반응형

현재 전 세계적으로 활발히 연구되고 상업화가 시도되고 있는 염료감응 태양전지는 식물의 광합성 원리를 이용한 태양전지입니다.

염료감응 태양전지(DDSC)는 유기염료와 나노기술을 이용해 고도의 에너지 효율을 갖도록 개발된 것으로, 가격이 저렴하고 공정도 간단해 차세대 태양전지로 주목 받고 있습니다.

이는 기존 상용화된 실리콘 전지에 비해 제작방법이 간단하면서 경제적이고, 투명하게 만들 수 있어 건물의 유리창 등에 직접 활용할 수 있는 차세대 태양전지로 각광받고 있습니다.

그러나 휘발성이 높은 액체 전해질을 사용해야 하기 때문에 상업화에 큰 어려움이 따르는 실정입니다.

또 하나의 방식인 겔 전해질은 점도가 높아 태양전지 내 나노입자 사이로 침투되기 어려워 액체 전해질에 비해 성능이 좋지 않습니다.

이를 해결하기 위해 가교제를 포함한 액체 전해질을 먼저 태양전지에 주입하고 열이나 UV-광원을 이용해 이어주는 연구를 진행해왔지만, 공정이 복잡하고 남아있는 가교제가 태양전지의 전기수명을 떨어뜨리는 것으로 알려져 역시 실용화에 어려움이 있었습니다.

이 처럼 차세대 고효율 태양전지로 각광 받고 있는 염료감응 태양전지의 상용화에 가장 큰 문제점인 액체 겔 전해질 문제가 국내 연구진에 의해 해결됐습니다.

■ 성균관대 박종혁 교수팀은 자체 개발한 고분자 나노소재를 이용해 기존 액체 전해질의 문제점을 해결하면서도 성능은 동일하고 수명은 더욱 길어진 신개념 염료감응 태양전지용 전해질 개발에 성공했습니다.

박 교수팀은 입자크기가 똑같은 고분자 나노소재인 폴리스타이렌을 태양전지의 상대전극에 놓고 이를 선택적으로 부풀어 오르게 하거나(swelling) 용해하는 액체 전해질의 용매를 조절하여 기존의 액체나 겔 전해질의 단점을 극복한 신개념 전해질을 개발했습니다.

신규 겔전해질을 활용한 염료감응 태양전지의 제조 모식도

(a) PS 나노입자가 코팅된 상대전극 (b) 액체전해질이 주입된 후의 상태 (c) 겔화된 전해질을 제거한 후의 상대전극 표면 (d)액체전해질이 겔화된 상대전극 모습


연구팀이 개발한 고분자 나노소재를 이용한 염료감응 태양전지는 기존의 액체 전해질과 동일한 성능을 나타내면서도 수명이 더욱 길어진 것이 특징을 갖고 있습니다.

현재 국내외 특허 출원이 완료된 이번 연구결과는 향후 염료감응 태양전지 분야의 핵심기술이 될 전망입니다.

이번 연구는 성균관대 박종혁 교수가 주도하고, 이건석 석사(제1저자, LG화학기술연구원), 울산과기대 전용석 교수가 참여했습니다.

이번 연구결과는 나노과학 분야의 권위 있는 학술지인 'Nano Letters'지 온라인 속보(4월 6일자)에 게재되었다.
(논문명: Controlled Dissolution of Polystyrene Nano-beads: Transition from Liquid Electrolyte to Gel electrolyte)

 

<연 구 개 요>

염료감응 태양전지는 식물이 광합성 작용을 통해 받은 태양광에너지를 전자의 흐름으로 만들어내어 자연현상을 모방하여 만들어진 차세대 태양전지이다.
단지 식물의 잎에서 광합성을 할 때 빛을 엽록소라는 천연염료가 흡수하는 반면, 염료감응 태양전지는 인공적으로 합성된 염료분자를 TiO2(이산화 티타늄) 나노입자에 붙여서 사용한다.
이산화 티타늄 표면에 염료분자가 화학적으로 흡착된 반도체 산화물 전극에 태양빛이 조사되면 염료분자는 전자를 내놓게 되는데 이 전자가 외부 회로를 통하여 이동하면서 우리가 필요로 하는 최종적인 전기에너지를 생성한다.
전기적 일을 마친 전자는 다시 염료분자의 본래 위치로 돌아와 태양전지를 순환하게 된다.

염료감응 태양전지는 기존의 실리콘 태양전지에 비하여 제조공정이 단순하고 저가의 재료를 사용하기 때문에 전지의 가격이 실리콘 셀 가격의 20~30% 정도에 불과하다.
또한 기존 실리콘계 태양전지와 비교했을 때 일광량의 영향을 적게 받는다.
염료감응 태양전지의 셀 성능이 12%이상 보고되고 있어 장기 안정성만 보장된다면 태양전지의 저가화에 큰 역할을 할 수 있을 것으로 전문가들은 예상하고 있다. 
 
최근 많은 국내외 기업들이 염료감응 태양전지의 장기 안정성 향상을 위해서 연구가 활발히 진행되고 있지만, 여전히 액체전해질의 높은 휘발성이 큰 문제로 작용하고 있다.
그동안 전해질을 겔화 시켜서 액체전해질의 증기압을 낮추려는 시도가 많이 있었다.
그러나 겔화된 전해질은 메조기공을 갖는 이산화 티타늄의 기공에 침투하지 못하는 특성으로 인하여 셀 성능이 기존 액체전해질 대비 떨어지는 단점이 있었다. 
  
본 연구에서는 균일한 입자 크기를 갖는 고분자 나노소재인 폴리스타이렌을 태양전지의 상대전극에 위치시키고 폴리스타이렌을 선택적으로 팽윤 및 용해시킬 수 있는 액체전해질의 용매를 조절하여 기존 겔형 전해질의 단점을 극복할 수 있는 신규 전해질을 개발하였다.
초기성능은 기존 액체전해질과 거의 동일하였으며, 약 3주가 지난후의 성능을 비교하였을 때 액체전해질을 사용한 염료감응 태양전지에 비해서 효율이 매우 안정적으로 유지가 되는 점을 확인하였다.

 

 

 용  어  설  명


염료감응 태양전지 :
염료감응형 태양전지(Dye-Sensitized Solar Cell)는 염료감응 태양전지라고도 하며, 산화환원 전해질로 구성되어 있으며, 표면에 화학적으로 흡착된 염료 분자가 태양빛을 받아 전자를 냄으로써 전기를 생산하는 전지이다.
두 개의 전극과 그 사이를 채우고 있는 전해질로 구성이 된다. 광전극이라 불리는 전극은 투명전극 위에 염료분자가 흡착된 산화 이산화 티타늄 나노입자로 구성되어 있고 상대전극이라 불리는 전극은 백금이 코팅된 투명전극으로 구성된다.

폴리스타이렌 나노입자 (Polystyrene nanoparticles) :
유화중합을 통해서 합성되며 균일한 크기를 갖는 나노입자를 의미한다.
보통 입자의 크기는 약 100 nm ~ 1000 nm 까지 조절이 가능하며 주로 광학적인 특성을 제어할 목적으로 많이 활용이 되며, 최근에는 구형 입자나 나노구조체를 합성하기 위한 형판 (型板)으로 사용된다.

겔 (Gel) 전해질 :
화장품과 같은 생활용품에도 많이 활용되는 용어로서 점성이 있는 물질을 통상적으로 지칭한다. 흐름이 전혀 없는 고체와 흐름이 자유로운 액체의 중간 형태를 지칭한다.

나노 레터스(Nano Letters)誌 :
세계적 권위의 나노분야 대표과학전문지 (인용지수 impact factor 12.186)


 

<박종혁 교수>

1. 인적사항
○ 성      명 : 박종혁 (朴宗爀, 37세)
○ 소      속 : 성균관대학교 화학공학부, 성균나노과학기술원

2. 학력사항
○ 1999년 : 연세대학교 화학공학과 (학사)
○ 2001년 : 한국과학기술원 화학공학과 (석사)
○ 2004년 : 한국과학기술원 생명화학공학과 (박사)

3. 경력사항
○ 2004년 ~ 2005년 : University of Texas at Austin, Post.doc 
○ 2005년 ~ 2007년 : LG화학기술연구원 과장
○ 2007년 ~ 2008년 : ETRI 선임연구원
○ 2008년 ~ 현재: 성균관대학교 화학공학부/SAINT 조교수, 부교수

4. 주요연구업적
○ J. H. Park, S. Kim, A. J. Bard*, "Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting" Nano Letters 6, 24 (2006).
○ D. H. Wang, D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Jeon, J. H. Park*, O. O. Park*, A. J. Heeger*, "Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles" Angew. Chem. Int. Ed., 50, 5519 (2011).
○ D. H. Wang, J. S. Moon, J. H. Seo, J. Seifter, J. Jo, O. O. Park*, A. J. Heeger*, J. H. Park*, "Efficient Solution-Processible Bilayer/Bulk-Heterojunction Solar Cells: Comparison with Bulk-Heterojunction Solar Cells" Nano Letters, 11, 3163 (2011).
○ J. K. Kim, K. Shin, S. M. Cho, T. W. Lee, J. H. Park* "Synthesis of Transparent Mesoporous Tungsten Trioxide Films with Enhanced Photoelectrochemical Response and Transparency: Application to Unassisted Solar Water Splitting" Energy & Environmental Science, 4, 1465 (2011).



 

반응형
반응형

식물은 광합성을 담당하는 세포 소기관인 '엽록체'를 통해 지구상에 있는 생명체들이 생존할 수 있도록 영양분을 제공합니다.

또한 동물은 '미토콘드리아'라는 세포 소기관으로 호흡하면서 생명유지에 필요한 에너지를 생산합니다.

이 같은 세포 소기관은 세포 안에 있는 특정한 기능을 하는 구조 단위로, 세균과 같은 원핵세포는 세포 소기관이 없지만, 동식물을 구성하는 진핵세포에는 핵, 미토콘드리아, 엽록체 등과 같은 세포 소기관이 있습니다.

식물세포가 엽록체를 통해 광합성하거나 동물세포가 미토콘드리아를 통해 에너지를 생산하려면 수천 개의 엽록체 단백질들이나 미토콘드리아 단백질들이 필요한데, 이들 모두는 세포 소기관만이 독자적으로 보유한 '리보좀'에서 만들어집니다.

리보좀은 세포질 내에 있는 직경 15~20나노미터의 소립자로, 원핵과 진핵세포에 널리 분포되어 있는 단백질 합성이 이루어지는 장소로, rRNA와 단백질의 복잡한 복합체로 구성되어 있습니다.

이 리보좀이 생성되는 과정에서 농축산물의 생산성을 크게 높일 수 있는 Obg 유전자가 국내 연구진에 의해 발견되었습니다.

경남과기대 방우영 교수팀은 Obg 유전자가 동식물의 에너지 생산에 절대적으로 필요한 '리보좀' 생성과정에 반드시 필요하다는 사실을 처음 밝혀냈습니다.

방 교수팀은 식물 엽록체의 리보좀이 생성되는 과정에서 Obg 유전자가 꼭 필요하고, Obg 유전자의 기능이 상실된 식물에선 정상적인 리보좀이 만들어지지 않는다는 사실을 규명했습니다.

또한 리보좀이 생성되지 않은 식물은 엽록체 단백질도 제대로 만들어지지 않아 엽록체가 생성되지 않고, 엽록체가 만들어지지 않은 식물은 광합성을 할 수 없어 결국 정상적으로 자라지 못한다는 것도 확인했습니다.

A. Obg의 기능이 소실된 애기장대의 표현형. 위의 그림은 정상적인 애기장대의 모습이고 아래그림은 Obg의 기능이 소실된 애기장대의 모습.
B. Obg의 기능이 소실된 벼의 표현형. 왼쪽 벼는 정상적인 벼의 모습이고 오른쪽 벼는  Obg의 기능이 소실된 벼의 모습.
A와 B에서 Obg기능이 소실되면 엽록체를 만들어 내지 못해 식물의 잎이 녹색을 띄지 않고, 결굴 광합성을 못하여 성장을 할 수 없게 된다.


