반응형

교육과학기술부와 한국연구재단은 2010년 ‘올해의 여성과학기술자상’에 한국표준과학연구원 신용현(49세) 책임연구원과 세종대 김성은(43세) 교수, 경희대학교 김지영(61) 교수 등 3명을 선정했습니다.

신용현 표준연 책임연구원

김성은 세종대 교수

김지영 경희대 교수



표준연 신 책임연구원은 진공기술 분야 국내 일인자로, 지난 25년 간 진공연구에 매진해 국내 진공연구 수준을 세계적 최고로 끌어 올렸고, 특히 반도체 제조와 나노기술, 우주항공 산업에 두루 활용되는 진공과 미세 누출 측정을 위한 표준 기술을 개발했습니다.


또 이에 대한 기술데이터를 산학연에 보급해 국내 생산 기술력 향상과 장비 부품 국산화에 크게 기여했습니다.

세종대 김 교수는 세계 최초로 우리 은하와 이웃하는 마젤란 은하 전체의 원자가스 분포를 고해상도로 관측하고, 성간물질의 특성과 별 생성 연구에 크게 이바지해 우리나라 과학기술의 위상을 높였습니다.

경희대 김 교수는 차세대 인재 교육과 우리나라 여성과학기술인의 위상을 제고하는데 중추적인 역할을 담당한 점을 인정받았습니다.


반응형
반응형

일반적으로 섬유는 의류 제조에만 사용된다고 생각하기 쉽습니다.

그러나 최근 첨단기능의 신섬유들이 수처리 분야나 공기정화 분야, 바이오 산업분야, 첨단 의료 분야 등에서 기존 소재의 대체품으로 각광을 받으면서  섬유산업이 소재산업의 중심으로 부상하고 있습니다.

신섬유 가운데 대표적인 것으로는 탄소섬유와 나노섬유 등이 있습니다.

○ 탄소섬유

탄소섬유의 예를 보면 최근 자동차의 연비향상이 세계적인 이슈로 부각되면서 도요타와 벤츠는 일본의 토레이와, BMW는 미쯔비시레이온과 함께 자동차의 차체를 강판에서 탄소섬유로 대체하기 위해 납품을 논의하고 있습니다.

만약, 차체 대부분을 탄소섬유로 대체할 경우 차체의 중량이 가벼워지기 때문에 차량의 연비가 현저하게 개선되기 때문입니다.

하지만 강판 대비 탄소섬유의 단가가 비싸기 때문에 일부 고급차종에서 부분적으로만 사용되고 있습니다.

기존 탄소섬유의 단가가 높은 이유는 제조공정이 복잡하고 열에너지 및 시간이 많이 소모되기 때문입니다.

그러나 기존 탄소섬유 단가는 철에 비해 20배 가까이 비쌉니다.

○ 나노섬유

나노 섬유도 그렇습니다.

나노 섬유는 반도체, 광학, 디스플레이, 센서 등의 전기전자 분야 / 필터, 분리막, 촉매, 복합재, 단열재 등의 기계화학 분야 / 배터리, 축전기, 연료전지, 태양전지 등의 에너지 분야 / 인공피부, 혈관, 약물전달, 임플란트, 세균검출 등의 의약생명 분야 / 초경량 구조, 보강재 등의 자동차 분야 / 고급 의류, 흡착제, 친환경 섬유 등의 전통섬유 분야 및 국방, 항공우주 등에 사용됩니다.

현재 나노섬유는 라면처럼 구불구불한 단사(短絲)형태 또는 부직포처럼 조각난 웹(web) 형태로 제조됩니다.

이렇게 제조된 나노섬유는 제품에 따른 성형이 쉽지 않아 응용분야가 제한되는 단점이 있습니다.

○ 한국화학연구원, 섬유소재 신기술 개발

이런 가운데 한국화학연구원 이재락 박사 연구팀이 30년 동안 개발한 '나노 마이크로급 장섬유 제조 및 가공기술'의 상용화가 곧 실현될 전망이어서 관심이 집중되고 있습니다.

