흙탕물 속에서도 아름답고 깨끗한 모습을 지키는 연꽃잎, 건조한 사막에서도 물 걱정 안 하는 딱정벌레, 영양분 공급 걱정 안 하는 끈끈이주걱, 물위를 자유자재로 걷는 소금쟁이, 물이 젖지 않는 나비날개...

이들은 모두 나노구조를 지니고 있어서 신기한 생존현상을 만들어 낸다.

육안으로 보면 연꽃잎이 매끈하게만 보이지만 그 표면을 전자현미경으로 보면 마이크로미터 크기의 돌기가 산봉우리처럼 울뚝불뚝 돋아 있고 그 봉우리에는 나노미터 수준의 돌기가 오돌토돌하게 배열되어 있다.

연꽃잎에 맺힌 물방울 사진과 나노구조의 전자현미경 사진과 봉우리의 모식도

이렇게 크기가 다른 미세 구조들이 촘촘하게 배열되어 있는 구조로 인해 연꽃잎은 물을 극도로 싫어하는 초소수성(superhydrophobicity)을 갖게 된다.

따라서 연꽃잎에 물이 닿으면 물이 퍼지지 않고 방울방울 맺혀 그대로 흘러내려 먼지를 쓸어내는 자기 세정 효과를 지닐 수 있다.

연꽃잎이 깨끗하고 아름다운 것은 이러한 소위 연꽃잎효과(Lotus Effect) 때문이다.

특히 마이크로미터 단위의 미세 물방울에 대해서 연꽃잎은 물을 끌어들이는 친수성(hydrophilicity)을 보인다.

아침에 연꽃잎에 맺힌 물방울은 공기 중의 수분을 끌어 모아 큰 방울로 뭉치게 하기 때문이다.

이러한 현상은 수증기의 작은 물방울이 연꽃잎에 존재하는 나노크기 실타래 같은 것 사이에 갇혀 응축되기 때문이다.

이렇게 맺힌 물방울이 구르면서 잎에 묻은 먼지를 씻어내기 때문에 연꽃이 흙탕물에서 자라지만 꽃잎은 항상 깨끗하다.

사막의 딱정벌레는 날개 표면에 있는 연꽃잎과 유사한 나노구조가 공기 중의 수분을 모아 방울로 맺히게 하여 마심으로써 갈증을 해결한다.

사막의 딱정벌레와 나노구조의 전자현미경 사진

이밖에도 끈끈이주걱에 돋아 나있는 섬모의 끝을 전자현미경으로 관찰하면 나노 기둥이 배열되어 있어 끈끈한 방울이 맺히고 여기에 포획된 곤충을 분해하여 영양분을 섭취한다.

끈끈이 주걱과 나노구조의 전자현미경 사진

KAIST 생명화학공학과 양승만 교수팀(광자유체집적소자 창의연구단)은 연꽃잎 나노구조를 표면에 갖고 있는 미세입자를 균일한 크기로 연속적으로 생산하고 다양한 응용분야에 적용할 수 있는 기술을 개발해 최근 Nature와 Nature Nanotechnology등 해외 저명학술지로부터 크게 주목 받는 연구 성과를 거뒀다.

연꽃잎 나노구조로 발생하는 소위 연꽃잎효과(Lotus Effect)의 응용분야는 무궁무진하여 세계적인 연구그룹들이 활발히 개발 중이나 현재의 기술수준은 연꽃잎 효과를 지니는 실용성 있는 제품을 개발하는 데는 성공하지 못하고 있다.

연꽃잎의 나노구조를 생체 모방한 미세입자제조 공정모식도

양 교수 연구팀은 감광성 액체방울을 이용하여 연꽃잎의 나노구조를 생체에 모방하여 크기가 균일한 미세입자를 대량으로 만들 수 있는 기술을 성공적으로 개발했다.