이와 함께 연구팀은 Obg 단백질의 구조를 분석하여 동물의 미토콘드리아에만 존재하는 리보좀의 생성과정에도 Obg 유전자가 꼭 필요하다는 사실을 분자진화적으로 증명했습니다.

지금까지 전 세계 연구팀들은 원핵세포생물인 세균의 Obg 유전자의 기능에만 초점을 맞춘 반면, 이번 연구는 다세포 진핵세포생물까지 확대하여 Obg 유전자의 기능을 규명했습니다.

또한 Obg 유전자의 기능을 모델식물인 애기장대뿐만 아니라 세계 4대 식량작물인 '벼'까지 확대했다는 점에서 우리나라 쌀 생산에도 큰 도움이 될 전망입니다.

A와 B는 세균에 존재하는 Obg, C와 D는 식물의 엽록체에 존재하는 Obg, E아 F는 식물의 미토콘드리아에 존재하는 Obg, G는 사람의 미토콘드리아에 존재하는 Obg, H는 사람의 핵 속에 존재하는 Obg의 구조를 각각 나타낸다. 사람의 핵 속에 존재하는 Obg를 제외하고 식물과 동물의 Obg들은 세균에 존재하는 Obg를 많이 닮았다. 이러한 구조 분석은 진화적인 해석을 통해서 Obg가 엽록체와 미토콘드리아의 리보좀 생성에 중요한 역할을 한다는 것을 반증한다.

이번 연구결과는 식물분자생물학 분야의 권위 있는 학술지인 '식물학지(The Plant Journal)' 인터넷 판(3월 1일자)에 게재되었습니다.
(논문명: Functional characterization of ObgC in ribosome biogenesis during chloroplast development)

 

<연 구 개 요>

식물세포가 엽록체를 통해 광합성하거나 동물세포가 미토콘드리아를 통해 에너지를 생산하려면 수천 개의 엽록체 단백질이나 미토콘드리아 단백질들이 필요한데, 이들 모두는 세포 소기관만이 독자적으로 보유한 '리보좀'에서 만들어진다.

이러한 리보좀 생성은 다양한 인자들에 의해 복잡하고 정교한 과정으로 매개되는데, 그 중에 Obg유전자로부터 생성되는 GTP가수분해효소(Obg GTPase)는 미생물의 리보좀 생성에 필수인자로써 미생물 생존에 중요한  것으로 보고되어 왔고, 현재 항생제 개발을 위한 관심의 대상이기도 하다.
최근에는 일본 교토대학의 연구팀이 Obg유전자가 사람의 세포 내 미토콘드리아 발달과정에 중요한 영향을 미치는 것을 보고하여 많은 관심을 받아 왔지만, Obg 유전자가 진핵세포 소기관내에서 어떤 분자생물학적 기능을 담당하는지에 대해서는 그 결과가 턱없이 부족한 실정이었다.

본 연구에서는 식물에서 Obg유전자의 기능을 상실시켜 생리학적, 세포생물학적 그리고 분자생물학적으로 어떤 현상이 나타나는지를 관찰하였다.

Obg 기능이 상실된 애기장대의 백화 현상 (왼쪽은 Obg 돌연변이, 오른쪽은 정상 애기장대를 나타냄)

Obg 기능이 상실된 애기장대의 세포구조(a, b, c) 정상 애기장대의 세포구조 (d, e, f) Obg 기능이 상실된 애기장대의 세포구조


그 결과 Obg 기능이 상실된 식물에서는 정상적인 엽록체를 제대로 만들지 못해 광합성이 저해된 백화(albino)현상이 나타났으며, 이러한 식물에서 엽록체 내의 단백질 합성과 리보좀을 구성하는 rRNA의 processing이 저해되는 것을 확인 할 수 있었다. 그리고 Obg단백질이 리보좀 생성에 필수적인 23S rRNA와 특이적으로 상호작용한다는 것을 증명하였다.

(A) Obg 기능이 상실된 벼의 백화 현상 (왼쪽은 정상, 오른쪽은 Obg 돌연변이 벼를 나타냄)
(B) Obg 기능이 상실된 벼의 세포구조 (a, b, c) 정상인 벼의 세포구조 /  (d, e, f) Obg 기능이 상실된 벼의 세포구조


그리고 Obg 단백질은 Obg fold, G domain 및 OCT와 같은 세 가지 기능단위들로 구성되어 있는데, 본 연구에서는 Obg fold가 리보좀을 구성하는 단백질이나 rRNA와 상호작용함으로써 리보좀 생성에 필수적으로 관여하고, G domain는 세포 내의 GTP 또는 GDP와 같은 대사체들을 인지하여 Obg fold의 기능을 조절하는 것으로 확인했다.
그리고 OCT는 리보좀 생성에 대한 Obg의 기능에 중요하지 않지만, 환경 스트레스에 관련한 역할을 할 것으로 예상하였다. 

(A) Obg 돌연변이 식물(obgc-1)에서 rRNA processing의 저해 (B) Obg단백질의 23S rRNA와의 상호작용

(A, B) 세균 Obg의 구조, (C, D) 식물 엽록체 Obg의 구조, (E아 F) 식물 미토콘드리아 Obg의 구조, (G)사람의 미토콘드리아 Obg의 구조, (H) 사람의 세포 핵 Obg의 구조


 
한편 엽록체와 미토콘드리아와 같이 독자적인 유전자 발현체계를 가진 세포 소기관들은 과거 원시 세균이 주세포(host cell)에 공생하여 진화과정을 통해 생성되었기 때문에, 엽록체와 미토콘드리아에서 기능하는 단백질들은 대부분이 세균으로부터 진화했을 것으로 예상된다.
이러한 개념에서 엽록체와 미토콘드리아의 Obg 단백질 구조를 세균의 Obg와 분자 진화학적으로 비교해 보았을 때, 리보좀 합성에 중요한 Obg fold와 G domain의 형태가 거의 동일한 것을 확인 할 수 있었다.
하지만 엽록체 Obg는 세균 Obg처럼 OCT를 보유하는데 반해, 미토콘드리아 Obg는 OCT가 없고, 단지 Obg fold와 G domain만을 가지고 있었다.

(A) 엽록체 내에서 Obg의 역할에 대한 모델(B) Obg의 단백질 구조에 따른 기능 모델


이러한 사실들을 종합해 보면, 진화적으로 원시 세균이 진핵세포와 공생관계를 거치면서, 세균의 Obg 기능은 그대로 엽록체로 전해진 것에 반에, 미토콘드리아에는 Obg가 OCT기능을 상실하여 부분적으로 진화한 것으로 볼 수 있다.
그리고 앞선 일본 교토대학의 보고에서 Obg 기능이 상실될 경우 사람의 미토콘드리아 생성이 저해되는 현상은 Obg가 미토콘드리아 리보좀 생성에 필수적인 역할을 한다는 것을 강하게 뒷받침 할 수 있다.

지금까지의 내용을 종합하면, 본 연구에서는 Obg 단백질은 자신의 G domain을 통해서 세포 내 GTP 또는 GDP를 인지하여 Obg fold의 기능을 조절함으로써, 엽록체 리보좀의 생성에 필수적으로 관여하고, 이는 식물의 정상적인 엽록체 생성과 광합성에 매우 중요하다는 것을 증명하였다.
그리고 Obg 단백질의 구조를 분석하여 동물의 미토콘드리아에 존재하는 리보좀의 생성과정에도 Obg 유전자가 반드시 필요하다는 사실을 분자진화적으로 확인하였다.


 

  용  어  설  명

식물학지(The Plant Journal) :
국제 실험생물학협회(SEB)에서 발행하는 학술지로, 최근 5년간 영향력 지수 (Impact Factor)가 7.325임. 식물분자생물학 저널 중에서 권위 있는 학술지 중 하나로 인정받고 있다.


세포 소기관 :
세포 내에 있으며, 특정한 기능을 가진 구조 단위를 세포 소기관이라고 한다. 세균과 같은 원핵세포(핵이 없는 세포)는 세포 소기관이 없는 반면, 동물과 식물을 구성하는 진핵세포에는 핵, 소포체, 골지체, 미토콘드리아, 엽록체와 같은 다양한 세포 소기관이 존재한다.

엽록체와 미토콘드리아 :
엽록체는 식물 세포에 존재하는 세포 소기관으로서, 식물이 광합성을 할 수 있도록 하는데 중요한 기능을 담당한다. 미토콘드리아는 동물과 식물 세포에 존재하는 세포 소기관으로서, 에너지를 생산하거나 호흡대사에 관여하는 역할을 담당한다. 이러한 엽록체와 미토콘드리아는 '독자적인 유전체'를 가지고 있을 뿐만 아니라 이 유전체로부터 자체적으로 유전자를 발현시킬 수 있는 장치들도 보유하고 있다. 그리고 엽록체와 미토콘드리아는 과거 원시 세균이 주세포(host cell)에 공생하여 진화과정을 통해 생성되었기 때문에, 이러한 세포 소기관들의 독자적인 유전체 및 유전자 발현시스템에 대한 연구는 세균을 대상으로 많은 연구가 진행되어 왔다.

유전체 :
생명체를 구성하고 운영하는데 필요한 유전자 전체로서, 세포의 핵 속에 있다.

리보좀 :
세포 내 단백질 합성 공장으로서, 리보좀 RNA와 단백질들의 복합체이다. 주로 세포질에 위치해 있으나, 엽록체와 미토콘드리아는 세균에서 유래된 리보좀들을 독자적으로 보유하고 있다.

Obg 유전자 :
리보좀 생성과정에 관여하는 GTP가수분해효소를 만드는 유전자이다. 세균의 포자형성 과정에서 발견되어 그 이름이 Obg (Spo0B-associated GTPase)로 명명되었다.


 

<방우영 연구교수>

1. 인적 사항
 ○ 성 명 : 방 우 영 (方宇榮, 37세) 
 ○ 소 속 : 경남과학기술대학교 양돈과학기술센터   

구 분

학 교 명

학 과 명

전 공

수학기간

학 사

경상대학교

생화학과

생화학

1994~2001

석 사

경상대학교

응용생명과학부

분자생물학

2001~2003

박 사

경상대학교

응용생명과학부

분자생물학

2004~2007

임 용 기 간

임용기관

직명 (직위)

2003. 09~2004. 02

Texas A&M University

교환 연구원

2006. 09~2008. 12

경상대학교 생화학과

Teaching assistant

2007. 03~2009. 11

경상대학교 EB-NCRC

연구원

2007. 03~2009. 02

경상대학교 BK21

Post-doc

2009. 03~2009. 10

경상대학교 BK21

연구교수

2009. 11~현재

경남과학기술대학교
양돈과학기술센터

전임연구교수


4. 발표논문 :
2009년 11월 경남과학기술대학교 양돈과학기술센터에 연구교수로 부임 후 약 2년 6개월간 10편이상의 국외 SCI저널에 논문 게재

(SCI에 개재된 논문은 아래 5. 논문 업적 참고)