화학(연) “나노/마이크로급 장섬유 제조 및 가공기술”의 국제특허 PCT WO2005/123995 : Filament Bundle Type Nano-fiber and Manufacturing Method Thereof의 대표도면


이 기술은 다양한 직경의 섬유를 무한히 길게 방사할 수 있는 기술로, 기본적으로 나노섬유로 활용될 수 있고, 후처리 공정을 통해 탄소섬유 또는 기능성 섬유로도 쉽게 가공할 수 있습니다.

 화학연구원의 ‘섬유소재 신기술’의 제조 및 시스템 기술을 적용해 대량생산하면서도 기존 탄소섬유의 절반 이하 가격으로 생산이 가능할 것으로 예상되고 있습니다.

제조된 탄소 나노섬유 FE-SEM 사진


또한 기존 탄소섬유의 적용이 어려웠던 분야에 ‘섬유소재 신기술’의 새로운 복합층 구조재 성형 기술을 접목하면 충격강도, 재활용성 및 공간 활용성(자동차 차체 공간에 배터리를 수납하는 등)이 증대될 수 있기 때문에 강판의 대체소재로서 탄소섬유가 부각될 것입니다.

○ 기능성 섬유

기능성 섬유는 탄성, 내열, 건조, 보온, 발열, 방수, 방진, 전자파 차폐, 생분해, 자외선 차단, 전기전도, 인간친화적 등 다양한 기능을 섬유와 결합시킨 것입니다.

기능성 섬유를 제조하는 방법은 새로운 원료(전구체)를 개발하거나, 원사를 특수코팅 또는 화학처리하는 방법, 여러 원사를 복합하여 사용하는 방법 등이 있습니다.
      
‘섬유소재 신기술’은 대부분의 액상 전구체를 다양한 형태로 방사할 수 있으며, 원사의 직경제어가 용이해 다양한 후처리 공정과 특수코팅이나 화학처리 자동화 공정 등에 유리합니다.

즉, 기존의 케불라(방탄섬유), 고어텍스(방수섬유)보다 뛰어난 성능의 다양한 기능성 섬유를 우리나라 화학연구원의 ‘섬유소재 신기술’로 제조할 수 있는 것입니다.


간접 전기방사 장비 및 제조된 나노급 장섬유 SEM 사진


‘섬유소재 신기술’은 다양한 액체 전구물질(precursor)을 노즐로 방사하여 나노부터 마이크로미터 직경의 섬유를 생산 및 가공할 수 있는 기술입니다.

화학연구원은 이에 대해 현재 특허기술의 상용화를 완료하고, 파트너 기업이 선정 되는대로 공장설비 및 시제품 생산에 착수할 계획입니다.

‘섬유소재 신기술’은  무한히 긴 섬유를 다양한 직경으로 손쉽게 대량생산할 수 있으며, 방사된 섬유를 일반섬유, 탄소섬유, 기능성 섬유 등 원하는 형태로 가공할 수 있어 소비자 또는 생산자의 니즈에 맞춰 시장에 탄력적으로 적응할 수 있는 확장성이 뛰어난 기술입니다.

이번에 기업 이전을 추진하는 기술은 섬유방사 관련특허 12건, 탄소섬유 관련특허 10건, 리튬배터리분야 응용특허 6건 등 총 36건의 특허가 패키지 형태로 구성되어 있어 다양한 응용분야에 적용이 가능합니다.
이를 통해 원료중합 → 방사 → 제직/편직 → 염색/가공 → 응용제품 생산에 이르는 섬유소재 생산의 모든 단계를 커버할 수 있습니다.

세계 섬유시장은 올해에만 6500억 달러 규모를 가진 거대시장이며(한국은 120억 달러 규모의 세계 6위 섬유수출국), 이 중 탄소섬유는 43억 달러, 기능성 섬유는 84억 달러를 차지하고 있습니다.
 