Nature Nanotechnology에 실린 물 위에 뜬 물방울 사진: 연꽃잎 나노구조를 갖는 미세입자를 물표면에 뿌리면 막이 형성되고 이 막 위에 물을 뿌리면 방울로 맺히게 된다. 이것은 미세입자를 이용하면 물위로 물체를 띄울 수 있음을 보여준다.

특히 나노구슬이 스스로 구조를 형성하는 자기조립 원리를 이용함으로써 제조공정이 손쉽고 빨라 경제적이다.


우선 크기가 수백 나노미터인 균일한 유리구슬을 감광성 액체 속에 분산시킨 후, 크기가 수십 마이크로미터로 균일한 액체방울로 만들어 물에 주입하고, 물-감광성 액체-유리구슬 사이의 표면화학적 힘의 균형을 유지시키면 유리구슬은 저절로 감광성 액체방울 표면 위에 촘촘히 육방밀집구조로 배열하게 된다.

Nature에 실린 물방울로 만든 구슬을 집게로 잡고 있는 모습: 연꽃잎 나노구조를 갖는 미세입자가 물을 포획하여 물방울 구슬을 만든 모습. 이 물방울구슬은 집게로 찌그러트려도 안 터지며 떨어뜨려도 깨지지 않는다.

이 때 자외선을 감광성 액체방울에 쪼여서 고형화 시킴으로써 수 천 개의 유리 나노구슬이 박혀있는 입자를 얻게 된다.
그 후 유리구슬을 불산으로 녹여내면 마치 골프공 같이 분화구가 촘촘하게 파진 미세입자를 만들 수 있고 여기에 플라즈마(높은 에너지를 갖는 기체이온)를 쪼여주면 분화구가 깊게 깎이면서 연꽃잎과 같은 나노구조가 형성된다.

이러한 연꽃잎 구조는 세계적인 연구그룹들이 활발히 개발 중이며 최근 나노식각공정을 사용해 평판 위에 연꽃잎 효과를 구현한 결과는 보고된 바 있다.

그러나 본 연구의 결과는 머리카락 보다 가는 미세한 입자표면에 연꽃잎 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소다.

연꽃잎의 나노구조를 갖는 미세입자를 물 표면에 뿌리면 막이 형성되고 이 막은 유리 막대를 찔러도 뚫리지 않고 유리막대에 물이 묻지 않는다.

이렇게 제조된 연꽃잎 효과를 나타내는 미세입자의 응용은 다양하다.

세차가 필요 없는 자동차, 김이 서리지 않는 유리, 비에 젖지 않는 섬유, 스스로 세정하는 페인트 그리고 비나 눈물에 얼룩이 지지 않는 화장품 등도 개발할 수 있다.

또 화학 및 바이오센서 등의 마이크로 분석소자, 물위를 걸을 수 있는 마이크로로봇, LCD 차세대 대형 디스플레이에서도 연꽃잎 효과를 이용한 코팅 기술이 사용될 것으로 기대된다. 

<양승만 KAIST 생명화학공학과 교수>

저작자 표시 비영리 변경 금지
신고
posted by 이재형 과학이야기

'휴보2'는 국내 최초의 두 다리로 달리는 로봇으로 KAIST에서 2009년 개발을 완료했다.
달리는 인간형 로봇의 개발은 2004년 일본 혼다의 ‘아시모’와 2009년 도요타 ‘파트너’에 이어 세계 세 번째다.

두 발로 달리는 로봇은 2004년 일본의 아시모가 처음 성공해 당시 세계적인 화제가 됐으며, 일본을 제외하면 미국, 유럽 등도 아직 성공하지 못한 고난도 기술이다.

KAIST 휴머노이드 로봇연구센터가 2004년 공개한 인간형 로봇 ‘휴보’의 업그레이드 버전인 휴보2는 최대 시속 3.6km로 달릴 수 있으며, 최대 보폭은 30cm으로, 1초에 3보 이상을 뛸 수 있다.
걷는 속도도 과거 휴보가 시속 1.2km였던 것이 지금은 1.8km로 빨라졌다.