5. 주요 논문 업적

1. Bang WY, Chen J, Jeong IS, Kim SW, Kim CW, Jung HS, Lee KH, Kweon HS, Yoko I, Shiina T, Bahk JD (2012) Functional characterization of ObgC in ribosome biogenesis during chloroplast development. Plant J. doi: 10.1111/j.1365-313X.2012.04976.x. 
2. Kim SW, Kang HY, Hur J, Gal SW, Bang WY, Cho KK, Kim CU, Bahk JD, Lee JH (2011) Construction of a conditional lethal Salmonella mutant via genetic recombination using the ara system and asd gene. J. Microbiol. Methods. 87:202?207
3. Lee YH, Cho ES, Kwon EJ, Kim BW, Park DH, Park HC, Park BY, Nam J, Jang IS, Choi JS, Bang WY*, Kim CW (2011) Discovery of Non-synonymous Synonymous SNP in the ApoR Gene Associated with Pork Meat Quality Traits. Biosci. Biotechnol. Biochem. 75(10):2018-2020 (*교신저자)
4. Im CH, Hwang SM, Son YS, Heo JB, Bang WY, Suwastika IN, Shiina T, Bahk JD (2011) Nuclear/nucleolar GTPase 2 proteins as a subfamily of YlqF/YawG GTPases function in pre-60S ribosomal subunit maturation of mono- and dicotyledonous plants. J. Biol. Chem. 286(10):8620-32.
5. Lee Y, Bang WY, Kim S, Lazar P, Kim CW, Bahk JD, Lee KW (2010) Molecular Modeling Study for Interaction between Bacillus subtilis Obg and Nucleotides. PLoS One. 5: e12597.
6. Heo JB*, Bang WY*, Kim SW*, Hwang SM*, Son YS, Im CH, Acharya BR, Kim CW, Kim SW, Lee BH, Bahk JD (2010) OsPRA1 plays a significant role in targeting of OsRab7 into the tonoplast via the prevacuolar compartment during vacuolar trafficking in plant cells. Planta 232:861-871. (*공동 주저자)
7. Bang WY, Hata A, Umeda T, Masuda T, Ji C, Im CH, Yoko I, Suwastika IN, Jeong SI, Kim DW, Lee BH, Lee Y, Lee KW, Shiina T, Bahk JD (2009) AtObgC, a plant ortholog of bacterial Obg, is a chloroplast-targeting GTPase essential for early embryogenesis. Plant Mol. Biol. 71: 379-390
8. Bang WY, Kim SW, Jeong IS, Koiwa H, Bahk JD (2008) The C-terminal region (640-967) of Arabidopsis CPL1 interacts with the abiotic stress-and ABA-responsive transcription factors. Biochem. Biophys. Res. Commun. 372: 907-912
9. Bang WY, Kim SW, Ueda A, Vikram M, Yun DJ, Bressan RA, Hasegawa PM, Bahk JD, and Koiwa H (2006) Arabidopsis carboxy-terminal domain phosphatase-like isoforms share common catalytic and interaction domains but have distinct in planta functions. Plant Physiol. 142, 586-594.
10. Kim SW, Jeong EJ, Kang HS, Tak JI, Bang WY, Heo JB, Jeong JY, Yoon GM, Kang HY, and Bahk JD (2006) Role of RepB in the replication of plasmid pJB01 isolated from Enterococcus faecium JC1. Plasmid 55, 99-113.

 

반응형
반응형

머리카락 10만 분의 1m의 미세한 크기도 분별할 수 있는 초고분해능 광학영상장치가 개발돼 바이러스와 암세포 같은 생체바이오 물질을 보다 명확히 분석할 수 있게 되었습니다.
 
현재 일반적으로 사용되는 전반사 형광현미경은 수 백 나노미터 크기까지 분별할 수 있는 회절한계를 가지고 있습니다.

이 문제를 해결하기 위하여 전 세계 연구팀들은 수십에서 수 나노미터 크기까지 분별할 수 있는 광학영상 장치 개발에 노력 중입니다.

■ 연세대 김동현 교수팀은 '나노미터 단위의 국소적 샘플링(NLS)' 방식으로 기존 분해능의 한계를 극복할 수 있는 새로운 선택적 형광영상법을 개발했습니다.

연구팀은 금속 나노구조칩 표면에 작고 강한 전자기파 핫스팟을 만들어 지나가는 생체분자의 영상 정보를 복원하는 방법으로 기존의 문제점인 회절한계를 극복했습니다.

특히 기존에는 고가의 특수 장비 없이는 세포와 단백질 상호작용 현상을 영상화하기 힘들었는데, 이번 연구는 일반 현미경에 자체 제작한 금속 나노구조칩을 접합하는 것만으로도 쉽고 간편하게 세포와 단백질 상호작용 현상 등을 관찰하고 영상화할 수 있습니다.

이 영상법으로 암세포와 같은 특정 세포와 세포 내에서 움직이는 기질, 또는 단분자 영상화도 가능할 전망입니다.

연구결과는  나노와 마이크로 과학분야의 권위 있는 학술지인 '스몰(Small)'지에 표지논문으로 3월 26일자에 게재되었습니다.
(논문명 : Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules)

나노홀 어레이 구조를 이용하여 나노미터 크기의 핫스팟을 형성한다. 마이크로튜뷸 분자는 표면에 고정된 모터 단백질인 키네신 상에서 움직이는데, 핫스팟으로 마이크로튜뷸 분자를 샘플링하는 방법으로 나노미터급 초고분해능의 분자영상을 구현하였다.

<연 구 개 요>

생체 바이오 물질의 관찰을 통한 기질 특성 연구는 예전부터 의·공학 분야에서 매우 활발하게 진행되었다.
특정 단백질, 바이러스 또는 암세포 등의 생체 바이오 물질을 이미징하고자 할 때, 기존의 전반사 기반 형광 현미경(Total Internal Reflection Fluorescence Microscopy) 같은 경우 회절 한계(diffraction limit) 로 인한 분해능(resolution) 한계 때문에, 구체적이고 정확한 분석이 어렵다.
최근에는 수십에서 수 나노미터(nano-meter)의 분해능을 얻을 수 있지만, 이는 상당히 고가의 특수 영상장비의 구비를 통해서만 가능하였다.
 
수 백 나노미터 사이즈 단위의 주기적 원형 패턴(pattern)으로 이뤄진 금속 나노홀 구조(metallic nano-hole structure)칩을 Electron-beam lithography 방식으로 제작한 후, 일반적으로 사용되는 전반사 형광 현미경 시스템에 접목시키면, 나노홀 표면 근접장 분포(near-field distribution)의 변형과 함께, 매우 강하게 국소화(localization)된 필드(field) 영역, 이른바 핫스팟(hot spot)이 생성된다. 나노구조(nanostructure)가 주기적으로 패턴되었기 때문에 핫스팟도 주기적 형태로 얻을 수 있으며, 이를 이용한 선택적 형광 영상법, 이른바 '나노미터 단위의 국소적 샘플링(NLS)' 방식을 통해 수 십 나노미터 크기의 분해능을 갖는 이미지를 얻는데 성공하였다.

이번 연구에 사용된 바이오 물질은 모터 단백질(motor proteins) 중 하나인 키네신(kinesin)과 2차원 평면상에서 특정 속도를 가지고 자유롭게 이동하는 마이크로튜불(microtubules)로서, 국내에서는 이러한 바이오 물질을 이용한 초고분해능 광학 영상법에 대한 연구의 전례가 많지 않았다는 점에서 큰 의의를 갖는다.

김동현 교수 연구팀은 나노홀 표면에서 형성되는 핫스팟 커널(kernel)을 이용하여 카메라를 통해 얻어진 마이크로튜불 이미지를 초고분해능 영상으로 복원해냈다. 이 같은 방법의 개발은 전 세계적 관심사인 세포 내 단백질의 동적 움직임 및 기질 분석, 세포와 다른 분자 간, 박테리아 또는 바이러스 간의 상호 작용에 대한 영상화 가능성을 제시한다.
 
2010년에도 이 연구팀은 불규칙적으로 제작된 나노섬(nano-island) 구조칩을 이용한 초고분해능 광학 영상 시스템 개발에 대한 연구를 진행하였으며, 당시의 연구 결과는 핫스팟을 이용한 바이오 물질의 영상화 방법으로써 기존 전반사 형광 현미경이 갖는 회절 한계를 극복할 수 있다는 연구 결과를 이미 입증한 바 있다.  


  용  어  설  명

전반사 형광 현미경(Total internal reflection fluorescence microscopy) :
빛이 전반사 조건으로 입사될 때, 매질 사이 경계면으로부터 100 nm ~ 200 nm 내에 그 크기가 지수 함수적으로 감소하며 존재하는 필드 영역을 '소실파(Evanescent wave)'라고 한다.
전반사 형광 현미경이란, 이러한 소실파가 존재하는 영역을 이용하여 형광 시료로 염색된 물질을 관찰하고 영상을 얻을 수 있는 현미경 장치이다.

회절 한계(diffraction limit) :
관찰하고자 하는 두 물체간의 간격이 현미경에서 사용하는 광원의 반파장 크기 이하에 해당되면, 현미경의 광학 렌즈를 통해서 우리는 두 물체가 서로 다른 것임을 구분할 수 없으며, 하나의 물체로 인식할 수밖에 없게 되는데, 이를 광학적 회절 한계(diffraction limit)라 일컫는다.

분해능(resolution) :
분해능(resolution) 또는 해상도란 서로 떨어져 있는 두 물체를 구별할 수 있는 최소 거리를 의미하며, 광학적 회절 한계로 인해 분해능에도 한계가 존재하게 된다. 하지만, 전 세계적으로 이러한 분해능 한계를 극복하고 더 작고 미세한 것을 보기 위한 연구가 현재도 활발하게 이뤄지고 있다.

Small 誌 :
재료, 화학, 공학 등의 융합 영역의 학문분야에서 나노기술 관련 논문들을 출판하는 세계적으로 권위 있는 학술지이다. 특히 피인용지수(Impact Factor)가 2010년 기준 7.336이다.
전 과학 분야에서 상위 5% 이내에 랭크되는 학술지로, 융합(Multidisciplinary) 분야에서 8.8%(13위/147개) 이내에 든다.


<김동현 교수>

1. 인적사항

 ○ 소 속 : 연세대학교 전기전자공학부

2. 학력
  1988 - 1993    서울대학교 전자공학과 학사
  1993 - 1995    서울대학교 전자공학과 석사
  1995 - 2001    Massachusetts Institute of Technology 전기공학부 박사
 
3. 경력사항
  2001 - 2002 미국 Corning Inc. Sr. Research Scientist
  2003 - 2004 미국 코넬대학 박사후연구원
  2004 - 현재 연세대학교 전기전자공학부 교수
  2011 - 현재 연세대학교 의료기기기술연구소 센터장

<김규정 박사>

1. 인적사항

 ○ 소 속 : Max-Planck-Institute for the Science of Light
           Erlangen, Germany

2. 학력
  2001 - 2006    연세대학교 전기전자공학부 학사
  2006 - 2012    연세대학교 나노메디컬협동과정 박사
                  
3. 경력사항
  2009 - 2011        OSA-연세대학교 학생챕터 회장
  2007.11 - 2007.12     미국 코넬대학교 방문연구원
  2009. 3 - 2009. 4     일본 가쿠슈인대학교 방문연구원
  2011. 6 - 2011. 7  독일 막스플랑크 연구소 방문연구원
  2012 - 현재        독일 막스플랑크 연구소 박사후연구원

4. 수상실적
  2008.  하이서울 서울시 장학생
  2008.  OSA Biomedical Optics Topical Meeting, 최우수발표상
  2009.  SPIE Optical Science and Engineering 장학금 수상
  2009.   대학 Intellectual Property-Ocean 공모전 자유부문 대상 수상
  2010.   연세대학교 대학원 최우수 논문상 수상
  2011.   SPIE Optical and Photonics 장학금 수상

 

반응형
반응형

라스단백질(Ras Protein)은 세포성장신호를 조절하는 중요 단백질로, 약 30%의 암 환자에서 돌연변이가 발생하는 것으로 알려지고 있습니다.

수 많은 거대 다국적 제약회사들은 지난 20년간 엄청난 투자를 통해 라스를 제어할 수 있는 항암제를 개발하고 있습니다.

라스가 암을 유발하려면 세포막으로 이동해야 한다는 점에 착안하여, 라스의 이동을 막아 활성을 억제하는 항암제를 개발하고자 시도하였지만, 임상실험에서 효과가 적고 부작용이 발생해 대부분 실패하였습니다.

최근 일부 항체 항암제들이 돌연변이 라스로 인한 암환자에게 효과가 없다는 사실이 밝혀짐에 따라, 라스를 제어하는 항암제 개발의 필요성은 더욱 절실해진 상황입니다.

이처럼 항암제 개발에 가장 큰 걸림돌로 알려진 라스단백질을 제어할 수 있는 새로운 원리가 규명됐습니다.