고분자 나노섬유 응용분야


일반섬유 시장은 성장이 둔화되었지만, 탄소 및 기능성 섬유 시장은 연평균 10% 이상의 가파른 성장세를 보이고 있으며, 때문에 섬유산업 선진국들은 신섬유 개발에 연구개발 역량을 집중하고 있습니다.

일본은 토레이, 테이진, 토호-테낙스, 미쯔비시 등을 주축으로 탄소섬유, 나노섬유 등 다양한 기능성 신섬유 개발에 주력하고 있으며, 미국은 듀폰, GE, 도날드슨 등이 첨단섬유를 개발하고 있습니다.
 
또한 유럽도 EU 소속국이 공동으로 신섬유 원천기술을 개발하고 있습니다.

우리나라도 WPM(World Premier Materials) 프로그램을 통해 세계시장 선점 10대 소재 개발 사업을 추진하고 있으며, 탄소저감형 케톤계 프리미엄 섬유, 에너지 절감/변환용 다기능성 나노복합소재 등 첨단기능형 신소재 개발에 관심과 노력을 기울이고 있습니다.

이런 가운데 한국화학연구원 화학소재연구본부 이재락 박사 연구팀은 지난 30여년 간의 연구 끝에 완성한 '나노/마이크로급 장섬유 제조 및 가공기술(섬유소재 신기술)'을 민간기업에 이전하기 위해 다음달 7일 기술설명회를 가질 예정입니다.


반응형
반응형

한국항공우주연구원이 내년 1월 11일부터 2박 3일간 전남 고흥 나로우주센터에서 학생들을 대상으로 '우주인과 떠나는 우주여행'을 개최합니다.

이번 캠프는 한국 최초 우주인 이소연 박사와 함께 우주과학을 놀이 체험할 수 있는 특별한 우주과학캠프로, 
국립고흥청소년우주체험센터에서 다양한 우주과학 강연과 우주과학 체험을  이소연 박사를 통해 직접 들고, 또 나로우주주센터를 견학할 수 있는 기회가 마련됩니다.


참가 접수는 오는 12월 1일부터 오전 9시부터 홈페이지
(www.karischool.re.kr) 를 통해 선착순 모집합니다.

아울러 항우연은 내년 1월 18일과 20일, 대전 본원에서도 '우주인과 함께하는 우주과학교실'을 개최할 예정입니다.

반응형
반응형
찬바람 쌩쌩부는 요즘 듣기만 해도 따뜻한 맛집 얘기입니다.

지난 9월 더위가 한창일 때 신성동에서 꽤나 유명한  남원골 추어탕을 갔습니다.


계절도 계절이지만 맛도 좋다고 소문나서인지
식당안엔 사람이 한 가득.
밖에도 기다리는 사람 몇몇.

먼저 튀김을 시켰습니다.



그런데 얼마 지나지 않아 더위가 점점 강도를 더해갑니다.

이미 땀이 나기 시작.



드디어 좋아하는 추어탕이 나왔습니다.
그러나 너무 더워서 온 몸에 땀이 줄줄.
몇 숫가락 뜨기도 전에 와이셔츠는 벌써 거의 다 젖었습니다.

혹시 에어컨이 고장났나 확인해보니
에어컨 풀 파워 가동 중.
용량이 딸렸기 때문입니다.

사람 열기에 음식 열기에...거기에 백프로 부족한 에어컨.

그저 빨리 나가야 겠다는 생각뿐입니다.
음식 맛은 느껴지지 않을 정도로 숨막힙니다.

다른 사람들도 부채질하랴 땀 닦으랴...

내년 여름에 갔을땐 에어컨 한 대 더 들여 있길...
  



반응형
반응형

한국생명공학연구원 국가생명연구자원정보센터(KOBIC)는 차세대 염기서열분석(NGS) 기술로 생산되는 대용량 서열 데이터로부터 유전자 발현 양을 계산할 때 정확도를 획기적으로 개선한 ‘유일매핑지역의 기대치 정규화(뉴마, NEUMA)’ 라는 새로운 분석기술을 최근 개발했습니다.