휴보2는 한번 뛸 때마다 20∼30ms(밀리세컨드; 1ms는 1000분의 1초)동안 공중에 떠 있을 수 있다.
인간형 로봇은 달리는 도중에도 계속 로봇의 무게중심을 제어하는 것이 가장 어려운데, 이는 아랫배에 균형센서를 넣어 해결했다.

인간형 로봇이 걷고 달리는 데 가장 중요한 기술은 발바닥과 균형 잡기다.

발바닥과의 균형 잡기에 따라 로봇의 걸음걸이 형태가 결정된다.

휴보2가 안정적으로 걷는 비결은 발바닥에 붙어 있는 작은 고무패드다.

2001년 인간형 로봇연구를 시작한 KAIST 연구팀은 걸음걸이가 안정적이지 못한 원인을 살펴본 결과, 보기엔 평평해 보이는 바닥도 사실은 울퉁불퉁해 로봇의 민감한 발목 센서를 오히려 둔하게 만들 필요가 있었다.

그리고 로봇 발바닥에 고무패드를 붙여보자는 아이디어를 냈고, 실험은 성공했다.
그 후 KAIST 휴머노이드 로봇연구센터에서 만드는 로봇에는 모두 고무패드가 붙어 있다.

KAIST 연구팀은 좀 더 사람처럼 걷고 달릴 수 있는 로봇을 만들기 위해 기존 휴보의 보행 알고리즘을 수정하여 무릎을 펴고 걸을 수 있게 했고, 달릴 수 있는 휴보를 만들기 위해서 경량화와 빠른 액추에이터 성능을 실현했다.

또 경량화를 위해 프레임의 기초 설계부터 다시 시작했으며, 모터 또한 DC 모터에서 BLDC 모터로 변경하여 작은 크기에 더 큰 힘을 낼 수 있도록 했다.

그리고 로봇의 경량화에 중점을 둔 휴보2의 키는 120cm로 기존 휴보와 동일하지만 몸무게는 37kg(배터리 및 케이스 제외)으로 20kg 가까이 줄었다. 

이 밖에 휴보2의 온 몸에는 총 40개의 관절이 있어서 사람처럼 손목을 빙빙 돌릴 수 있으며, 5개의 손가락으로 복잡한 형태의 물건도 떨어뜨리지 않고 쥘 수 있다.

<오준호 KAIST 휴머노이드 로봇연구센터 소장>

 

저작자 표시 비영리 변경 금지
신고
posted by 이재형 과학이야기

무병장수는 인간의 근원적인 욕구이고 이를 위해 많은 돈과 노력이 투자되고 있다.
질병의 조기진단은 수명연장에 크게 기여하고 있다.
예를 들면 위 내시경이 보편화 되면서 위암을 조기에 발견할 수 있게 되었고 그 덕분에 위암으로 인한 사망자 수가 급격히 줄었다.
위 속을 눈으로 볼 수 있다는 것만으로도 위암의 위험에서 많이 벗어난 것이다.

그렇지만 위 내시경도 암 덩어리가 눈에 보일 만큼 크지 않으면 소용이 없다.

또한 암인지 여부를 판별하기 위해 조직을 떼어내어 검사해야만 한다.
만약 암을 세포수준에서 발견할 수 있고 또 몸속에서 바로 판별할 수 있다면 암은 더 이상 공포의 대상이 되지 않을 것이다.

KRISS(한국표준과학연구원)에서는 분자수준, 세포수준에서 암세포를 찾아내는 기술을 개발하고 있다. 
비선형 광학 레이저 이미징 기술의 하나인 CARS 현미경이 바로 그것이다.

