반응형

한국원자력연구원이 방사선 육종 기술로 개발한 신품종 블랙베리로 만든 간 기능 개선 발효 음료 제조 기술이 ㈜헤베)에 이전됩니다.

이 기술은 한국원자력연구원 첨단방사선연구소 방사선실용화기술부 정일윤 박사팀이 지난해 개발한 기술로,  정 박사팀은 방사선 돌연변이 육종 기술을 이용해 간 기능 보호 성분 함량을 높인 신품종 블랙베리(품종명 '메이플')에서 유효 성분을 손실 없이 추출할 수 있는 기술을 개발했습니다.


신품종 블랙베리 메이플은 간 기능 보호 성분인 C3G(cyanidine-3-Glucoside)가 기존 블랙베리의 약 2.3배, 오디의 약 3배, 블루베리의 1.2배 가량 높게 함유됐습니다.

정 박사팀은 대표적 급성 간 독성 유발 물질인 사염화탄소(CCl4 ; carbon tetrachloride)를 인위적으로 유도한 실험용 쥐에 메이플 추출물을 투여했을 때, 대조군보다 간 손상 수치인 AST와 ALT가 현저히 낮아지는 결과를 확인했습니다.

또 메이플 추출물을 먼저 투여한 후 사염화탄소를 인위적으로 처리 했을 때에도 대조군에 비해 간 손상 수치가 확연히 낮아지는 것을 확인했습니다.

정 박사팀은 이 유효 성분을 알코올 발효와 초산 발효 및 저온 숙성 과정 등을 통해 손실 없이 최대한 추출할 수 있는 기술을 개발해 일반인들이 쉽게 복용할 수 있도록 음료화했습니다.

㈜헤베는 이 기술로 간 기능 개선용 드링크제를 제조 판매할 예정이며, 숙취 해소 효능이 입증될 경우 숙취 해소 음료도 제품화할 계획입니다.

이번 기술이전으로 한국원자력연구원은 정액 기술료 1억 원, 5년간 매출액의 3.0%를 경상 기술료로 지급 받게 됩니다.

반응형
반응형

그래핀은 구리보다 100배 이상 전기가 잘 통하면서도 구부려도 전기전도성이 유지돼 실리콘 반도체를 대체할 차세대 전자소자는 물론 휘어지는 디스플레이, 입는 컴퓨터 등 다양한 분야에 활용될 수 있어 '꿈의 신소재'로 불립니다.

또 강철보다 200배 이상 강한 물성을 갖고 있어 기계 분야에도 응용가능성이 매우 높습니다.

그러나 마찰력과 접착력 등과 같은 기계적 성질이 미해결 과제로 남아있습니다.

■ KAIST EEWS대학원 박정영 교수가 나노과학기술대학원 김용현 교수와 공동으로 하나의 원자층으로 이루어진 그래핀을 불소화해 마찰력과 접착력을 제어하는 데 성공했습니다.

원자단위에서 그래핀에 대한 마찰력의 원리를 규명하고 제어하는 데 성공한 것은 이번이 세계 최초입니다.

이번 연구결과는 앞으로 나노 크기의 로봇 구동부 등 아주 미세한 부분의 윤활에 응용될 전망입니다.

연구팀은 그래핀을 플루오르화크세논(XeF₂) 가스에 넣고 열을 가해 하나의 원자층에 불소 결함을 갖고 있는 불소화된 개질 그래핀을 얻어냈습니다.

개질된 그래핀을 초고진공 원자력현미경에 넣고 마이크로 탐침을 사용해 시료의 표면을 스캔하는 방법으로 마찰력과 접착력 등의 역학적 특성을 측정했습니다.

불소화를 이용한 그래핀의 마찰력 제어를 보여줌

연구팀은 이번 실험 결과를 바탕으로 불소화된 그래핀은 기존보다 6배의 마찰력과 0.7배의 접착력을 나타내는 것을 밝혀냈습니다.

이와 함께 전기적인 측정을 통해 불소화를 확인하고 마찰력과 접착력의 원리를 분석해내 그래핀의 마찰력 변화에 대한 이론을 정립했습니다.

이번 연구결과는 나노과학분야 권위 있는 학술지 '나노레터스(Nano Letters)' 6월 21일자 온라인판에 게재됐습니다.