이상혁 박사



NGS 방법은 유전체 서열을 짧은 시간에 수천 만 번 읽어서 결정하는 기법으로, 생산되는 데이터의 용량이 수십 기가바이트에 달해 정보 분석이 매우 어렵습니다.

특히 NGS 기술은 생명체의 유전자 발현 양을 측정하는 전사체서열기술(RNA-Seq) 분야에 많이 활용되고 있습니다.

유전자 발현 양을 계산하는 프로그램으로 최근 미국에서 개발된 Cufflinks나 TopHat 등이 널리 사용되고 있습니다.
 
연구팀이 이번에 개발한 ‘뉴마(NEUMA)’ 분석기술은 기존의 방법에 비하여 정확도가 월등히 우수함을 실험과 모의계산을 통하여 증명했습니다.

뉴마(NEUMA)는 기존의 Cufflinks나 TopHat 방법들이 가지는 한계를 뛰어넘기 위해서 이미 알려진 RNA의 정보를 이용하여 유전자 발현 양을 측정합니다.

뉴마는 대용량으로 생산되는 NGS 데이터에서 유전자 발현 양 측정의 정확도를 획기적으로 향상시킨 최신 기술로서, 개인유전체 정보 기반의 미래의학 시대를 앞당길 핵심기술로 평가받고 있습니다.

이번 연구결과는 생명과학 분야의 저명 국제학술지인 ‘핵산리서치(Nucleic Acids Research)'의 지난 8일자 인터넷판에 게재됐습니다.


*용어설명*

반응형
반응형

대덕특구 벤처기업인 (주)시온텍이 최근 국내 최초로 차세대 물처리 기술의 상용화에 성공했습니다.

시온텍은 고도 물처리 산업의 차세대 핵심기술로 불리는 축전식 탈염 기술(Capacitive deionization; CDI)을 국내 최초로 상용화했는데요.

축전식 탈염 기술은(CDI)   케패시터(Capacitor)의 원리를 이용한 축전식 탈염 기술로, 전극 전위의 조절을 통해 용존 이온의 제거가 가능하며, 에너지 소모가 적고, 회수율이 높은 장점을 갖고 있습니다.

비표면적이 넓은 활성탄소 전극과 적은 양의 에너지를 이용하여 물속에 불필요한 이온성 물질을 제거



CDI 기술은 고도수처리산업(정수 및 연수기술), 초순수제조산업(의약품 제조, 반도체 제조, 보일러 공급수 제조), 해수담수화 산업, 자원재활용 산업(생활용수, 공업용수, 중수) 등에 활용이 가능합니다.

이번에 개발된 기술의 장점은 다음과 같습니다.

ㅇ 낮은 에너지 소모율
    * 전극반응이 일어나지 않는 낮은 전위(1~2V)에서 운전하기 때문에 에너지 소 비량이 매우 낮음
 
ㅇ 높은 회수율
    * RO(역삼투압 방식으로, 인위적 압력활용, 에너지 소비)의 회수율이 최대 70% 정도 이지만 CDI 모듈은 회수율이 최대90%까지 운전 가능
 
ㅇ 환경 친화적
    * 전극의 재생과정에서 화학물질을 사용하지 않아 2차 폐기물 발생이 없는 환경친화적
 
ㅇ 공정운전의 용이성
    * 전극전위를 조절하여 이온들의 흡착과 탈착이 가능하여 공정의 운전이 매우 간편함
 
ㅇ 다양한 응용성
    * 정수기, 연수기, 세탁기, 식기세척기 등 다양한 가전제품 뿐만아니라 설계에따라 산업용 정수 및 연수장치도 제작 가능

CDI 기술이 적용된 모듈 및 시스템



반응형
반응형

펨토 초는 1조 분의 1초라는 상상도 할 수 없는 짧은 시간입니다.

1 펨토 초는 대략 빛이 0.3 마이크로미터를 움직일 때 걸리는 시간입니다.