CARS 현미경을 이용한 생체조직 관찰 실험 장면

일반적으로 생체조직을 자세히 관찰하기 위해서는 조직체에 염색이나 형광물질을 투입해야만 한다.
그런데 이런 형광물질은 독성을 가지기 때문에 생체조직에 사용하기 어렵다.
그런데 CARS 현미경은 아무런 형광물질을 사용하지 않아도 생체를 관찰할 수 있기 때문에 그런 점에 있어서는 안전하다.
그리고 세포를 볼 수 있을 만큼 해상도가 높고, 3차원으로 관찰할 수 있다는 점에서 기존의 여러 이미징 기술보다 우수하다.

염색이나 형광물질 없이 생체 세포를 관찰할 수 있기 때문에 CARS 현미경은 신약개발을 위한 도구로 사용될 수 있다.
생체에 투입된 약물이 세포수준에서 어떻게 반응하는가를 볼 수 있어 빠른 시간에 약효를 판별할 수 있다.
이로 인해 전임상 시험에 막대한 돈과 시간이 소요되는 신약개발 연구에 사용될 수 있는 중요한 기술이다.
이러한 KRISS의 CARS 현미경 기술은 세계적으로 선도그룹 수준이다.

현재 KRISS에서는 CARS 현미경을 내시경 형태로 개발하는 연구가 진행되고 있다.
이를 위해 레이저빔을 인체내부로 이송시키고 영상신호를 받아들이는데 특수 광섬유를 이용하는 기술을 개발하고 있다.
CARS 현미경 기술은 바이오 의료기기 분야에서 우리나라의 성장 동력으로 앞으로 큰 영향력을 발휘할 것이다.

<이호성 KRISS 미래융합기술부장>

저작자 표시 비영리 변경 금지
신고
posted by 이재형 과학이야기

우리의 건강상태를 파악하기 위해서는 인간의 건강과 직결되어있는 단백질이 체내에 어떻게 분포되고 어떻게 작용하는가를 아는 것이 매우 중요하다.
그러나 현대의 과학기술은 우리 인간의 유전자 전체를 분석하는 기술은 갖고 있지만, 아직 우리 몸의 전체 단백질을 이해할 만큼 발전하지는 못했다.
인간은 약 2만~3만 개 정도의 유전자를 가지고 있는데, 유전자로부터 만들어지는 단백질은 수십 만 종류에 달하기 때문이다. 더욱이 우리 몸 구석구석에서 각각의 단백질은 생성과 변형, 소멸을 반복하고 있으므로, 우리 몸 안의 단백질 상태를 정확히 분석해 낸다는 것은 매우 어려운 일이다.

현재 단백질을 분석하는 방법은 분석목적에 따라 여러 가지가 있다.
분유 멜라민 사건 때의 단백질 함량검사와 같이 시료 안의 단백질 총량을 분석하기도 하고, 혈액 내에 알부민과 같은 특정 단백질의 농도를 조사하여 건강을 체크하기도 한다.

특히 프로테오믹스 (proteomics, 단백질체학) 분야에서는 첨단 질량분석기로 시료 내에 존재하는 다양한 단백질의 종합적인 분석을 실시한다.
단백질간의 양적 차이를 알아내는 정량분석은 특정 단백질로 인한 질병의 원인과 발생 경로를 분석하거나, 개발한 신약이 인체 내에서 효과적으로 작동하는지를 확인하는 등 질병 진단과 치료 목적에 사용된다.
또한 동물이나 식물의 원산지에 따라 단백질 분포가 다른 패턴을 보이는 것을 활용해 각종 동?식물의 원산지 추적에도 활용된다.

이러한 프로테오믹스 연구에서는 대량의 실험 데이터로부터 수많은 종류의 단백질 정보를 도출해내는 계산 작업이 수반된다. 대량의 단백질 데이터를 처리하고 해석하는 정보기술을 단백질 정보학이라 한다.