 용  어  설  명

그래핀 (graphene)
그래핀은 흑연의 탄소 원자 배열과 같은 모양(6각형의 벌집모양)을 가지면서 원자 하나 정도의 두께를 가진 2차원 탄소나노 구조체이다.
보통 흑연의 표면층을 가장 얇게 한 겹을 떼어낸 것이라 생각하면 이해가 쉽다.
그래핀은 실리콘이나 구리보다 100배 이상 전기가 잘 통하고, 강도도 강철보다 200배 이상 강하며 최고의 열전도성을 자랑하는 다이아몬드보다 2배 이상 열 전도성이 높다. 게다가 신축성이 뛰어나 늘리거나 구부려도 전기전도성이 유지된다.
그래핀의 이러한 특성으로 인해 많은 사람들이 그래핀을 전자소자와 휘어지는 디스플레이, 입는 컴퓨터에 적용하기 위해 연구를 진행 중에 있고, 산업적으로도 다양하게 활용될 수 있을 것으로 기대하고 있다.

원자힘 현미경 (Atomic Force Microscope)
극히 높은 배율의 현미경으로 마이크로 탐침을 사용하여 시료 표면을 스캔한다. 탐침 끝의 원자와 시료 표면의 원자들 사이에 작용하는 반발력을 이용하여 나노미터 이하의 표면을 스캔하여 촬영하거나 마찰력, 접착력 등의 역학적 특성을 측정할 수 있다.


 

<박정영 교수> 

1. 인적사항

 
○ 주소: 대전시 유성구 대학로 291 (구성동 373-1)
      한국과학기술원 (KAIST) EEWS 대학원
○ Homepage: http://scale.kaist.ac.kr

2. 학력
 1993  학사, 서울대학교, 물리학과
 1995  석사, 서울대학교, 물리학과
 1999            박사, 서울대학교, 물리학과
 
3. 경력사항 
1999 ~ 2002     미국 메릴랜드대학, 박사후 연구원
2002 ~ 2006    미국 에너지부 산하 로렌스버클리 국립연구소, 박사후 연구원
2006 ~ 2009    미국 에너지부 산하 로렌스버클리 국립연구소, 책임연구원
2009 ~ 현재     KAIST EEWS 대학원, 부교수
2011년          이달의 과학기술인상 (대전시)

<김용현 교수> 

1. 인적사항

 
○ 주소: 대전시 유성구 대학로 291 (구성동 373-1)
      한국과학기술원 (KAIST) 나노과학기술대학원
○ Homepage: http://qnmsg.kaist.ac.kr


2. 학력
 1997  학사, KAIST, 물리학과
 1999  석사, KAIST, 물리학과
 2003            박사, KAIST, 물리학과
 
3. 경력사항 
2003 ~ 2006    미국 에너지부 산하 국립 신재생에너지 연구소, 박사후 연구원
2006 ~ 2009    미국 에너지부 산하 국립 신재생에너지 연구소, 책임연구원
2009 ~ 2011    KAIST 나노과학기술대학원, 조교수
2011 ~ 현재     KAIST 나노과학기술대학원, 부교수

 

관련글 : 그래핀을 역학적으로 제어하는 법 http://daedeokvalley.tistory.com/520
            꿈의 신소재 그래핀 대량 생산의 길 http://daedeokvalley.tistory.com/453
            대면적 그래핀, 저렴한 대량생산 길 열었다 http://daedeokvalley.tistory.com/392
            그래핀 상용화 관건, 단결정 그래핀 관측 기술 http://daedeokvalley.tistory.com/234
            상온 그래핀 직접 합성법 개발 http://daedeokvalley.tistory.com/352

반응형
반응형

2012년 7월 1일 오전 9시부터 1초가 늘었습니다.

한국천문연구원(이하 천문연)은 이날 오전 9시를 기해 양(+) 윤초를 실시했습니다.

이번 윤초는 한국표준시(KST) 2012년 7월 1일 오전 8시 59분 59초와 9시 0분 0초 사이에 1초를 삽입하는 것으로, 국제지구자전좌표국(IERS) 통보에 따라 우리나라 뿐만 아니라 세계가 동시에 윤초를 실시한 것입니다.

 따라서 우리나라의 2012년 7월 1일 9시 정각이 윤초 실시 이전의 9시 00분 01초와 같고, 08시 59분 정각과 09시 정각 사이의 시간 길이는 61초가 되어 이전보다 1초가 길어지게 됩니다.

세계협정시(UTC)로는 2012년 06월 30일 23시 59분 59초에 윤초를 삽입했습니다.

이에 따라 휴대폰 내장 시계 등 표준시를 수신하는 기기는 윤초가 자동 적용 되지만, 그 밖의 시계는 인위적으로 1초를 늦춰야 합니다.

특히 정확한 시각을 필요로 하는 금융기관이 정보통신 관련 기업 등에서는 윤초 조정에 주의해야 합니다.

 

윤초는 천문현상을 기반으로 하는 천문시와 현재 일상 표준시의 기준이 되는 원자시계의 차이를 보완하기 위해 전 세계적으로 동시에 실시되고 있다.