분자와 원자 세계에서 화학반응이 일어날 때 입자들의 움직임, 생체 내에서 효소가 분자를 떼었다 붙였다 하는 일은 펨토 초 단위에서 일어납니다.

예를 들어 광합성이 일어날 때 엽록소가 에너지를 전달하는 시간은 약 350 펨토 초입니다.

사람이 인식하기도 어려운 이 짧은 시간에 식물은 빛을 받아 에너지로 바꾼 뒤 저장합니다.

또 효소가 유기물에 산소를 붙이는 시간은 약 150 펨토 초,
수소 원자에서 전자가 원자 주변을 한 바퀴 도는 데 걸리는 시간은 0.1 펨토 초입니다.

펨토 초 동안 벌어지는 이런 물리, 화학, 생물학적 현상을 연구할 때 주로 쓰이는 것이 펨토 초 레이저입니다.

펨토 초 레이저는 대략 10~50 펨토 초 동안만 켜졌다 꺼지는 펄스로 이루어져 있습니다.

깜빡깜빡하는 펄스를 분자나 원자에 쏘면 이 펄스는 펨토 초 시간 동안만 분자를 만나게 되며 반사되거나 투과된 빛에는 분자의 모습이 담겨 있습니다.

교차편광구조와 헤테로다인 측정 기법을 이용한 펨토 초 진동 광학 활성 측정 장치 개략도


바꿔 말해 펨토 초 만에 찍어 내는 카메라인 셈 이며 펄스를 연사하면 펨토 초라는 ‘찰나’의 시간 동안 분자가 어떻게 움직이는지를 담은 ‘동영상’도 만들 수 있는 것입니다.

이 펨토 초 레이저를 이용해 생체분자의 3차원 입체 구조를 분석하는 데 유용한 극초고속 광학 이성질체 측정법과 계산법이 최근 국내 연구진에 의해 개발됐습니다.

자연계에 존재하는 대부분의 생체 물질이나 합성 신약들은 광학 이성질체로 되어 있습니다.

광학 이성질체가 원형 좌편광 또는 우편광 된 빛과 차등 상호작용하여 빛의 흡수 차이 또는 속도 차이를 발생시키는 광학활성


따라서 새로운 신약의 생체 반응의 특성을 이해하기 위해서는 3차원 광학 이성질체 구조를 분석 측정하는 기술이 대단히 중요합니다.

특히, 생체반응 중 수반되는 분자의 빠른 구조 변화를 관찰하기 위해서는 초고속 시분해능이 겸비된 구조 분석 장비가 필요합니다.

시분해 광학 활성 측정의 중요성



그런데 기존의 분석 방법들은 근본적인 측정 원리의 한계로 인해 시분해능이 길게는 수 시간에 달하는데, 이는 분자들의 움직임에 비해 무한히 느린 시간입니다.

한국기초과학지원연구원 이한주 박사팀과 고려대 화학과 조민행 교수팀은 최근 공동으로 생체분자의 3차원 입체 구조를 1조 분의 1초 시분해능으로 관찰할 수 있는 펨토 초 광학 이성질체 측정법 개발에 성공했습니다.

이한주 박사

조민행 교수



이는 실험적 측면에서 기존의 극미세 신호 및 시분해능 한계를 독창적인 방식으로 극복했다는데 그 의의가 있습니다.

또한 이론⋅계산적 측면에서 분자역학 시뮬레이션 기법을 활용한 새로운 시간 상관 계산법을 개발하였으며, 실험과의 정량적 일치를 통해 방법의 타당성을 입증했습니다. 

시간 영역 광학활성 측정 및 계산법


연구진은 이번 연구 성과를 바탕으로 현재 적절한 들뜸-탐침 방법을 연동해 생체 시스템에서 일어나는 다양한 생체분자의 구조 다이나믹스 연구를 진행할 예정입니다.

이번 연구가 지속된다면, 앞으로 단백질 접힘-펴짐 현상이나 DNA-단백질 결합 등과 같은 생체 내 근본적인 생화학 반응 및 비대칭 화합물들의 화학 반응의 메커니즘을 밝히는데 중요한 역할을 할 수 있을 것으로 기대되고 있습니다.