단백질체 정보학의 연구는 크게 세 가지로 구분할 수 있다.
첫째는 실험 데이터로부터 가능한 많은 단백질 정보를 얻어내는 방법에 관한 연구이다.
첨단 분석장비를 통해 얻은 데이터로부터 지금까지 발굴되지 않았던 새로운 단백질 정보를 찾아내기 위해서는 생물, 화학, 물리학, 수학, 전산학 등 여러 분야의 지식이 동원된다.
둘째로 실험에서 얻은 단백질 정보의 신뢰성을 판별하는 연구이다.
생명과학 분야의 첨단 장비 및 자동화 시스템으로 생산되는 대량의 실험 데이터는 연구자가 데이터를 하나하나 살펴보기에는 역부족이다.
생산되는 데이터에서 신뢰성있는 데이터만을 가려내기 위하여는 통계학, 전산학 등을 활용한 데이터 유의성 및 신뢰도 평가 작업이 필요하다.
셋째는 단백질 정보들을 다른 생물정보와 연결하여 생체 내에서의 단백질의 기능을 밝히는 방법에 대한 연구이다. 생물학 특히 분자생물학, 생화학 분야에서 오랜 기간 축적한 연구 결과물들을 서로 연결하면 새로운 생물학적 사실들이 모습을 드러낸다.

단백질체 정보학은 이처럼 여러 분야의 과학이 융합된 연구 분야이다.
인터넷과 데이터베이스의 발전으로 수많은 정보들이 우리 손 안에 쥐어져 있으며, 이들을 적절하게 활용하는 기술을 구사하면 생명현상의 새로운 세계를 탐험할 수 있다.
앞으로 국민의 건강과 안전한 먹거리를 위하여, 그리고 생명과학의 발전을 위하여, 많은 유능한 젊은이들이 단백질체 정보학에 관심을 갖고 도전해보기를 기대한다.

<권경훈 한국기초과학지원연구원 질량분석연구부장>

저작자 표시 비영리 변경 금지
신고
posted by 이재형 과학이야기

우리나라 광산업은 일본에서 기술을 이전 받은 쌍안경 등을 단순 생산하면서 시작하였다.

하지만 불과 30년 만에 디지털카메라, 휴대폰 렌즈 등을 대량 생산할 수 있는 첨단산업으로 비약적인 발전을 하였다.

IMF 외환위기를 거치면서 우리나라 광산업은 대기업에서 중소전문기업으로 재편되었다.
 
이들 전문기업들은 기술력을 바탕으로 경쟁력을 갖추고 있으며, 그 중심에 KRISS(한국표준과학연구원) 우주광학센터가 있다.

KRISS는 지난 20년 동안 정부출연연구기관 중 유일하게 초정밀 광학계 제작과 평가연구실을 운영하고 있다.

광학굴절률, 초점거리, 형상 등의 광학시험 서비스와 교정 시스템을 제공하고 새로운 광계측기기들을 개발함으로써 국내 초정밀 광산업의 중심역할을 하고 있는 것이다.

렌즈나 거울 같이 빛을 다루는 광학부품이나 카메라와 같이 상을 맺는 광학계는 전통 광산업뿐만 아니라 정보통신산업, 반도체산업, 방위 우주산업 등 첨단산업에서 핵심 기술로 사용되고 있다.

직경 2 m급 광학거울을 가공하는 모습

KRISS 우주광학센터가 개발한 직경 2m급 광학거울로 만들어진 천체망원경으로 하늘을 쳐다볼 경우, 너무 높아 미사일이 도달하기도 어려운 높이에 있는 인공위성의 모양까지 식별할 수 있다.

직경 1m급 망원경으로 인공위성의 유무만 확인이 가능한 것에 비하면 놀라운 기술적 진보이다.

하지만 그동안 관련 산업의 기술은 극히 소수 국가의 전유물이었다.

대형 비구면 거울은 우주용 망원경 및 지상용 천체망원경에 필수적인 부품이며, 특히 우주용 망원경 부품은 군사용으로 사용할 수 있다.
이러한 이유로 선진국에서는 해당 부품에 대한 수출이 엄격히 통제되고 있다.