연세대 최강열 교수팀은 돌연변이가 발생해 기존 항암제로도 치료되지 않는 '라스'라는 암발생 인자를 제어할 수 있는 새로운 원리를 밝혀냈습니다.

최강열 교수팀은 라스단백질에 인산이 붙어 분해됨으로써 라스의 활성도 제어할 수 있음을 명확히 규명해 신개념 라스제어 항암제 개발의 단초를 열었습니다.

최 교수팀은 세포의 성장조절 신호전달체계인 윈트신호 전달계를 저해시키는 인자인 인산화 효소(GSK3beta)가 윈트신호를 억제하여 라스를 인산화시키고, 인산화된 라스에 단백질 복합체(베타티알시피-E3라이게이스)가 결합하여 유비퀴틴화를 촉진시킴으로써 라스가 프로테아좀(세포내 단백질 분해장소)으로 이동해 분해되어 없어져 암 유발이 억제된다는 사실을 밝혀냈습니다.

향후 이 원리를 활용해 라스를 분해하여 인체에 흡수가 잘 되는 저분자 항암제를 개발할 수 있을 것으로 기대받고 있습니다.

이번 연구는 최강열 교수가 주도하고 윤종복, 김호근 교수 및 정우정, 윤주용 박사과정생이 참여했습니다.

연구결과는 사이언스지의 자매지인 세포신호전달분야 '사이언스 시그널링(Science Signaling)'에 4월 10일자로 게재되었습니다.
(논문명: Ras Stabilization Through Aberrant Activation of Wnt/beta-catenin Signaling Promotes Intestinal Tumorigenesis)


<연 구 개 요>

Ras Stabilization Through Aberrant Activation of Wnt/beta-catenin Signaling Promotes Intestinal Tumorigenesis Jeong, W.J. et al. (Science Signaling - 2012. 4.10)

라스(Ras)는 21 킬로달톤(KDa) 크기의 작은 지(G)-단백질들의 그룹에 속하며, 포유동물에서 K-, N-, H-Ras의 세 종류가 대표적인 것들로 알려져 있다. 라스가 처음으로 밝혀진 이후 30년의 세월이 지났지만, 라스는 여전히 암과 관련하여 가장 중요한 연구개발 대상으로 남아있다.
라스는 세포성장을 조절하는 중요한 단백질로 아랫단계인 어크(ERK) 및 PI3 kinase-Akt 신호전달계들을 한꺼번에 조절할 수 있는 신호전달의 스위치적인 역할을 수행한다. 정상적인 상황에서는 윗 단계로부터 유입되는 상피세포성장인자(EGF)와 같은 세포성장신호에 여부에 따라 GDP 혹은 GTP가 결합함으로 인해 불활성화 혹은 활성화 상태로 전환되며 신호전달을 조절한다(그림 1).

 

그림 1. 라스는 GDP가 결합된 불활성화 상태로 존재하다가 윗 단계에서 EGF와 같은 세포 성장 신호를 받게 되면 GDP가 GTP로 치환되어 Ras-GTP 형태가 되어 활성화된다.  활성화된 Ras-GTP는 가수분해작용에 의해 Ras-GTP 형태로 돌아와 불활성화 되며 이 같은 구조변경을 통하여 세포성장 조절에 중요한 스위치적인 역할을 한다.

라스가 세포성장 신호를 전달하는 기능을 수행하기 위해서는 세포막에 존재해야만 하는데, 파네실트란스퍼라제(Farnesyltransferase)라는 효소가 파네실화시켜서 라스를 기능을 수행하는 세포막으로 옮겨지도록 한다

 

그림 2. 라스 단백질이 기능을 수행하기 위해서는, 세포질에서 만들어진 이후 세포막으로 이동해야 하는데, 이를 위해서는 파네실트란스퍼라제(Farnesyltransferase)같은 효소에 의해 파네실화(그림에서 갈색 선들)가 일어나야만 세포막을 존재할 수 있게 되며, 이때 GTP가 결합한 형태의 활성화된 라스가 아랫단계로 신호를 전달한다.

라스유전자에 돌연변이가 일어난 암환자들에서는 라스가 항상 GTP가 붙는 비정상적으로 활성화되어있는 형태로 만들어지며, 이 경우 GDP가 붙은 불활성화 상태로 돌아가지 못해 아랫단계로 항상 세포성장 신호를 보내는 결과가 되어 암 발생에 기여한다.  
  
이번 최강열 교수 연구진의 연구는 윈트(Wnt)라는 또 다른 세포성장 신호전달계를 통해 라스단백질이 분해될 수 있음을 밝혔으며, 이 때문에 돌연변이에 의해 GTP가 붙은 활성화형태의 라스가 만들어진다 해도, 분해되어 없어지기 때문에 암이 생기지 않음을 밝혔다.
이 연구는 수많은 연구자들이 지금까지 연구해온 라스라는 중요 단백질이 단백질분해수준에서 조절될 수 있음을 보여준 최초의 연구라는데 중요성이 있다고 하겠다.
더욱이 이 같은 조절이 사람과 동물의 암 발생에 중요한 역할을 수행한다는 것을 환자샘플과 모델동물을 이용해 확인했다. 새로운 라스분해 원리를 요약하면, 윈트신호전달이 낮게 유지되는 상황에서 (예로서 윈트신호전달계의 신호억제 인자들인 Apc 혹은 Axin가 과발현 등으로 기능을 잘 수행할 경우) GSK3b라는 인산화효소가 활성상태가 되어 트레오닌(Thr)-144, 와 Thr-148 번을 인산화 시킨다. 
이같이 인산화된 라스는 베타티알시피(b-TrCP)-E3-ligase 라는 단백질 분해에 관련되는 물질복합체가 결합할 수 있고, 이를 통해 라스는 유비퀴틴화 되어 26S 프로테아좀에 시스템에 의해 분해된다. 

 

그림 3.  (+) 혹은 (-) Wnt 신호에 따른 라스 단백질의 분해 조절 메커니즘

그림 4. 라스 단백질이 윈트신호전달계를 저해하는 효소인 GSK3b에 의해 트레오닌-144(Thr-144)와 Thr-148 번의 아미노산 잔기들에 인산화 됨을 직접적인 인산화 실험을 통해 입증함.  라스의 인산화는 LC-MS/MS 분석방법으로 밝혔다.

그림 5. 라스가 인산화 되는 아미노산들인 Thr-144 와 Thr-148에 돌연변이를 유도한 돌연변이형 라스들을 이용해, 이들 아미노산 잔기들의 인산화가 유비퀴틴화를 통한 라스 분해에 중요함을 보여주는 데이터임.

암을 유발할 수 있는 형태(GTP결합)의 활성화된 라스의 경우, APC의 돌연변이같은 비정상적인 윈트신호에 의해 분해되지 않고 축적되면, 비정상적인 세포성장을 유도하여 암이 유발될 수 있다.
보통의 경우에는 돌연변이가 일어난 형태의 라스가 많이 만들어 진다고 하더라고 분해되어 암 발생을 유도하지 않으나, APC의 돌연변이에 의해서, 윈트신호가 활성화된 경우에는, 돌연변이가 일어난 GTP-Ras가 분해되지 않고 많이 축적되게 되어 아랫단계에 비정상적으로 세포성장 신호를 보내어 암을 발생시킴을 암환자와 동물모델을 통해 확인되었다.

 

그림. 6. APC의 돌연변이에 의해 윈트 신호전달계가 활성화됨에 따라 라스가 증가된 마우스에서 암이 발생된 경우를 보여주는 데이터임. ApcMin/+과 Apc1638N 두 종류의 APC가 돌연변이된 마우스를 사용했으며, 라스의 활성화가 아랫단계의 ERK와 전사인자인 ATF까지 활성화시킴을 보여주고 있다. 이 경우 APC의 돌연변이에 의해 윈트신호전달계가 활성화 되었을 때 라스의 분해를 예측하게 하는 인산화형태의 라스(p-Ras)는 반대로 줄어듦을 보여줌으로써, 라스의 인산화 억제 때문에 라스 단백질의 양이 증가됨을 암시하고 있다.

이 같은 동물수준에서의 윈트신호에 의한 라스안정성 조절이 사람의 암 발생에서도 중요함을 사람의 대장암샘플을 이용하여 확인하였다.

이 경우 사람의 APC가 유전적으로 돌연변이가 일어난 FAP (familial type adenomatos polyposis coli) 환자샘플을 이용하여, 라스의 인산화 및 양적 상태를 윈트신호전달계 활성화 상황과 비교하여 보여주었다.

그림 7. APC가 돌연변이가 있는 가족력을 가진 환자(FAP; familial type adenomatos polyposis coli-사진 좌측아래)의 대장암 조직에서 윈트 신호전달계 활성화 마커인 베타카테닌(b-catenin)과 라스가 동시에 증가되나 인산화가 일어난 라스는 반대로 감소함을 보여주는 결과다. 오른쪽 그림은 다양한 암 진행 상태에서 베타카테닌과 라스가 비례적으로 증가하나, p-Ras는 감소함을 보여 준다.


-오늘날 라스를 타깃으로 하는 항암제 개발의 한계점- 

대장암을 비롯한 대부분의 암에서는 활성화 형태의 라스돌연변이가 매우 높은 비율로 발견되고 있으며(대장암에서는 30-50%, 췌장암에서는 90%), 이 같은 돌연변이는 결합된 GTP가 가수분해 될 수 없는 활성화형태로서 지속적으로 세포성장신호를 보내기 때문에 암이 발생하는데 기여한다.
라스가 암 발생, 특히 진행에 가장 중요한 원인인 것이 잘 밝혀진 이유로 해서, 활성화된 라스를 제어하는 항암제 개발은 라스와 암과 관련성이 발견된 이후, 수많은 암연구자들은 물론 제약회사에서 크게 관심을 가져왔다.
대표적인 라스 제어 항암제 개발방법으로 시도된 것은 뉴클레오타이드 유사물질을 이용하여, 활성화된 GTP-Ras에서 라스를 떼어내려는 시도를 하였으나, GTP-Ras간의 결합력이 워낙 강해 GTP의 결합을 못하게 하는 유사물질 개발은 대부분이 실패했다.
또한 라스에 결합하여 그 활성을 억제하는 저분자화합물을 개발하려는 시도도 라스단백질의 구조상 저분자 화합물이 달라붙을 수 있는 공간이 마땅하지 않아 (그림 8) 이에 대한 연구개발도 대부분 실패로 끝났다. 

 

그림 8. 라스는 GTP(붉은색)가 높은 친화력을 가지고 달라붙어있고, 또한 구조적으로 저분자 화합물이 붙기 힘든 구조를 취하고 있다.

앞서 설명한 바와 같이 라스가 기능을 수행하기 위해서는 작용하는 장소인 세포막으로 위치 이동되는 것이 매우 중요하다. 따라서 라스가 세포막으로 이동하는데 필요한 파네실화(Fanesylation)를 억제하는 파네실트랜스퍼라제 저해제(Farnesyltransferase inhibitor; FTI)는 지난 20년간 수많은 암 연구자들과 제약회사들에 의해서 항암제 개발이 시도되었다.
하지만 이 저해제에 의해서 라스의 파네실레이션이 억제되어도 저라닐저라닐레이션(Geranylgeranylation)이라는 부수적인 지질화에 의해서 여전히 세포막으로 이동할 수 있음이 밝혀졌다.
따라서 파네실트렌스퍼라제 저해제 항암제개발에 제동이 걸렸으며, 이와 더불어 효과나 안정성 부작용 등의 문제가 밝혀짐으로써, 현재로서는 많은 연구자의 경우 라스를 직접 조절 할 수 있는 항암제 개발은 실패로 끝났다! 라고 판단하는 상황에 있다.
하지만 라스를 직접 제어하는 항암제 개발의 중요성에 대해서는 아직 모두 인정하고 있는 상황이다. 오늘날 많이 사용되기 시작했으며, 2017년까지 판매가 급증 하리라 예상되고 있는 차세대의 항암제로 알려진 상피세포성장인자수용체(EGFR) 작용하는 특이적인 상피세포성장인자 수용체 단클론항체항암제(EGFR mAb)들이 K-Ras에 돌연변이가 있는 환자에서 효과가 없음이 밝혀짐으로서 라스를 직접 제어하는 항암제 필요성은 그 어느 때 보다 더욱 절실 하다고 하겠다.