또 의약(high-throughput screening) 및 재료과학에도 널리 사용될 전망입니다.

이번 연구 결과는 미국 화학회(American Chemical Society)에서 발간하는 Accounts of Chemical Research 지(IF=18.203) 학술지에는 12월 21일에 게재될 예정입니다.
(논문명 : Infrared Optical Activity : Electric Field Approaches in Time Domain)



*용어설명*

□ 광학 이성질체 / 광학 활성 

사람의 왼손과 오른손은 서로 거울상입니다.
이 둘은 비슷하게 생겼지만 공간상에서 완전히 포개어 겹쳐질 수 없습니다.

분자들 중에도 마치 사람의 왼손과 오른손처럼 그 거울상과 서로 포개질 수 없는 것들, 즉 3차원 입체 구조가 서로 다른 것들이 있는데 이를 광학 이성질체라 합니다.

그 이유는 이들이 광학적으로 서로 다른 특성을 가지기 때문입니다.
즉, 광학 이성질체는 원형 좌편광 또는 우편광 된 빛(진행함에 따라 그 편광 방향이 왼쪽 또는 오른쪽으로 회전하는 빛)과 서로 다른 상호작용을 하여 빛의 흡수 차이 또는 속도 차이를 발생시키는데 이러한 성질을 광학 활성이라고 합니다.

따라서 광학 활성은 분자의 3차원 입체 구조에 대한 유용한 정보를 제공합니다.


□ 분자역학 시뮬레이션 / 시간 상관 계산법

실험에서 측정된 분광 스펙트럼으로부터 분자의 구조 정보를 얻기 위해서는 분자 계산을 통한 비교 분석이 필수적입니다.

그런데 기존의 계산법에서는 기체상의 분자에 대해 양자역학적 계산을 수행하기 때문에 용매 분자(용질 분자를 둘러싸고 있는 분자)의 영향이 고려되기 힘듭니다.

반면, 분자역학 시뮬레이션을 이용한 시간 상관 계산법에서는 용매 분자와 용질 분자 사이의 상호작용이 고려된 분자들의 궤적을 펨토 초 단위로 계산한 후 광학 활성과 관련된 물리량들의 시간 상관 함수로부터 스펙트럼을 획득합니다.

반응형
반응형

‘3차원 적층형 비휘발성 유기물 저항 변화 메모리 소자’가 국내 연구진에 의해 개발되었습니다.

3차원 적층형 유기 메모리 소자 모식도



유기 저항 변화 메모리 소자(Organic Resistive memory device)는  유기 소재를 이용한 메모리 소자로서, 제조 가격이 저렴하고 제작 기술이 간단하며 또한 저온 공정과 구부러지는 플라스틱(flexible plastic) 제품에 적용할 수 있어 현재 많은 연구가 진행되고 있습니다.

비휘발성 유기 저항 변화형 메모리의 대표적인 전류-전압 (I-V) 곡선.(a)-(c) 1, 2, 3 층에서 선택된 메모리 셀에서의 대표적인 전류-전압(I-V) 곡선. 내부 그림의 빨간색은 각 층에서의 메모리 셀 위치를 나타냄.



상하부 전극사이의 유기 소재가 인가된 전압에 따라 서로 다른 두 가지의 저항상태인 고 저항 상태(High resistance state)와 저 저항 상태(Low resistance state)를 가지고, 이러한 저항 상태가 외부의 전원 없이 유지되기 때문에 차세대 비휘발성 메모리 소자의 하나로 각광받고 있습니다.


지금까지 세계의 연구자들은 실리콘 등 무기물을 활용한 비휘발성 메모리 소자의 집적화를 극대화하고자 3차원 적층구조를 연구해왔습니다.

유기물을 사용하면 제작 과정이 간단하고 비용도 저렴하면서 자유자재로 휘어지는 메모리 소자를 구현할 수 있기 때문에, 세계적인 연구팀들은 유기물을 이용한 3차원 적층형 메모리 소자 연구에 집중했는데요.