KRISS 우주광학센터는 직경 1 m급에 이어 2 m급 광학거울을 제조하는 기술을 확보함으로써 천체관측용 대형 망원경과 위성에 사용되는 카메라에 필요한 국내 수요를 충족할 수 있게 되었다.

앞으로 KRISS는 축적된 기술을 바탕으로 거대마젤란망원경(GMT : Giant Magellan Telescope) 사업에 이를 활용할 계획이다.

G
MT사업은 허블망원경보다 해상도가 10배나 향상된 직경 25 m급의 대형 망원경을 2018년 칠레의 라스캄파나스에 설치하는 미국 주도의 국제협력 사업이다.
 
KRISS는 한국천문연구원과 함께 직경 1.1 m 비축비구면 광학거울 7개를 제작해 이 사업에 참여할 예정이다.

GMT사업 참여는 우리나라의 대형 광학계 제조기술을 전 세계에 알리는 놓칠 수 없는 기회가 될 것으로 기대된다.

<조성재 KRISS 산업측정표준본부장>

저작자 표시 비영리 변경 금지
신고
posted by 이재형 과학이야기

기초과학지원연구원에는 SQUID가 있다?!
 
그렇다면 기초연이 수조에서 오징어를 사육한다는 것인가?

물론 아니다.

SQUID는 오징어라는 뜻도 있으나 다른 의미로서 초고감도로 자성을 측정할 수 있는 초전도 양자간섭계(SQUID, Superconducting QUantum Interference Device)라는 뜻이 있다.

2개의 초전도체 사이에 아주 얇은 절연체를 만들어 접합한 것을 죠셉슨 소자라고 한다.

죠셉슨 소자를 포함한 초전도체로 고리(ring)를 만들어 고리 속으로 자력선을 통과시키면 양자간섭효과에 의해 매우 미약한 자성을 검출할 수 있다.

이 원리로 자기장의 고감도 검출소자로서 초고감도 자속측정기기(SQUID)를 만들어서 실용화 되어 있다.

SQUID의 감도는 ~10-18 T(테슬라) 의 미약 자기장을 측정할 수 있는 감도가 있다.

대표적인 전자기적 미약신호인 뇌에서 발생하는 자기신호는 ~10-13T 정도이다.

생체에서 발생되는 자기신호를 지구 자기장과 비교해 보면 뇌에서 발생하는 자기 신호는 대략 10억분의 1 정도이다.

기초과학지원연구원에서는 SQUID를 이용한 미소자성 측정장치로서 나노소자, 자성물질, 초전도체, 생체자성물질, 최근 새로운 정보저장 매체로서 기대를 모으고 있는 스핀소자 등 각종 물질, 재료의 개발과 관련하여 0.3K의 극저온에서부터 400K 의 고온의 온도영역 사이에서 자기적 특성을 정밀하게 측정할 수 있다.
(K : 켈빈,  절대온도 0 K = -273.15 ℃)

초전도체의 발견으로 이와 같은 미약 자기장의 측정 뿐 아니고, 고자기장을 발생시킬 수 있게 되었다.

일반적으로 영구자석은 ~ 1T, 전자석으로는 ~ 2T 정도를 얻을 수 있다.

무냉매 전도냉각형 초전도자석

초전도자석은 이보다 높은 자기장을 얻을 수 있으며 현재 20T 이상의 고자기장을 발생시킬 수 있다.
초전도자석은 액체헬륨 등의 한제로 냉각해서 사용되어 왔으나, 최근 냉각기술의 발전으로 한제를 사용하지 않는 무냉매 전도냉각형 초전도자석으로 고자기장을 얻을 수 있다.

초전도자석으로 고자기장을 비교적 쉽게 얻을 수 있게 됨에 따라서 이제까지 자기장을 잘 활용할 수 없던 분야에도 응용이 가능하게 되었다. 