-연구 의의-

라스를 분해시키는 메커니즘을 밝힌 이번 연구결과는 돌연변이가 일어나 활성화된 라스를 가지는 암환자를 치료할 수 있는 한계극복용 라스제어 화합물 항암제를 개발하기 위한 초석이 될 전망이다.
최강열 교수 연구진은 현재 연구를 통해 라스를 분해하는 저분자화합물을 화합물라이브러리 스크리닝을 통해 발굴하였고, 종양저해 효과를 확인하였으며, 같은 대학의 한균희 교수와 공동으로, 유사화합물들을 합성하여 약효가 증진되고 안정성 있는 항암제로 개량하는 연구를 진행하고 있다.
이들 화합물항암제들은 돌연변이에 의해 활성화된 라스를 분해하는 혁신적인 항암제로 개발될 수 있을 전망이다. 이 저분자 라스분해 항암제는 파네실트란스퍼라제 항암제들의 개발이 실패로 돌아간 상황에서 직접적으로 라스를 제어하는 한계 극복형 항암제가 될 전망이다.
특히 이 화합물들은 라스에 직접 작용하기 때문에, 상피세포수용체(EGFR) 단클론항체항암제들에 효과를 보지 못하는 K-Ras 돌연변이 환자들의 치료에 적용할 수 있는 한계극복용 항암제가 될 전망이다.
마지막으로 라스의 경우 ERK 신호전달계는 물론, 라스가 조절하는 것으로 알려진 암 발생과 관련된 또 하나의 중요 신호전달계인 PI3 kinase-Akt 신호전달계를 조절하기 때문에 오늘날 항암제의 개발 방향인 이상적인 다중타겟항암제가 될 전망이다.
실제 2012년 현재 많은 연구자들이 ERK와 PK3 kinase-Akt 신호전달계를 각각의 신호전달계들을 저해하는 항암제들이 함께 처리했을 때(combinatory therapy시) 항암효과가 뛰어남이 관찰되었는데, 연구진이 개발하고 있는 라스분해 항암제의 경우는 단일 화합물로 이들 주요 신호전달계들을 동시에 제어할 수 있는 이상적인 항암제가 될 전망이다.


 용  어  설  명

윈트(Wnt) 신호 :
암세포의 성장과 전이의 대표적인 작동경로

유비퀴틴(Ubiquitin) :
76개 아미노산으로 구성된 단백질로 매우 작고, 다른 단백질과 결합해 분해를 촉진함

Ras (라스) :
표피세포성장인자(EGFR; epidermal growth factor receptor)등으로부터 시작된 세포성장신호를 조절하는 스위치 역할을 하는 21 kDa의 작은 단백질이며(종종 small G protein family라 불리고 일반적으로는 K-, N-, H-Ras가 대표적임), GTP-와 GDP가 결합하여 활성화 불활성화 되며, Raf-MEK-ERK와 PI3 kinase-Akt 신호전달계들을 조절할 수 있다.

Farnesyl transtransferase inhibitor (파네실트란스퍼라제 억제제) : 
라스 신호전달계에서 라스가 세포막으로 이동하는데 필요한 파네실화(farnesylation)를 방해하여 라스에 의한 신호전달을 차단하여 암 발생을 저해하는 항암제로 개발되어 왔으나 제한적인 약효와 독성, 부작용 등으로 항암제로서 개발이 중단된 상황이 많다.  
 
얼비툭스/시툭시매브[Erbitux/Cetuximab) :
상피세포성장인자(EGFR; epidermal growth factor receptor)에 작용하여 EGFR의 기능을 억제하는 단클론항체항암제로, 전이성대장암을 비롯한 몇몇 암에 효과가 있는 것으로 알려져 있다. 

Adenomatos polyposis coli (APC) :
윈트신호의 저해인자로 작용하는 인자로 암이 시작되는 것을 억제하는 인자로 작용하며, 대장암 환자들에서 90%의 높은 비율로 돌연변이가 발견되며, 이 돌연변이는 암 발생에 큰 영향을 미치는 것으로 알려져 있다. 

Familial type adenomatos polyposis coli (FAP) :
가족력으로 Apc(adenomatous polyposis coli) 유전자에 이상이 생긴 암환자로, 젊은 시기인 20-30세에 발병하며 대장에 수많은 폴립이 발생된다

 

<최강열 교수>

1. 인적사항                          

 ○ 성 명 : 최강열  
 ○ 소 속 : 연세대학교 생명시스템대학 생명공학과  단백질기능제어이행연구센터(ERC) 

2. 학력사항
  1978.2 - 1985.2   연세대학교  생명공학 학사   
  1988.8 - 1993.8  퍼듀대학교  생화학/생명과학 박사 
    
3. 경력사항 
  1993.9 - 1995.2     하버드 의과대학 생화학-분자약리학 박사후연구원
  1995.2 - 2001.8    연세의대 생화학-분자생물학교실 조/부교수
  2001.8 - 2004.8   연세대학교 공과대학 생명공학과 부교수
  2004.9 - 현재  연세대학교 생명시스템대학 생명공학과 교수
  2006.3 - 2007.2  연세대 유전체 협동과정 주임교수
  2003.1 - 현재  Experimental and Molecular Medicine, Editor
  2009.1 - 현재  Journal of Biochemistry, Associate Editor
  2007.1 - 현재  The Open Chemical and
    Biomedical methods Journal, Editorial Board
  2009.1 - 현재  World Journal of Stem Cells,  Editorial Board
  2009.9-2010.7         연세대 생명공학과 학과장
  2005.3 - 2009.8  국가지정연구실(NRL) 책임자
  2009.2 - 현재  단백질기능제어이행연구센터(ERC) 센터장 

4. 주요성과 

Woo-Jeong Jeong, Juyong Yoon, Jong-Chan Park,Soung-Hoon Lee, Seung-Hoon Lee, Saluja Kaduwal Hoguen Kim, Jong-Bok Yoon,  Kang-Yell Choi. 2012. Ras Stabilization Through Aberrant Activation of Wnt/beta-Catenin Signaling Promotes Intestinal Tumorigenesis. Science Signaling. 5, 1-14.

Byung-San Moon, Hyun Yi Kim, Mi-Yeon Kim, Dong-Hwa Yang, Jong-Min Lee, Kyung-Won Cho, Han-Sung Jung, and Kang-Yell Choi. 2011. Sur8/Shoc2 Involves Both Inhibition of Differentiation and Maintenance of Self-renewal of Neural Progenitor Cells via Modulation of ERK Signaling. Stem Cells. 29, 320-331

Ju-Yong Yoon, Kyoung-Hwa Koo, and Kang-Yell Choi. 2011. MEK1/2 Inhibitors, AS703026 and AZD6244, may be potential therapies for K-rasMutatedColorectalCancerthatisresistantto EGFR Monoclonal Antibody Therapy. Cancer Research. 71:445-453.

Dong-Hwa Yang, Ju-Young Yoon, Soung-Hoon Lee, Vitezslav Bryja, Emma R. Andersson, Ernest Arenas, Young-Guen Kwon, Kang-Yell Choi. 2009. Wnt5a is Required for Endothelial Differentiation of Embryonic Stem Cells and Vascularization via Pathways Involving Both Wnt/Beta-Catenin and PKCa. Circulation Research. 104, 372-379.

Sung-Eun Kim , Ju-Yong Yoon, Woo-Jeong Jeong, Soung-Hoo Jeon, Yoon Park, Jong-Bok Yoon ,Young Nyun Park, Hoguen Kim, and Kang-Yell Choi. 2009. H-Ras is degraded by Wnt/b-catenin signaling via b-TrCP-mediated polyubiquitination. Journal of Cell Science. 122, 842-848. (Cover paper/highlight paper)

Kang-Yell Choi., D. M. Lyons, and E. A. Elion. (1994). Ste5 thether multiple protein kinase in the MAP kinase cascade required for mating in Saccharomyces cerevisiae. Cell. 78, 499-512.

  

반응형
반응형

이슬점은 공기 중 포함된 수증기가 물로 응축되는 온도를 말하는데, 이슬점을 안다고 하는 것은 공기 속에 얼마나 많은 수분이 존재하고 있는가, 혹은 얼마나 건조한 상태인가를 알 수 있는 수분의 척도입니다.

일상생활과 산업공정에서 적정한 습도의 존재는 매우 고마운 존재이지만, 반도체 등 첨단산업에서는 수분은 불청객으로 취급 받습니다.

반도체 공정에서 극미량의 수분 일지라도 이는 제품의 품질에 결정적인 영향을 미치는데, 특히 반도체 제조과정 가운데 식각 공정에 쓰이는 각종 가스의 수분이 정상치를 넘을 경우 박막의 전기 광학적 성질이 바뀌어 제품의 불량률을 높이는 요인이 됩니다.

때문에 최근 첨단 산업공정에서는 ppb 정도의 극미량 수분의 측정 및 조절이 필수적입니다.

이 영역에서 수분을 측정할 수 있는 계측기가 최근 개발되어 반도체 공정 등에 설치되어 품질을 책임지고 있지만, 이런 계측기들의 정확도를 평가할 수 있는 극미량 수분표준이 없어 그동안 측정 신뢰성 및 품질 관리에 문제점으로 작용했습니다.

한국표준과학연구원(KRISS) 온도센터 최병일 박사팀이 반도체 수율 향상에 핵심 요소인 ppb 수준의 극미량 수분표준을 국내 최초로 확립했습니다.

이번에 확립한 수분표준 영역은 이슬점으로 -105 ℃, 5 ppb(10억 분의 5) 수준으로, 일반 가정용 가습기 습도의 100만 분의 1에 해당하는 극미량의 수분양입니다.

현재 5 ppb 수준까지 수분을 정확히 측정하고 제어할 수 있는 기술을 보유한 나라는 미국, 영국, 독일, 일본 등에 불과합니다.

연구팀은 극미량의 수분을 정확하게 제어하고 발생시킬 수 있는 장치를 개발해 수분표준을 확립했습니다.

연구팀인 극저온인 -95 ℃를 유지하며 내부가 얼음으로 코팅되어 있는 용기(포화조) 내에 건조가스를 주입해 고압 상태에서 얼음과 수증기가 열적 평형상태인 포화된 습공기를 만들고, 이를 다른 압력과 온도로 방출시키는 방법으로 온도와 압력과의 열역학적 관계식을 응용했습니다.

이를 통해 정밀하게 조절된 극저수분 공기를 만들어 수분의 양을 100억 분의 5개(0.5 ppb)이내로 정밀하게 측정하는데 성공했습니다.

현재 산업체에서 필요로 하는 극미량 수분계측기 교정의 하한 영역은 이슬점 -120 인 0.2 ppb(100억분의 2)입니다.

앞으로 연구팀은 산업체가 필요로 하는 수분 영역까지 극미량 수분표준을 확립하거, 확립한 극미량 수분표준을 보급하기 위해 산업체에서 사용하고 있는 수분계측기에 대해 교정을 실시할 계획입니다.


극미량 수분표준 발생장치로 수분계측기를 교정하는 최병일 박사.

반응형
반응형

현재 미국에는 미래 과학기술이 자신을 살릴 것이라 믿으며 냉동상태로 보관되고 있는 사람(시신)이 100명이 넘는다고 합니다.

냉동인간은 시신의 체내에서 피를 모두 빼고 대신 동결보호제를 주입한 뒤 액체질소를 채운 영하 196℃의 금속용기 안에 보관하는 것입니다.

현재까지는 이 같은 방식으로 보존만 할 뿐 다시 소생시킬 수 있는 기술은 없습니다.