 그러나 유기물을 소재로 한 비휘발성 메모리 소자를 3차원 적층으로 공정하면, 위층 유기물 용매가 아래층으로 혼합되어 층간을 구분할 수 없어지기 때문에 고집적 적층 유기 메모리 소자를 개발하는 데에는 한계가 있었습니다.
 

이를 광주과학기술원 이탁희 교수팀이 기존의 무기물을 활용한 방법보다 공정이 간단하고 비용도 저렴한 차세대 고집적 반도체 메모리 소자를 개발한 것입니다.

이탁희 교수

송성훈 박사과정생



3차원으로 적층된 유기물 저항 변화 메모리 소자의 모식도.(a) 8 ☓ 8 크로스바 형태로 3차원 적층된 유기물 저항 변화 메모리 소자 구조 개념도. 전체 192개의 메모리 셀이(오렌지색) 제작됨. (b) 투과전자현미경을 통해 본 3차원 적층 구조의 메모리 소자 수직절단면 이미지 (c) 메모리 소자로 사용된 유기물의 분자구조식



이 교수팀은 경화(curing) 공정이 가능한 유기물 소재(폴리이미드와 버키볼 풀러린 유도체 분자)를 혼합한 유기물을 사용, 데이터 지우기와 쓰기가 가능한 3차원 적층 형태를 갖춘 유기물 비휘발성 메모리 소자를 구현했습니다.

8 ☓ 8 어레이 타입의 3차원 적층된 메모리 소자의 통계적 분석.(a) 3차원으로 적층된 메모리 삽화(left part) 및 각 층에서 동작하는 메모리 셀(빨간색)과 동작하지 않는 메모리 셀(검정색) 분포도 (right part)(b) 160개의 동작하는 메모리 셀을 바탕으로 on state 와 off state 전류값의 분포 분석 (c) 메모리 동작을 위한 각 층의 문턱전압의 분포 비교


이번 연구결과는 재료공학분야에서 권위 있는 학술지인 ‘어드밴스드 머티리얼즈 (Advanced Materials)’ 제22권 제44호(2010년 11월 24일) 표지논문에 게재됐습니다.

이탁희 교수팀은 최근 2년간 하이브리드 유기 메모리 소자와 휘어지는 유기 메모리 소자 연구로, 이 학술지에 무려 네 차례나 표지논문으로 선정되는 영예를 얻었습니다.

3차원으로 적층된 각 층의 메모리 성능 평가 및 비교(a) 쓰기-읽기-지우기-읽기(Write-Read-Erase-Read) cycle 테스트. 펄스(Pulse) 형태의 전압을 연속적으로 인가하였을 때, 그에 대응하는 On/Off의 전류값 반복 사이클 곡선(b) 각 층의 메모리 셀의 DC 전압에 의한 메모리 내구성(c) 각 층의 메모리 셀의 시간에 따른 비휘발성 정보유지 능력



반응형
반응형


지구에 영향을 미치는 태양. NASA 제공



영화 '2012'에서는 2012년 태양의 이상활동으로 대량의 중성미자(뉴트리노)를 발생시키고, 그 중성미자가 지구로 쏟아져 와 틀을 끓여 대륙판이 뒤틀리고 거대 홍수가 발생해 전 지구적 멸망이 온다는 스토리가 전개됩니다.

또 영화 '노잉'은 태양의 일시적인 활동 증가로 태양풍이 지구를 덮쳐 역시 전 지구적 멸망을 피할 수 없다는 내용입니다.

현실은 어떨까요?

실제 학자들도 영화처럼 2013년 경 태양의 이상 활동을 예견하고 있습니다.

그 예상 피해 규모는 영화처럼 극단적이지 않습니다.
그러나 전자기기나 위성 등에는 상당한 피해가 예상되나 봅니다.  
 