즉 자성을 가지지 못하는 물질에도 물리적 또는 화학적 방법으로 자성입자를 붙여서 원하는 물질을 짧은 시간에 간단히 분리해 낼 수 있게 되었다.

또한 분리하기 매우 어려운 고가의 극미량 물질도 자기분리방법으로 선택적으로 간단히 분리해 낼 수 있으며, 복잡한 과정을 거쳐서 긴 시간에 걸쳐 분리되던 물질도 자기분리법으로 단시간에 분리정제할 수 있다.

환경 오폐수의 처리에도 넓은 침전조, 화학약품 처리 등  폐수처리에 수십 시간이 소요되나 자기분리법으로 작은 공간과 물리적인 방법과 최소한의 화학물질 사용으로 불과 1 시간 이내로 처리가 가능하여 시간단축을 함으로 경제적 친환경적인 처리가 가능하게 되었다.

식물의 성장 또한 자기장의 영향을 받는다.

또한 자성이 약한 상자성체, 반자성체를 고자기장 안에서 자기부양 시킬 수 있으며 자기장을 이용한 화학반응의 제어, 새로운 특성을 가진 재료의 합성 등이 가능하다.

'고자기장 자기분리시스템'을 설명하는 김동락 부장.

기초과학지원연구원에서는 무냉매 전도냉각 초전도자석시스템으로서 냉매의 공급없이 수 일 또는 수 십일의 기간 동안 안정적인 고자기장 환경에서의 각종 자기장 연구 실험을 수행할 수 있는 환경을 구축하고 있다.

<김동락 한국기초과학지원연구원 물성과학연구부장>

 

 

저작자 표시 비영리 변경 금지
신고
posted by 이재형 과학이야기

신문지상에서 흔히 "최초의 인류 조상 화석 발견", "국내에서 제일 오래된 암석", "중생대 공룡 화석 발견" 등등의 기사를 볼 때가 있다. 이때 빠지지 않고 등장하는 것은 해당 암석의 지질연대이다.

일반인들이 듣기에 생소한 지질 연대 측정은 생각 외로 우리 생활과 밀착되어 있다.

지하자원의 조사나, 고고학 유물의 발굴 및 대형 토목 구조물의 지반 안정성 평가에 있어서 정밀한 지질연대 측정 자료의 역할은 크다.

또한 지구 온난화를 비롯한 기후 변화 연구에 있어서도 과거 기후 변화 경향을 알기 위한 중요한 척도 중의 하나로서 연대 측정 자료는 활용된다.

최근 분석 장비들의 발달로 인해 지질 연대 측정용 분석 기기들의 발달도 괄목할 만하다.

지질연대 측정을 위해서 동위원소비를 측정할 수 있는 질량분석기가 필요한데, 국내에 보급되어 있는 것은 열이온화 질량분석기, 불활성기체 질량분석기와 고분해능 이차이온질량분석기이다.

그중 주목할 만한 것은 지난해부터 본격적으로 공동 활용이 진행 중인 고분해능이차이온질량분석기이다.

한국기초과학지원연구원 오창캠퍼스에 전 세계에서 13번째로 설치된 고분해능이차이온질량분석기(SHRIMP)는 광물 표면 수십 마이크로미터의 좁은 영역에 산소 이온빔을 쏘아 튀어나오는 이차 이온을 분석하여 연대 측정에 필요한 우라늄과 납의 동위원소를 측정하는 장비이다.

한국기초과학지원연구원 오창캠퍼스에 설치된 고분해능 이차이온질량분석기


다른 측정법과는 달리 미세 영역에 대한 직접적인 연대 측정 자료를 제공함으로서 기존의 다른 연대 측정법으로 얻을 수 없었던 다양한 지질학적 현상들에 대한 직접적인 시간 정보를 얻을 수 있게 되었다.