냉동인간의 해동과정에서 얼음이 재결정화면서 세포의 파괴가 진행되는데 현재 기술로는 이를 해결할 방법이 없습니다.

그러나 이 때 진행되는 현상을 분석해 결빙현상을 막아주는 해동기술에 적용하면 한가닥 가능성이 생기는 셈인데, 이를 연구하려면 액체 상태에서 원자분석이 가능해야 합니다.

여기에 이용되는 것이 투과전자현미경인데, 아직까지 액체를 원자단위로 연구할 방법은 없었습니다.

■ 투과전자현미경은 0.004nm에 불과한 아주 짧은 파장의 전자빔을 이용하기 때문에 가시광선을 이용하는 광학현미경 보다 약 1000배 높은 분해능을 갖고 있습니다.

따라서 계면의 결정구조와 격자결함 등 원자단위까지 분석이 가능해 최근 다양한 종류의 차세대 신소재 연구에 필수적인 장비로 사용되고 있습니다.

그러나 투과전자현미경은 0.001~0.00001 기압(atm)의 고진공상태에서 사용하기 때문에 액체를 관찰하려해도 고정이 되지 않고 즉시 공중으로 분해되기 때문에 관찰이 불가능합니다.

게다가 투과전자현미경의 원리상 전자빔이 수백 나노미터 이하의 시편을 투과해야 되는데 액체를 그만큼 얇게 만드는 것도 매우 어렵습니다.

KAIST 신소재공학과 이정용 교수팀은 꿈의 신소재인 그래핀을 이용해 수백 나노미터 두께로 액체를 가두는 데 성공했습니다

과학계의 오랜 숙원으로 꼽히던 액체를 원자단위까지 관찰하고 분석하는 기술이 세계 최초로 개발된 것입니다.

탄소원자들이 육각 벌집모양의 한 층으로 형성된 그래핀은 두께가 0.34nm로, 지금까지 합성할 수 있는 물질 중 가장 얇은 물질입니다.

그래핀으로 나노미터 크기의 결정이 담긴 액체를 감싸면 투과전자현미경 안에서 그래핀이 투명하게 보이며, 또한 액체를 감싸고 있는 그래핀은 강도가 매우 뛰어나 고진공 환경에서도 액체를 고정시킬 수 있습니다.

즉 투명한 유리 어항에 담긴 물속의 물고기들을 눈으로 볼 수 있는 것처럼 투명한 그래핀을 이용해 액체를 담아 그 속에 있는 결정들을 원자단위에서 관찰 할 수 있는 원리입니다.

그래핀 두 층으로 이루어진 그래핀 액체 용기를 보여주는 모식도이다. 회색으로 보여지는 그래핀이 위아래로 두층이 있고 그 사이에 백금 원자들을 포함한 유기 용액의 액체가 담겨있다.

연구팀은 이를 이용해 세계 최초로 액체 안에서 원자단위로 백금 결정들이 초기 형성되는 것과 성장과정을 관찰하는 데 성공했습니다.

가장 왼쪽의 녹색 모식도는 두 개의 백금 결정들이 서로 결합하는 것을 보여준다. 이것을 실제 투과전자현미경 안에서 두 개의 백금 결정들을 원자 단위에서 관찰한 것이 두 번째 사진이다. 화살표로 표시된 것이 두 개의 백금 결정들이다. 현재 백금 결정들은 액체 안에 담겨 있는 상태이다. 오른쪽으로 갈수록 시간이 지남에 따라 두 개의 백금 결정들이 하나로 합쳐지면서 그 모양이 육각형으로 변해가는 것을 볼 수 있다. 이 투과전자현미경 사진에서 백금들 안에 하얀 점들은 원자가 아니고 원자의 규칙을 보여주는 격자 사진이다. 이 격자 사진의 하얀 점들은 원자와 1대 1로 매칭할 수 있다. 즉, 이것은 원자 단위에서 관찰된 것이다.


이 기술은 액체가 고체로 결정화되는 메카니즘을 확인할 수 있어 나노 크기의 재료 제조나 전지 내에서 전해질과 전극 사이의 반응, 액체 내에서의 각종 촉매 반응, 혈액 속 바이러스 분석, 몸속 결석의 형성과정 등 다양한 분야에 활용될 전망입니다.

이번 연구는 이정용 교수의 지도아래 육종민 박사(제1저자)가 박사학위 논문으로 미국 UC버클리대 알리비사토스 교수, 및 제틀 교수와 공동으로 수행됐습니다.

연구결과는 세계적 학술지 '사이언스(Science)' 4월호(6일자)에 게재됐습니다.

 

그래핀 액체 용기 안에서 백금 원자들을 포함한 액체에 투과전자현미경을 이용해 전자 빔을 조사하였을 때 백금 결정들이 자라나는 것을 역동적인 모식도로 표현한 것

 

 용  어  설  명

투과전자현미경 :
고진공 하에서 아주 얇은 시편을 전자 빔을 이용해 원자 단위로 확대하여 볼 수 있는 장비

그래핀 :
육각의 벌집구조로 결합한 탄소가 연속적으로 연결되어 탄소 원자 한 층의 두께를 가진 2차원의 평판 모양을 이룬 탄소소재

광식각 기술 :
빛에 민감한 고분자를 이용하여 미세한 패턴을 형성하는 반도체용 미세형상 제작 기술

결정구조 :
물질을 구성하고 있는 원자가 공간 내에서 규칙적으로 배열되어 결정을 이루는 구조다.

격자결함 :
결정체 속에서 결정격자가 불완전한 상태인 것을 말한다. 실제로 결정은 여러 이유로 원자가 결여되어 있거나 원자의 배열이 흐트러져 있다. 이는 물질의 열전도도나 전기전도도, 재료의 강도에 큰 영향을 끼친다.

계면 :
기체상, 액체상, 고체상 등의 3상 중 인접한 2개의 상(相)사이의 경계면이다. 흡착이나 분자의 배향 등, 특유한 현상이 나타난다.

재결정 :
온도에 따른 용해도 차이를 이용해 원하는 용질을 다시 결정화시키는 방법.

<보 충 설 명>

그동안 과학자들은 투과전자현미경으로 액체를 관찰하기 위해 산화규소나 질화규소 기판을 광식각 패턴기술을 통해 액체를 담을 수 있는 용기를 만들었다.
그리고 그 용기 안에 결정들이 포함된 액체를 담아 결정들의 성장이나 거동을 관찰하려고 노력해 왔다.

그러나 규소화합물 기판들은 상대적으로 중원소일 뿐만 아니라 그 두께가 두꺼워 투과전자현미경 안에서 전자빔과 기판의 상호작용으로 인해 액체 속 결정들의 원자단위 분석이 어려웠다.

한편 투과전자현미경을 이용한 생물체 연구의 경우에는 살아있는 생물을 그대로 관찰할 수 없었기 때문에 일정한 단계를 거쳐 조직이나 세포의 구조와 내용물을 살아있을 때의 상태대로 보존하면서 죽여 생물 시료를 만들었다.

그러나 이는 죽은 상태이기 때문에 생물체의 메카니즘을 확인할 수는 없었다. 또한 고정->탈수->매몰->절편제작->염색 등의 과정을 거쳐 관찰하는 것은 매우 복잡하다.


<이정용 교수>

1. 인적사항
○ 소  속 : KAIST 공과대학 신소재공학과

2. 학    력
○ 서울대학교 재료공학과 학사 1974
○ KAIST 재료공학과 석사 1976
○ U. C. Berkeley 재료공학과 박사 1986

3. 경력사항
○ 1986. 7.~현재 KAIST 교수
○ 1981. 10.~1986. 7. 미국 Lawrence Berkeley Laboratory 연구조교
○ 1976. 1.~1981. 8. 금성사/금성정밀공업 중앙연구소 사원/과장

4. 주요연구실적
○ 2010 한국물리학회에서 Best Poster Award 수상
○ 2008 교육과학기술부 국가연구개발 우수개발성과패 수상
○ 2008 한국학술진흥재단 학술연구조성사업 우수성과사례 인증패 수상
○ 2001 한국과학기술단체총연합회 과학기술우수논문상 수상
○ 1996 KAIST 학술상 수상
○ 1985 미국전자현미경학회 Presidential Student Award 수상
○ 1985 미국금속학회 Scholastic Achievement Award 수상

5. 출판
○ 국외논문 400여편 게재
○ 저서 7권
○ 13개의 국내 특허 보유 

<육종민 박사>

1. 인적사항
○ 소  속 : KAIST 신소재공학과

2. 학    력
○ KAIST 신소재공학과 학사 2004
○ KAIST 신소재공학과 석사 2007
○ KAIST 신소재공학과 박사 2012

3. 경력사항
○ 2012. 3.~현재 울산 과학기술대학교 방문 연구원
○ 2012. 3.~현재 KAIST 응용과학 연구소 연수 연구원
○ 2010. 2.~2011. 8. 미국 U.C. Berkeley에 방문 연구
○ 2008. 8.~2009. 8. 미국 Lawrence Berkeley National Laboratory의 National Center for Electron Microscopy에 방문 연구

4. 주요수상경력
○ 2010 BK 21 해외 장기 연수 장학금 수상
○ 2008 BK 21 해외 장기 연수 장학금 수상
○ 2007 한국장학재단 대학원생 국가연구장학금 수상

5. 출판
○ 15 편의 국제 학술 논문 출판
○ 8번의 국내 및 국제 학회 발표
○ 3개의 국내 특허 보유


 

반응형
반응형

미래 꿈의 신소재로 각광받고 있는 그래핀은 지난 2004년 가임과 노보셀로프 교수 연구팀은 스카치테이프를 이용해 연필심(흑연)으로부터 마이크로미터 크기의 그래핀을 분리해내면서 주목받았습니다.

그래핀은 탁월한 물리적, 전기적 특성을 갖고 있어 현재 사용되는 고가의 물질들을 대체할 수 있는 '꿈의 신소재'로 부각됐습니다.

그러나 기계적인 방법으로 얻을 수 있는 그래핀의 양이 매우 적어 실제로 활용하기에는 한계가 있었습니다.

현재 그래핀 생산은 강산성이나 강한 부식성 산화제 등 독성물질을 이용해 복잡한 과정을 거쳐 생산하고 있습니다.

그래핀을 대량 생산하기 위해 가장 많이 사용되고 있는 방법은 흑연을 강산과 산화제로 처리하해 산화흑연을 만든 후, 초음파분쇄 과정을 거쳐 산화 그래핀을 얻고, 이를 다시 환원시켜 최종적으로 그래핀을 얻는 것입니다.

그러나 흑연을 산화시키기 위해서는 강산과 산화제를 사용해야 하기 때문에 환경적인 문제가 발생하고, 흑연의 산화와 초음파 분쇄 과정을 거쳐 생성된 그래핀은 완벽한 결정구조에서 나타나는 우수한 전기적·구조적 특성을 잃어버리게 됩니다.

이 특성을 복원하기 위해서는 산화된 그래핀을 발암물질이 포함된 유독성 환원제로 환원시키는 과정을 거치는데, 그럼에도 약 70%만 환원되고 30%는 산화된 상태로 남아 성능이 뛰어난 그래핀을 생산하는데 어려움이 있었습니다.

울산과기대 백종범 교수팀이 꿈의 신소재인 그래핀을 친환경적 방법으로 대량 생산할 수 있는 EFG 기술을 개발했습니다.

백 교수팀이 개발한 방법은 흑연을 드라이아이스와 함께 볼밀(ball mill) 용기에 넣고 고속으로 분쇄할 때, 분쇄된 흑연이 주위에 존재하는 이산화탄소와 반응하여 가장자리가 카르복실산으로 기능화된 흑연(EFG, edge-functionalized graphite)이 합성되고, EFG를 물과 같은 친환경용매에 분산하면 그래핀이 생성되는 매우 간단한 기술입니다.

이 기술을 이용하면 분쇄할 때 이산화탄소 대신 다른 물질을 이용해 그래핀 가장자리에 다양한 기능을 갖는 그래핀을 생산해낼 수 있습니다.

