입니다.

또 사막의 딱정벌레 등껍질을 모사한 표면을 이용해 공기 중 수분을 포집하는 연구 등 자연모사 응용연구를 수행 중입니다.

한국기계연구원 임현의 박사


반응형

+ Recent posts