한국천문연구원은 지난  7월 NASA와 태양우주환경분야의 공동연구를 위한 협약을 맺고, 오는 2013년 태양활동 극대기의 우주재난에 대비한 태양우주환경 연구협력을 강화하기로 했습니다.

정말 2013년에 무슨 일이 있으려나 봅니다.

이번 협약에 따라 천문연은 NASA의 최신 태양 활동 관측 위성자료를 실시간으로 공급받고, 천문연은 수신한 우주환경 관측위성 자료를 NASA에 공급하기로 했습니다.

또  천문연과 NASA는 연구인력 교류를 통해 태양우주환경 연구협력을 강화하기로 했습니다.

천문연은 NASA의 태양활동관측위성(SDO; Solar Dynamic Observatory) 데이터 센터를 한국에 구축하고, NASA는 SDO 자료의 저장, 활용 및 배분을 위한 데이터 시스템 구축에 협력하게 됩니다.

특히 천문연은 NASA가 2012년 발사 예정인 방사선대 폭풍 관측위성(RBSP; Radiation Belt Storm Probe)의 관측자료 수신시스템을 한국에 구축할 예정입니다.

또한 천문연은 태양연구에 필요한 데이터센터 구축을 통해 국제 우주관측프로그램(ILWS, International Living with a Star)의 가입을 추진하며, NASA는 천문연의 ILWS 가입을 위해 협조키로 했습니다.
 

○ 미국 NASA 보도자료 관련 홈페이지:

http://www.nasa.gov/topics/solarsystem/sunearthsystem/main/News081210-kasi.html

반응형
반응형
휴대폰이나 심장에 이식한 미세 로봇이 배터리 충전 없이 영구적으로 작동할 수 있을까요?

공상과학 영화에나 나올 법한 이런 일들이 머지않아 가능해 질수도 있습니다.

KAIST 신소재공학과 이건재 교수팀은 압전특성이 우수한

이건재 교수

세라믹 박막물질을 이용해 심장 박동, 혈액 흐름과 같은 미세한 움직임으로도 전기를 만들 수 있는 새로운 형태의 유연한 나노 발전기술을 개발했습니다.

압전특성이란, 가스레인지의 점화스위치처럼 압력이나 구부러짐의 힘이 가해질 때 전기가 발생되는 특성을 말합니다.

‘페로브스카이트(perovskite)’ 구조를 갖는 세라믹 물질들이 높은 효율을 나타내지만 깨지기 쉬운 성질을 가지고 있어 유연한 전자 장치로의 활용이 불가능했습니다.

구부러지는 유연한 나노박막물질에서 전기가 발생되는 모습.


그런데 이 교수팀은 높은 압전특성을 가지면서 깨지지 않고 자유롭게 구부릴 수 있는 세라믹 나노 박막물질을 만들어 고효율 나노 발전기술을 세계 최초로 성공했습니다. 

나노기술과 압전체가 만나서 만들어지는 나노 발전기술은 전선과 배터리 없이도 발전이 가능하기 때문에, 휴대용 전자제품 뿐만 아니라 몸속에 집어넣는 센서나 로봇의 에너지원으로도 사용될 수 있습니다.
게다가 다른 응용기술 여하에 따라 적용 범위가 얼마든지 넓어질 수 있을 전망입니다.

이를 통해 미세한 바람, 진동, 소리와 같이 자연에서 발생되는 에너지원이나 심장 박동, 혈액 흐름, 근육 수축·이완과 같이 사람 몸에서 발생되는 생체역학적 힘으로 전기에너지를 생산할 수 있습니다.


이번에 개발한 나노 발전기술은 이 교수가 2004년 세계 최초로 공동 발명한 ‘고성능 단결정 휘어지는 전자소자’를 토대로 한 것으로, 세라믹 나노박막물질을 유연한 플라스틱 기판 위에 옮겨서 외적인 힘이 주어질 때마다 신소재 압전물질로부터 전기를 얻는 것입니다.

이 나노 발전기술의 회로구조를 변형하면 LED발광도 가능하다고 합니다.

반응형

+ Recent posts