이 장비를 이용해 달 암석에 보존된 마그마 활동의 시기, 지구상에서 존재하는 가장 오래된 암석의 시기를 규명하였을 뿐 아니라 국내에서 제일 오래된 암석에 대한 시간 정보들이 얻어진 바 있다.

현재 SHRIMP 장비는 국내외 연구자들에게 공동연구의 형태로 지원되고 있으며, 복잡한 지질역사를 가지는 암석에 대한 자세한 연대 측정 자료를 제공하고 있다.

기존 SHRIMP 장비와는 다르게 산소 안정동위원소 분석이 가능함에 따라 지각의 진화 과정과 운석 연구 또한 가능해졌다.

고정밀 표면 연대/안정동위원소 측정 자료가 양산될 수 있는 인프라가 구축됨에 따라 국내 연구진에 의한 세계적인 연구 성과가 곧 창출될 것이라 기대된다. 

<김정민 한국기초과학지원연구원 환경과학연구부장>

저작자 표시 비영리 변경 금지
신고
posted by 이재형 과학이야기

세포는 생명의 기능적 단위이며 생노병사의 비밀을 간직하고 있다.

인간을 구성하는 약 10조개의 세포들은 끊임없이 외부의 신호를 감지하여 세포가 반응하며 세포의 신진대사를 유지하기 위하여 각종 이온물질들을 세포 안팎으로 수송한다.
또한, 영양물질을 흡수하며 노폐물을 포함한 독성물질은 계속해서 세포 밖으로 배출한다.
  
이러한 세포들의 능동적인 행동은 바로 세포막상에 존재하는 세포막단백질에 의해 이루어지는데, 세포막단백질의 종류는 수용체, 이온채널, 트랜스포터 그리고 효소 등이 있다.

세포막단백질은 인지질막에 박혀있으며 막관통 도메인을 1개에서 최대 33개까지 가지고 있기 때문에 물에 녹지 않는 소수성을 띄고 있어  분석하기가 매우 어렵다.

현재 알려진 막단백질 구조는 약 200개 정도로서 전체 밝혀진 단백질 구조의 0.4%정도에 지나지 않을 뿐 아니라 5539개 정도로 예측되고 있는 인간 막단백질의 발굴과 기능이 알려진 것은 1천개 미만이다.

따라서 효과적인 막단백질 발굴방법의 개발은 질환의 마커가 될 수 있는 막단백질 개발에 필수적이며 약물표적으로서의 산업화에 적용할 수 있다.

세포막 성질을 이용한 단백질-단백질 결합 분석장비, LSM710-FCS

한국기초과학지원연구원은 이러한 목적에 부합하고자 '세포막단백질 분석기술개발 사업'을 Top Brand Project로 시작하였다.

현재 생명과학연구부는 세포막단백질을 효과적으로 발굴할 수 있는 화학제/단백질분해효소 혼용처리 방법을 이용한 '샷건 막단백질분석기술'을 개발하였다.

또한, 기능성 막단백질 연구를 위하여 대표적인 항생제내성균인 아시네토박터 바우마니 (Acinetobacter baumannii)의 세포외막 소포체를 분리하여 구성 막단백질들을 발굴하였다.

마지막으로 세포막의 특성을 이용한 특정 단백질의 막이동 현상을 이용하여 세포내 신호전달 단백질-단백질 결합 및 단백질 복합체를 입체적으로 분석할 수 있는 '큐피드' 분석기술을 개발하였다.
 
이 기술은 약물의 작용점을 단백질 약물표적에서 빠른 시간 내에 추적할 수 있는 막단백질을 응용한 신기술이다.
  
세포의 마지막 불모지인 세포막 단백질에 대한 효과적인 분석기술개발은 차후에 단백질의약품 개발 산업에 중추적인 역할을 할 것이다.

<최종순 한국기초과학지원연구원 생명과학연구부장>

저작자 표시 비영리 변경 금지
신고
posted by 이재형 과학이야기