EFG법을 이용한 그래핀 형성 메커니즘 모식도. 볼밀 과정에서 분쇄된 흑연이 주변의 이산화탄소와 반응하여 기능화된 그래핀이 형성되고 있다.

그래핀의 탁월한 물리적·전기적 특성들은 이론값으로, 실제 그 특성을 갖춘 그래핀을 생산하기에는 매우 어렵습니다.

그러나 연구팀이 개발한 EFG 방식을 사용하면, 다양한 기능을 갖는 그래핀을 대량으로 생산할 수 있습니다.

특히 이 기술은 간단한 볼밀 방법으로 그래핀을 친환경적이면서도 저렴하게 대량 생산할 수 있음을 보여주는 사례로, 향후 다양한 분야에서 그래핀을 활용할 수 있는 가능성을 획기적인 높였습니다.

이번 연구는 백종범 교수가 주도하고 전인엽 박사과정생(제1저자), 장동욱 박사, 리밍 다이 Case Western Reserve University 교수 등이 참여햇습니다.

이번 연구결과는 세계적으로 권위 있는 과학전문지인 '미국립과학원회보(PNAS)'에 3월 27일자로 게재되었다. 
(논문명: Edge-carboxylated graphene nanosheets via ball milling)

전인엽 박사과정생 (앞줄 왼쪽 첫 번째), 백종범 교수 (앞줄 왼쪽 두 번째) 장동욱 박사 (뒷 줄 왼편 두 번째)를 포함한 UNIST 연구팀


 용  어  설  명

그래핀 (Graphene) :
그래핀은 탄소의 동소체 중 하나로서, 탄소원자들이 각각 sp2 결합으로 연결된 원자 하나 두께의 2차원 구조로 육각형 형태의 벌집 모형의 결정 구조를 이룬다. 강철보다 200배 이상 강하고 구리보다 100배 이상 전기가 잘 통하는 등의 우수한 물리적, 전기적 특성을 가져 디스플레이, 에너지, 환경, 반소체 소자 등에서 주목받는 꿈의 신소재이다.

산화 흑연 (Graphite Oxide) :
가장 많이 사용되고 있는 그래핀 합성 방법인 화학적 합성법의 중간체로서, 강산과 산화제로 흑연을 산화시켜 강한 친수성을 도입하여 면간 간격이 3.4Å에서 6~12Å으로 넓어진 상태로 있다.

산화 그래핀 (Graphene oxide) :
장시간의 교반이나 초음파 분쇄기를 이용하여 산화 흑연을 박리시킨 것이다. 산화 그래핀은 많은 기능기를 가지고 있기 때문에 그래핀 고유의 우수한 성질을 대부분 상실하고 있으며, 그래핀을 얻기 위해서는 추가적으로 환원 공정이 필요하다.

<연 구 개 요>

Edge-carboxylated graphene nanosheets via ball milling In-Yup Jeon et al.
(Proceedings of the National Academy of Sciences of the United States of America)

그래핀 나노시트는 0차원 플러렌, 1차원 탄소나노튜브, 3차원 흑연과 같은 탄소 나노물질의 동소체로서 2차원의 벌집모양의 결정구조가 판형으로 밀집되어 있는 구조를 가지고 있으며, 이 신물질은 다양한 응용 가능성을 지니고 있어 최근 학계로부터 엄청난 관심을 일으키고 있다.
그래핀 나노시트를 제조하기 위해서는 스카치테이프를 이용한 박리법, SiC기판에 성장시키는 에피택시 성장법, 화학 증기 증착법 (CVD), 산화 흑연 (GO)의 용액 박리 등 여러 기술들이 보고되었다.
스카치테이프를 이용한 박리법이 높은 품질을 가지는 그래핀 나노시트를 발견함으로 해서 노벨상을 수상하는 영예를 안았으나 이 방법은 매우 낮은 수율로 인해 대면적의 그래핀 나노시트 필름을 제작 하는 데에는 적합하지 않다.
30 인치 이상의 대면적 그래핀 나노시트 필름이 진공 상태에서 정교하고 세심한 제조 공정인 화학 증기 증착에 의해 제조되었으나, 이 역시 제조과정이 까다롭고 고가이기 때문에 대량생산에는 적합하지 않다.
흑연을 산화하여 산화 흑연으로 제조한 후에 용액상에서 박리하여 환원시키는 제조법은 현재 널리 보고되어 있으며 전 과정이 용액 내에서 진행되며 대량생산이 용이한 장점이 있다.
그러나 흑연 층간의 강한 반데르발스(Van der Waals) 인력으로 인해 용액 박리법은 강한 산화제를 필요로 하며 또한 까다로운 여러 공정이 수반된다.
이러한 부식성의 산화제는 탄소 기저면(basal plane)에 수많은 화학적·물리적 결함을 도입해서 종종 심각한 손상의 원인이 된다.
결과적으로 이 방법은 손상된 기저면을 복구시키기 위해 산화 그래핀을 환원시켜 환원된 산화 그래핀을 만드는 것이 필수적이다.
하지만 안타깝게도 환원 과정에는 위험한 환원제가 사용되지만, 환원이 전부 일어나지도 않는다 (~70%). 환원된 산화 그래핀은 여전히 산화된 기능기와 구조적 결함을 가지고 있으므로, 추가적으로 고온에서 가열냉각 (annealing) 과정을 거쳐야 한다.
 위에 언급된 산화 그래핀 제조법의 한계점을 극복하기 위해, 본 연구팀은 드라이아이스 존재 하에서 볼밀에 의해 간편하지만 효과적·친환경적·가장자리 선택적 기능화로 산화되지 않은 흑연 제조의 새로운 방법을 보고한다.
가장자리가 카르복실화된 흑연 (edge-carboxylated graphite, ECG)은 높은 수율로 제조되며, ECG는 용액 과정에 유용한 그래핀 나노시트로서 자가 박리를 일으켜 다양한 극성 용매에 매우 잘 분산된다.
산화 그래핀과는 달리 가장자리가 선택적으로 기능화된 흑연은 기저면의 높은 결정 구조를 보호할 수 있다.
가장자리에 붙어있는 기능기들은 서로 반발하는 성질을 지니고 있기 때문에 효과적으로 흑연의 가장자리를 벌리게 되며, 이는 용매 내에서 자가 박리를 일으키게 된다.
분산된 용액은 높은 품질의 그래핀 나노시트/필름의 제조를 가능하게 한다.
그 예로 산화 그래핀보다 더 뛰어난 1214 S/cm의 전기 전도도를 가지는 대면적의 그래핀 나노시트 필름은 기판 위에 필름을 형성하고 열로 기능기를 없애므로 해서 쉽게 제조할 수 있는 대면적의 그래핀 나노시트 필름은 또한 볼밀에서 카르복실화를 위해 사용된 반응물인 드라이아이스의 사용은 대기 중의 이산화탄소 배출과 지구에서 악영향을 줄이거나 없애기 위해 이산화탄소를 포획 및 저장하기에 용이할 수 있다.
유해한 화학물질도, 까다로운 공정도 없는 새로 개발된 볼밀 공정은 매우 낮은 제조단가에서 높은 품질의 그래핀 나노시트를 대량생산으로 기존의 제조법을 능가한다. 

 

<백종범 교수> 

1. 인적사항                          

 ○ 성 명 : 백종범(46세)
 ○ 생년월일 : 1967.03.17.
 ○ 소 속 : UNIST 친환경에너지공학부

2. 학력
  1984.3 - 1991.2  경북대학교 공업화학과 학사   
  1991.3 - 1993.2 경북대학교 고분자공학과 석사  
  1994.8 - 1998.8 University of Akron, Department of Polymer Science 박사   
  
3. 경력사항 
  1993.07 - 1998.08   국비장학생 
  1998.12 - 1999.10   Liquid Crystal Institute, Kent State University 박사후 연구원
  1999.11 - 2003.08   US Air Force Research Lab/UDRI 선임연구원
  2003.09 - 2008.08  충북대학교 부교수
  2008.08 - 2009.08   Georgia Institute of Technology 방문교수
  2010.04 - 현재     UNIST 저차원 탄소소재 연구센터장
  2008.11 - 현재     UNIST 친환경에너지공학부 부교수

<전인엽 연구원> 

1. 인적사항

 ○ 성 명 : 전인엽 (34세)
 ○ 소 속 : UNIST 친환경에너지공학부
 
2. 학력
  1998.03 - 2004.02     충북학교 공업화학과 학사   
  2005.09 - 2007.08      충북대학교 공업화학과 석사  
  2008.03 - 2009.02     충북대학교 공업화학과 박사과정
  2009.03 - 현재        UNIST 친환경에너지공학부 박사과정 


 


 

반응형
반응형

20세기 인류에게 농업혁명을 안겨준 질소비료가 생산한 산화이질소는 태양으로부터 지구를 보호하는 오존층의 파괴 촉매제입니다.

세계 인구 증가에 따른 식량·에너지 문제는 화학비료와 생물연료의 사용을 가속화시킬 것이며, 이로 인해 산화이질소의 배출도 지속적으로 증가될 것입니다.

지금까지 지구온난화와 오존층 파괴의 주범으로 지목되어 온 CFCs(프레온가스)는 많은 노력으로 감소 추세에 있지만, 산화이질소의 경우 산업혁명 이후 지속적인 증가 추세에 있고, 최근에는 더욱 가파르게 상승하고 있습니다.

과학자들은 현재의 증가 추세가 지속된다면 앞으로 산화이질소가 오존층에 입히는 피해는 기존에 알려진 어떤 물질보다도 더 클 것이라고 합니다.

이 산화이질소의 동위원소는 생성과 소멸의 과정을 말해주는 꼬리표입니다.

지구온난화의 주범인 산화이질소의 생성과 소멸 메커니즘을 추적하는 방법이 과학적으로 규명되었습니다.

서울대 박선영 교수팀은 1940년 이후 60여 년 동안 대기 중 산화이질소 동위원소 변화 과정을 추적해 대기 중 산화이질소의 농도 증가가 질소비료 사용에 기인한 것임을 확인했습니다.

또 비료의 사용이 토양 내 미생물의 화학적 반응을 더욱 활성화 시킨다는 사실도 밝혀냈습니다.

그리고 산화이질소 동위원소의 분포가 계절에 따라 주기적으로 변하는 사실도 증명했습니다.

이러한 동위원소 변동성이 갖는 폭과 주기는 산화이질소가 어디서 얼마나 발생하고 분해되었는가를 말해줍니다.

이 변동성은 산화이질소 생성원을 규명하고 오존층이 존재하는 성층권에서 발생하는 광분해 영향 정도를 밝히는 새로운 척도로 평가받고 있습니다.

 

(a):
지난 60년에 걸친 대기 시료의 관측은 산화이질소가 지속적으로 증가하고 있음을 보임
(b-d): 산화이질소 농도의 증가와는 반대로 동위원소 비율(δ로 표기)은 지속적으로 감소하며, 이는 비료 사용으로 토양 내 미생물 작용이 활성화되고, 동위원소 비율이 낮은 산화이질소를 다량 만들어내고 있음을 의미함

(a): 산화이질소 농도의 계절 주기성과 함께
(b-d): 동위원소 분포의 계절 주기성이 밝혀짐. 각 동위원소 계절변동의 크기와 주기는 산화이질소 분해가 일어나는 성층권 공기의 영향과 산화이질소가 만들어지는 토양과 해양의 복합 작용에 의해 결정됨.

 

이번 연구는 서울대 박선영 연구교수(제1저자)가 주도하고 미국 UC Berkeley 및 호주 CSIRO 기후연구센터 연구팀이 참여했습니다.