지구 자전속도가 서서히 변하면서 원자시와 천문시 사이에 차이가 발생하는 데, 천문학계는 기존에 축적된 별들의 위치 자료와 초장기선전파간섭계(VLBI)로 관측된 자료를 이용해 지구 자전의 미세한 변화를 측정합니다.

원자시는 1967년부터 국제천문연맹(IAU)이 세슘-133 원자가 91억 9263만 1770번 진동하는 시간을 1초로 정의한 것으로, 지구 자전에 기본을 둔 실제 시간과 미세한 차이를 보입니다.

이에 따라 1972년 7월에 처음 윤초가 실시된 이후, 1973년부터 1980년까지 매년 1월에 윤초를 삽입했고, 이후 1~3년마다 윤초를 실시하고 있습니다.

현재까지의 윤초 실시현황을 보면, 1972년 7월에 처음 윤초가 실시된 이후 1973년부터 1980년까지 매년 1월에 윤초를 삽입했습니다.

또 1981년, 1982년, 1983년, 1985년, 1992년, 1993년, 1994년, 1997년에는 7월에, 1988년, 1990년, 1991년, 1996년, 1999년, 2006년, 2009년에는 1월에 윤초를 실시했습니다. 

이번 윤초는 2009년 1월 1일(한국표준시) 이후 3.5년 만에 실시되는 것입니다.

인류가 발견한 시간은 지구 자전과 공전에서 기초한 천문시입니다.

반면 오늘날 일상적으로 사용하는 시간은 일정한 시간간격을 알려주는 원자시계에 의한 원자시로써, 천문시와 상호보완적인 관계를 유지하고 있습니다.

대표적인 예로 지구 자전속도가 서서히 변하여 원자시와 천문시 사이에 차이가 발생하는데, 이를 보완하기 위해 윤초를 시행합니다.

천문학자들은 기존에 축적된 별들의 위치자료와 초장기선전파간섭계(VLBI; Very Long Baseline Interferometer)로 관측된 자료를 사용하여 지구 자전의 미세한 변화를 알아냅니다.

1960년 이전에는 평균태양일을 기준으로 한 '평균태양초'(1일=24시간, 1시간=60분, 1분=60초→1일=86400초)가 쓰이다가 1967년까지는 좀 더 정밀한 '역표초'(Ephemeris Second)가 사용됐습니다.

이후 1967년 국제천문연맹(IAU)은 세슘 원자시계에 기본을 둔 '원자초'를 새로운 시간단위로 채택했고, 이 때부터 "원자시"(TAI; International Atomic Time)라는 말을 사용하게 됐습니다.

그러나 '원자시'는 세슘-133 원자의 진동수를 기준으로 정했기 때문에 지구자전에 기본을 둔 실제 우리가 사용하는 시간과 차이를 보이게 됩니다.

이에 따라 천문학자들은 각국 천문대의 망원경을 이용하여 별의 위치측정 자료를 바탕으로 지구자전주기를 정밀하게 측정해 그 차이를 보정하고 있습니다.

이 같은 방법으로 결정한 시간을 '세계시'(UT1; Universal Time)라고 부르며, 국제지구자전좌표국(IERS)에서 각국 천문대의 관측자료를 종합 분석해 결정합니다.

현재 국제적으로 사용 중인 '세계협정시'(UTC; Coordinated Universal Time)는 '세계시'(UT1) 1972년 1월 1일 0시를 기점으로 사용하는 것입니다.

이는 곧 이날 0시를 기준으로 '원자시'와 '원자초'를 적용, 시각 및 시간의 기준으로 삼고 있는 것입니다.

'세계협정시'(UTC)는 항상 '원자시'와 정수 배 만큼 차이가 나고, '세계시'(UT1)와의 차이는 0.9초 이내가 되도록 유지됩니다.

그리고 이 시간은 각국의 세슘원자시계 자료를 기준으로 하여 국제도량형국(BIPM; Bureau International des Poids et Mesures)에서 유지하고 있습니다.

만약 '세계시'(UT1)와 '세계협정시'(UTC)의 차이가 0.9초 이상이 되면, 국제지구자전-좌표국(IERS)은 '세계협정시'(UTC)의 정의에 따라 '세계협정시'(UTC)에 1초를 더하거나 빼주는 윤초를 발표합니다.

이 때 59초 이후 60초를 삽입하는 것을 '양(+)의 윤초'라고 하고, 58초 이후 59초를 삭제하고 0초를 만드는 것을 '음 (-)의 윤초'라고 합니다.

윤초를 실시하는 달은 한국표준시 기준으로 1월 첫날과 7월 첫날을 우선적으로 채택합니다.

<관련글  가장 정확한 대한민국 표준시계 http://daedeokvalley.tistory.com/217>
             가장 정확한 시간, 대한민국 표준시  http://daedeokvalley.tistory.com/141>

 

반응형

+ Recent posts