연구결과는 세계 최고 권위의 학술지인 '네이처'의 자매지 네이처 지구과학(Nature Geoscience) 온라인(3월 11일)에 게재되었습니다.
 (논문명 : Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940)

호주 Cape Grim의 풍광. 본 연구에서는 이곳에서 매주 채취되어 보관되어온 공기시료를 이용하여 지난 60여 년간의 산화이질소 변화를 추적하였음

 

 용 어 설 명

안정동위원소 :
원자번호는 같지만, 원자핵 내 중성자수의 차이로 원자량이 다른 원소를 동위원소라고 하며, 방사능 붕괴를 하지 않는 동위원소를 특히 안정동위원소라고 부른다.
산화이질소(N2O)의 질소 동위원소는 14N과 15N이며, 산소 동위원소는 16O, 17O와 18O이다.
산화이질소 분자 내 이들 동위원소의 상대적 비는 산화이질소가 관여하는 생물-지구화학 반응에 따라 달라진다.
따라서 동위원소는 산화이질소가 경험하는 생성과 소멸의 순환 기작를 추적하는 꼬리표로 사용될 수 있다.

교토의정서(Kyoto protocol) :
지구 온난화의 규제 및 방지를 목적으로, 1997년 일본 교토에서 지구 온난화 방지 교토 회의(COP3) 제3차 당사국 총회에서 채택하고 2005년 발효한 국제 협약.
본 의정서를 인준한 국가는 이산화탄소, 산화이질소 등을 포함하는 여섯 종류의 온실 가스의 배출량을 감축하며 배출량을 줄이지 않는 국가에 대해서는 비관세 장벽을 적용하게 된다.

질산화 반응 :
미생물에 의해 암모니아(NH3)가 아질산염(nitrite, NO2-)으로, 이어 아질산염이 질산염 (nitrate, NO3-)으로 산화하는 일련의 반응.
이때 암모니아가 산소와 반응하여 아질산염으로 되는 단계의 부산물로서 산화이질소가 만들어진다.

탈질산화 반응 :
질소산화물들이 유기물 산화를 위해 전자 수용체로서 사용되는 환원 반응.
즉, 미생물들에 의해 질산염이 아질산염, 산화질소(NO), 산화이질소를 차례로 거쳐 질소(N2)로 환원되어지는 일련의 반응을 일컫는다.
이때 만들어지는 주요 중간 산물이 산화질소와 산화이질소이다.

  

<연 구 개 요>

Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940
대기 중 산화이질소 (N2O) 동위원소의 60년 변화추세와 계절 변동성

국내 연구진의 주도하에 대기 중 산화이질소(N2O) 안정동위원소의 계절 변동성이 처음으로 밝혀졌다.
서울대학교 지구환경과학부 박선영 연구교수와 김경렬 교수 연구팀은 미국 UC Berkeley 대학 Kristie A. Boering 교수 및 호주 CSIRO 기후관측센터 L. Paul Steele 박사 연구팀과의 공동 연구를 통해 산화이질소 동위원소의 계절 주기성을 밝힘으로써, 산화이질소의 생물-지구화학 순환을 규명하는 새로운 과학적 기틀을 제시하였다.
그 연구결과는 지구과학분야 최고 권위의 학술지인 네이처 지구과학(Nature Geoscience) 3월 11일자 온라인판에  발표되었다.
 
사람들의 농업혁명을 이루어낸 질소비료가 만들어 낸 원하지 않는 부산물인 산화이질소는 지구온난화 및 기후변화와 관련된 교토의정서가 규정한 주요 온실기체이며, 성층권 오존층 파괴를 촉매하는 대기 물질이다.
과학자들은 다음 세기에는 산화이질소에 의한 오존층 파괴가 냉매로 사용되어온 CFC와 같은 할로겐화합물의 효과를 능가할 것으로 전망한다.
할로겐화합물들은 생산과 사용의 규제로 현재 감소 추세에 있지만, 산화이질소의 경우 그 대기 중 농도가 산업혁명이후 지속적으로 증가하는 추세에 있고 최근 더욱 가파르게 상승하고 있다.
산화이질소의 자연적·인위적 생성원들을 규명하고 생성원의 차이에 따른 발생량을 측정하는데 있어서 가장 큰 과학적 난제는, 산화이질소가 광분해로 소멸되는 장소인 성층권 공기의 영향을 정량적으로 밝히는 것이었다.
 
서울대 박선영 교수, 김경렬 교수 연구팀은, UC 버클리 대학, 호주 온실기체 연구팀과 함께 1940년 이후 지난 60여년 동안 이 기체의 동위원소가 변화해온 과정을 추적하는 연구를 통하여 산화이질소의 증가가 농업 생산 증대를 위한 지속적인 비료 사용에 기인한 것임을 확인하였고, 비료 사용으로 미생물에 의한 토양 내 질산화 반응 (nitrification)이 탈질산화 반응(denitrification)에 비해 더욱 활성화됨을 밝혔다.
더욱이 산화이질소 동위원소 분포가 계절에 따라 주기적으로 변화하는 것을 최초로 증명하고, 동위원소 분포 계절변동의 폭과 주기가, 산화이질소의 생성원을 규명하고 성층권에서 발생하는 광분해의 영향 정도를 밝히는 새로운 척도임을 제시하였다.
본 연구는 토양내 미생물 생태, 성층권 광화학, 성층권-대류권 상호 공기 순환, 해양내 질소 화학 및 순환, 기후학 등 광범위한 분야에 향후 미칠 학문적 영향이 인정되어 네이처(Nature) 학술자매지인 네이처 지구과학(Nature Geoscience)에  게재된 것이다.
 본 연구의 서울대팀 공동저자인 김경렬 교수는 산화이질소의 분포에 미치는 성층권 광화학의 영향을 동위원소 분석을 통해 최초로 증명하고, 이 연구 결과를 1993년 사이언스(Science)지에 게재한 바가 있다.
또한 지구환경과학부 석좌교수였던 Paul J. Crutzen 교수에게 1995년 노벨화학상을 안긴 연구 성과가 바로 산화이질소를 포함한 질소화합물들이 관여하는 오존 형성과 파괴 기작에 대한 규명이었다.
 
본 논문의 제 1저자로서 연구를 주도한 박선영 연구교수는 "세계 인구 증가에 따른 식량 및 에너지 문제는 화학비료와 생물연료(biofuels)의 사용을 가속화시킬 것이며, 이에 따라 산화이질소의 배출은 지속적으로 증가될 것"이라고 경고한다.
따라서 "산화이질소 배출규제의 근거확보를 위하여 산화이질소 동위원소 분포의 시?공간적 변동에 대한 지속적 모니터링이 필요하며, 상대적으로 연구가 미흡한 해양에서의 산화이질소 생성 및 변화에 관한 연구가, 자연계 산화이질소 순환의 완전한 이해를 위해 반드시 진행되어야한다"라고 강조한다.

 

 <박선영 교수>(제 1저자) 

 
1995. 02. 서울대학교 해양학 학사
 1997. 02. 서울대학교 해양화학 석사
 2005. 05. University of California at Berkeley (UC Berkeley) 지구과학 박사
 2005. 07. ~ 2008. 06. Harvard University 박사후 연구원
 2008. 07. ~ 2011. 08. Harvard University 연구원
 2011. 03. ~ 현재 서울대학교 지구환경과학부 연구 교수
 연구 분야: 온실기체 농도와 동위원소 측정을 통한 생물-지구화학 순환 과정 연구
<Kristie A. Boering>(교신저자) 
 
 
1985. University of California at San Diego (UC San Diego) 화학 학사
 1991. Stanford University 물리화학 박사
 1991. ~ 1998. Harvard University 박사후 연구원 및 연구원
 1998. ~ 2005. UC Berkeley 화학 및 지구과학과 겸임 조교수
 2006. ~ 현재 UC Berkeley 화학 및 지구과학과 겸임 부교수
 연구 분야: 고층대기 온실기체 측정과 농도 시뮬레이션 및 탄화수소 광화학 연구
<김경렬 교수>(공동저자)
 

 

1971. 02. 서울대학교 화학 학사

 1973. 02. 서울대학교 분석화학 석사
 1983. University of California at San Diego 해양화학 박사
 1984. ~ 현재 서울대학교 지구환경과학부 교수
 2006. 03. ~ 2012. 02. 서울대학교 지구환경과학부 학부장
 2006. 03. ~ 현재 서울대학교 지구환경과학부 BK21 사업단 단장
 연구 분야: 해양화학 및 온실기체 대기모니터링, 산화이질소 동위원소에 관한 연구로 1990년 Nature지에 이어 1993년 Science지에 논문 게재

4. L. Paul Steele,  Ray L. Langenfelds, Paul J. Fraser, and Paul B. Krummel (공동저자) (Paul.Steele@csiro.au; Ray.Langenfelds@csiro.au; Paul.Fraser@csiro.au; Paul.Krummel@csiro.au)
호주 기후연구센터/CSIRO 대기 및 해양 연구소 (Centre for Australian Weather and Climate Research /CSIRO Marine and Atmospheric Research) 책임 연구원
  연구 분야: 남반구 온실기체 분포 특성 및 공기 시료 장기 보존에 관한 연구. Nature 및 Science 논문 다수 게재.

5. David M. Etheridge, Dominic Ferretti, Tas.D. van Ommen, and Cathy M. Trudinger (공동저자) (David.Etheridge@csiro.au; domferretti@yahoo.com; Tas.Van.ommen@aad.gov.au; Cathy.Trudinger@csiro.au)
 호주 기후연구센터/CSIRO 대기 및 해양 연구소/타스마니아 대학 (Centre for Australian Weather and Climate Research /CSIRO Marine and Atmospheric Research/University of Tasmania) 책임 연구원
  연구 분야: 극지방 빙핵 및 firn에 포집된 과거 공기시료에서의 온실기체 연구

반응형
반응형

한전전력연구원이 화석연료의 연소과정 중 발생하는 이산화탄소를 전량 회수하는 0.7MW급 '순산소 석탄화력 통합 파일럿 플랜트'를 세계에서 두 번째로 개발했습니다.

이번 '순산소 석탄화력 통합 파일럿 플랜트'는 석탄화력발전소에서 발생하는 온실가스를 완벽하게 처리할 수 있고, 순산소 만으로 석탄을 완전연소할 경우 이산화탄소를 전량 회수할 수 있습니다.

또 기존 발전설비를 활용해도 공해물질을 전혀 배출하지 않기 때문에 청정발전이 가능한 획기적인 기술로 평가받고 있습니다.

이번 순산소 파일런 플랜트는 연소설비, 제어설비, 보일러 및 환경설비, 산소생산설비, 그리고 이산화탄소 압축 및 저장설비 등으로 구성됐고, 운전시뮬레이터는 별도로 구축하여 실증 및 상용화에 요구되는 핵심기술 연구개발에 활용할 계획입니다.

현재 '순산소 석탄화력 통합 파일럿 플랜트'는 독일과 스웨덴을 중심으로 유럽에서 처음 개발에 착수했고, 미국, 중국, 호주, 일본 등 다른 세계 여러나라에서 연구가 진행 중입니다.

한전전력연구원은 2015년까지 100MW급 실증시스템을 한국남동발전 영동화력발전소에 설치할 계획입니다.


 

반응형
반응형

한국천문연구원 이대희 박사팀이 개발한 적외선 우주관측카메라 시스템이 3월 22일  미국 뉴멕시코주 화이트샌드 미사일 기지에서 발사된 NASA 로켓에 실려 우주로 올라갔습니다.

탑재된 적외선카메라시스템(CIBER-Cosmic Infrared Background ExpeRiment)은 빅뱅 이후 우주 태초의 빛을 추적하기 위한 관측 장비로, 한국천문연구원이 국제협력의 일환으로 미국 NASA/JPL, Caltech, 일본의 JAXA/ISAS 등과 함께 개발한 것입니다.


NASA 로켓 탑재용 적외선카메라 (CIBER) 시스템

NASA로켓을 사용한 CIBER발사는 이번이 세 번째입니다.

이 중 NASA로부터 인증된 우주용 적외선카메라 시스템 핵심 기술은 차세대 적외선우주망원경 국제 공동 개발과 대면적 적외선센서 구동 핵심기술 개발, 대구경 극저온 적외선 광기계 기술개발, 적외선 우주 감시 기술개발 등에 활용될 예정입니다.


반응형

+ Recent posts